WJEC CBAC

GCE AS/A level

977/01

MATHEMATICS FP1
 Further Pure Mathematics

A.M. WEDNESDAY, 22 June 2011

$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Differentiate $\frac{1}{x^{3}}$ from first principles.
2. Find an expression for the sum of the first n terms of the series whose r th term is $r(2 r-1)$. Simplify your answer as far as possible.
3. Given that the complex number z and its complex conjugate \bar{z} satisfy the equation

$$
\begin{equation*}
2 \bar{z}+\mathrm{i} z=(1+2 \mathrm{i})(2-3 \mathrm{i}), \tag{7}
\end{equation*}
$$

find z in the form $x+\mathrm{i} y$.
4. (a) Show that the following matrix is singular.

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & 3 \\
4 & -1 & 7
\end{array}\right]
$$

(b) Given that the following system of equations is consistent,

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & 3 \\
4 & -1 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
\lambda
\end{array}\right]
$$

(i) find the value of λ,
(ii) find the general solution.
5. Consider the polynomial equation

$$
x^{4}-2 x^{3}-2 x^{2}+6 x+5=0
$$

Given that one of the roots of this equation is $2+i$, determine all the other roots of the equation.
6. Use mathematical induction to prove that $6^{n}+4$ is divisible by 10 for all positive integers n.
7. The transformation T in the plane consists of an anticlockwise rotation through 90° about the origin followed by a translation in which the point (x, y) is transformed to the point $(x-2, y+1)$ followed by a reflection in the line $x+y=0$.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{ccc}
-1 & 0 & -1 \tag{5}\\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find the equation of the image under T of the line $y=2 x-1$.
8. The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

(a) Evaluate \mathbf{A}^{2} and show that

$$
\begin{equation*}
\mathbf{A}^{2}=5 \mathbf{A}+2 \mathbf{I}, \tag{4}
\end{equation*}
$$

where I denotes the identity matrix.
(b) Using the result in (a), show that

$$
\mathbf{A}^{3}=\lambda \mathbf{A}+\mu \mathbf{I}
$$

where λ, μ are constants to be determined.
9. The roots of the following cubic equation are in geometric progression.

$$
\begin{equation*}
x^{3}+f x^{2}+g x+h=0 \tag{7}
\end{equation*}
$$

Show that $g^{3}=f^{3} h$.
10. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$
w=\frac{1}{z^{2}} .
$$

(a) Show that

$$
u=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and obtain an expression for v in terms of x and y.
(b) The point P moves along the line L with equation $y=m x$.
(i) Show that the locus of Q is the line L^{\prime} with equation of the form $v=m^{\prime} u$ and find an expression for m^{\prime} in terms of m.
(ii) Determine the values of m for which L and L^{\prime} have the same gradient.

