GCE AS/A level

976/01

MATHEMATICS C4
 Pure Mathematics

A.M. MONDAY, 20 June 2011
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that $f(x)=\frac{x^{2}+x+13}{(x+2)^{2}(x-3)}$,
(a) express $f(x)$ in terms of partial fractions,
(b) evaluate

$$
\int_{6}^{7} f(x) \mathrm{d} x
$$

giving your answer correct to three decimal places.
2. Find the equation of the normal to the curve

$$
\begin{equation*}
x^{4}-2 x^{2} y+y^{2}=4 \tag{5}
\end{equation*}
$$

at the point $(1,3)$.
3. (a) Find all values of x in the range $0^{\circ} \leqslant x \leqslant 180^{\circ}$ satisfying

$$
\begin{equation*}
\tan 2 x=4 \tan x \tag{5}
\end{equation*}
$$

(b) Express $7 \cos \theta+24 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where R and α are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
Hence, find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
7 \cos \theta+24 \sin \theta=16 \tag{6}
\end{equation*}
$$

4. The curve C has the parametric equations

$$
x=3 \cos t, y=4 \sin t
$$

The point P lies on C and has parameter p.
(a) Show that the equation of the tangent to C at the point P is

$$
\begin{equation*}
(3 \sin p) y+(4 \cos p) x-12=0 . \tag{5}
\end{equation*}
$$

(b) The tangent to C at the point P meets the x-axis at the point A and the y-axis at the point B. Given that $p=\frac{\pi}{6}$,
(i) find the coordinates of A and B,
(ii) show that the exact length of $A B$ is $2 \sqrt{19}$.
5. The region shaded in the diagram below is bounded by the x-axis and that part of the curve with equation $x^{2}+y^{2}=9$ lying above the x-axis. The points of intersection of the curve with the coordinate axes are denoted by A, B and C.

(a) Write down the coordinates of A, B and C.
(b) (i) By carrying out an appropriate integration, find the volume generated when the region shaded in the diagram is rotated through four right-angles about the x-axis.
(ii) Give a geometrical interpretation of your answer.
6. Expand $4(1+2 x)^{\frac{1}{2}}-\frac{1}{(1+3 x)^{2}}$ in ascending powers of x up to and including the term in x^{2}. State the range of values of x for which your expansion is valid.
7. (a) Find $\int x \sin 2 x \mathrm{~d} x$.
(b) Use the substitution $u=5-x^{2}$ to evaluate

$$
\begin{equation*}
\int_{0}^{2} \frac{x}{\left(5-x^{2}\right)^{3}} \mathrm{~d} x \tag{4}
\end{equation*}
$$

TURN OVER

8. The size N of the population of a small island may be modelled as a continuous variable. At time t, the rate of increase of N is directly proportional to the value of N.
(a) Write down the differential equation that is satisfied by N.
(b) Show that $N=A \mathrm{e}^{k t}$, where A and k are constants.
(c) Given that $N=100$ when $t=2$ and that $N=160$ when $t=12$,
(i) show that $k=0.047$, correct to three decimal places,
(ii) find the size of the population when $t=20$.
9. (a) Given that the vectors $5 \mathbf{i}-8 \mathbf{j}+4 \mathbf{k}$ and $4 \mathbf{i}+6 \mathbf{j}+a \mathbf{k}$ are perpendicular, find the value of the constant a.
(b) The line L_{1} passes through the point with position vector $8 \mathbf{i}+3 \mathbf{j}-7 \mathbf{k}$ and is parallel to the vector $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$.
(i) Write down the vector equation of the line L_{1}.
(ii) The line L_{2} has vector equation

$$
\mathbf{r}=4 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k}+\mu(-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})
$$

Show that L_{1} and L_{2} do not intersect.
10. Prove by contradiction the following proposition.

When x is real and positive,

$$
4 x+\frac{9}{x} \geqslant 12 .
$$

The first line of the proof is given below.
Assume that there is a positive and real value of x such that

$$
\begin{equation*}
4 x+\frac{9}{x}<12 . \tag{3}
\end{equation*}
$$

