GCE AS/A level

$\frac{\text { WJEC }}{\text { CBAC }}$

977/01

MATHEMATICS FP1
 Further Pure Mathematics

A.M. THURSDAY, 12 June 2008
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that

$$
S_{n}=\sum_{r=1}^{n} r^{2}(r+1),
$$

obtain an expression for S_{n} in terms of n, giving your answer as a product of linear factors.
2. (a) Find the inverse of the matrix

$$
\left[\begin{array}{lll}
2 & 4 & 2 \tag{6}\\
1 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

(b) Hence solve the equations

$$
\left[\begin{array}{lll}
2 & 4 & 2 \tag{2}\\
1 & 2 & 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
8 \\
8 \\
5
\end{array}\right]
$$

3. Given that

$$
z=(2-\mathrm{i})^{2}+\frac{(7-4 \mathrm{i})}{(2+\mathrm{i})}-8,
$$

(a) express z in the form $x+\mathrm{i} y$,
(b) find the modulus and argument of z.
4. (a) Use reduction to echelon form to find the value of k for which the following equations are consistent.

$$
\begin{array}{r}
2 x+y+3 z=5 \\
x-2 y+2 z=6 \tag{5}\\
4 x+7 y+5 z=k
\end{array}
$$

(b) For this value of k, find the general solution to these equations.
5. Use mathematical induction to show that $7^{n}+5$ is divisible by 6 for all positive integers n.
6. (a) The roots of the cubic equation

$$
a x^{3}+b x^{2}+c x+d=0
$$

are the first three terms of a geometric series with common ratio 2 . Show that

$$
\begin{equation*}
4 b c-49 a d=0 . \tag{7}
\end{equation*}
$$

(b) Given that

$$
\begin{equation*}
8 x^{3}-42 x^{2}+63 x-27=0 \tag{3}
\end{equation*}
$$

is such an equation, find its three roots.
7. The transformation T in the plane consists of an anticlockwise rotation through 90° about the origin followed by a translation in which the point (x, y) is transformed to the point $(x+1, y+2)$.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{rrr}
0 & -1 & 1 \tag{3}\\
1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find the coordinates of the fixed point of T.
(c) Find the equation of the image under T of the line $y=2 x-1$.
8. The function f is defined on the domain $\left(0, \frac{\pi}{2}\right)$ by

$$
f(x)=x^{\cos x} .
$$

(a) Obtain an expression for $f^{\prime}(x)$ in terms of x.
(b) The x-coordinate of the maximum point on the graph of f is denoted by α.
(i) Show that

$$
\alpha \ln \alpha \tan \alpha=1 .
$$

(ii) Show that α lies between 1.27 and 1.28 .
9. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$
w=\frac{1}{z+1} .
$$

(a) By first writing

$$
z+1=\frac{1}{w}
$$

show that

$$
x+1=\frac{u}{u^{2}+v^{2}}
$$

and find an expression for y in terms of u and v.
(b) The point P moves along the circle $(x+1)^{2}+y^{2}=4$. Find the equation of the locus of Q.

