General Certificate of Education

Advanced Subsidiary/Advanced
977/01

MATHEMATICS FP1
 Further Pure Mathematics

P.M. TUESDAY, 22 January 2008
($1 \frac{1}{2}$ hours)

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Solve the following equations by reduction to echelon form.

$$
\begin{array}{r}
x+3 y+2 z=14 \\
2 x+y+z=7 \\
3 x+2 y-z=7 \tag{7}
\end{array}
$$

2. The roots of the equation

$$
x^{3}-x^{2}+3 x+5=0
$$

are denoted by α, β, γ.
(a) Show that

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=-5 .
$$

Deduce that exactly one of the roots of the above cubic equation is real.
(b) Given that one of the roots is $1-2 \mathrm{i}$, find the other two roots.
3. The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
1 & \lambda & 2
\end{array}\right]
$$

(a) Find the value of λ for which \mathbf{A} is singular.
(b) Given that $\lambda=4$,
(i) find the adjugate matrix of \mathbf{A},
(ii) find the inverse of \mathbf{A}.
4. (a) Express

$$
\begin{equation*}
\frac{2}{\left(4 x^{2}-1\right)} \tag{4}
\end{equation*}
$$

in partial fractions.
(b) Given that

$$
S_{n}=\sum_{r=1}^{n} \frac{2}{\left(4 r^{2}-1\right)}
$$

obtain, in its simplest form, an expression for S_{n} in terms of n.
5. The transformation T in the plane consists of a translation in which the point (x, y) is transformed to the point $(x+a, y+b)$, followed by a reflection in the line $y=x$.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{lll}
0 & 1 & b \tag{3}\\
1 & 0 & a \\
0 & 0 & 1
\end{array}\right]
$$

(b) Given that $a+b=0$,
(i) determine the set of fixed points of T,
(ii) describe, in words, the single transformation that is equivalent to T followed by T. [7]
6. (a) Find the modulus and argument of $(3+2 \mathrm{i})^{2}$.
(b) The complex numbers u, v and w are related by the equation

$$
\begin{equation*}
\frac{1}{u}=\frac{1}{v}+\frac{1}{w} . \tag{6}
\end{equation*}
$$

Given that $v=2+\mathrm{i}$ and $w=1-2 \mathrm{i}$, find u in the form $x+\mathrm{i} y$.
7. Use mathematical induction to show that

$$
\begin{equation*}
\sum_{r=1}^{n} r \times 2^{r}=2^{n+1}(n-1)+2 \tag{8}
\end{equation*}
$$

for all positive integers n.
8. The complex number z is represented by the point $P(x, y)$ in the Argand diagram. Given that

$$
|z-1|=\sqrt{2}|z-\mathrm{i}|,
$$

show that the locus of P is a circle, and find its radius and the coordinates of its centre.
9. Given that

$$
f(x)=x^{-\sqrt{x}} \text { for } x>0
$$

(a) obtain an expression for $f^{\prime}(x)$,
(b) find the x-coordinate of the stationary point on the graph of f and determine whether this point is a maximum or a minimum.

