CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol
Uwch Gyfrannol/Uwch

499/01
MATHEMATICS M3
Mechanics 3
A.M. WEDNESDAY, 25 January 2006
($1 \frac{1}{2}$ hours)

LEGACY SPECIFICATION

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.

INFORMATION FOR CANDIDATES

Graphical calculators may be used for this paper.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. A particle moves in a straight line with Simple Harmonic Motion, the centre of oscillations being O. When the particle is at a distance 4 m from O, its speed is $4.5 \mathrm{~ms}^{-1}$ and the magnitude of its acceleration is $9 \mathrm{~ms}^{-2}$.
(a) Find the time taken to make 5 complete oscillations.
(b) Determine the maximum speed of the particle.
(c) Two points A and B are on different sides of O in the path of the particle. The distances of A and B from O are 2.5 m and 4 m respectively. Calculate the shortest time for the particle to travel from A to B.
2. A particle moves along the x-axis so that at time $t \mathrm{~s}$, its displacement $x \mathrm{~m}$ from the origin satisfies the differential equation.

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}-21 x=42 t+55
$$

Given that when $t=0$, the particle is at rest at the origin, find its displacement at time $t \mathrm{~s}$.
3. One end of a light inextensible string of length $l \mathrm{~m}$ is attached to a fixed point A. The other end of the string is attached to a particle P of mass 2.5 kg . The particle P moves in a horizontal circle with constant angular speed 2 radians per second about the point O, where O is vertically below A as shown in the diagram. The string makes an angle θ with the downward vertical.

Given that the tension in the string is 28.3 N ,
(a) find, correct to the nearest degree, the value of θ,
(b) find the value of l.
4. The foot of a uniform ladder of length 4 m and mass 18 kg rests on rough ground and the top of the ladder rests against a smooth vertical wall. The ladder is inclined at an angle θ to the vertical, where $\tan \theta=\frac{8}{9}$.
(a) Draw a diagram showing the forces acting on the ladder.
(b) Find the magnitude of the frictional force exerted by the ground on the ladder.
(c) Given that the ladder is on the point of slipping, find the value of the coefficient of friction between the ground and the ladder.
5. A body moves in a straight line so that its velocity $v \mathrm{~ms}^{-1}$ at time $t \mathrm{~s}$ is given by

$$
v=\frac{12}{2+5 x}
$$

where $x \mathrm{~m}$ is the displacement of the body from a fixed point O on the line at time $t \mathrm{~s}$.
Given that $x=0$ when $t=1$,
(a) calculate the value of t when $x=4$,
(b) find the expression for the acceleration of the body in terms of x.
6. A stone of mass $m \mathrm{~kg}$ is projected vertically upwards from a point O with speed $42 \mathrm{~ms}^{-1}$. When the height of the stone above O is $x \mathrm{~m}$, the speed of the stone is $v \mathrm{~ms}^{-1}$ and the resistance to motion of the stone is $0.04 m v^{2} \mathrm{~N}$.
(a) Show that $25 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\left(245+v^{2}\right)$.
(b) Calculate the greatest height of the stone above O.
7. (a) One end of a light rigid rod, of length a, is freely pivoted at a fixed point O. A particle, of mass m, is attached to the other end of the rod. Initially, the particle is held at rest at a point A such that $O A$ is inclined at an angle of 30° to the downward vertical through O. The particle is projected from A with speed u in the direction perpendicular to $O A$ in the vertical plane containing $O A$ as shown in the diagram, so that it starts describing a vertical circle with centre O.

(i) When the rod is inclined at an angle θ to the downward vertical the speed of the particle is v and the tension in the rod is T.
Find, in terms of u, a, θ and m, expressions for v^{2} and T.
(ii) Given that the particle describes complete circles, show that $u>\sqrt{a g(2+\sqrt{3})}$.
(b) If the rod in part (a) is replaced by a light inextensible string and $u^{2}=4 a g$, determine whether or not the particle describes complete circles.

