CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

496/01
MATHEMATICS P6
Pure Mathematics
P.M. FRIDAY, 27 January 2006
($1 \frac{1}{2}$ hours)

LEGACY SPECIFICATION

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

Graphical calculators may be used for this paper.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Using the exponential definition of $\cosh x$, show that

$$
\begin{equation*}
\cosh 2 x=2 \cosh ^{2} x-1 . \tag{3}
\end{equation*}
$$

(b) Solve the equation

$$
\cosh 2 x=3 \cosh x
$$

giving your answers correct to three significant figures.
2. The equation

$$
x^{3}+x-6=0
$$

has a root α between 1 and 2 .
(a) Show that the Newton-Raphson formula for finding the value of α can be written in the form

$$
\begin{equation*}
x_{n+1}=\frac{2 x_{n}{ }^{3}+6}{3 x_{n}^{2}+1} . \tag{2}
\end{equation*}
$$

(b) (i) Taking $x_{0}=1 \cdot 5$, find the values of x_{1}, x_{2} and x_{3} as accurately as your calculator will allow.
(ii) Round your value of x_{3} to six decimal places and determine whether or not this gives the value of α correct to six decimal places.
3. A parabola has parametric equations

$$
x=t^{2}, y=2 t \text {. }
$$

(a) Show that the length of the arc joining $(0,0)$ to $(1,2)$ is given by

$$
\begin{equation*}
2 \int_{0}^{1} \sqrt{t^{2}+1} \mathrm{~d} t \tag{3}
\end{equation*}
$$

(b) Use the substitution $t=\sinh \theta$ to evaluate this arc length.
4. Use the substitution $t=\tan \left(\frac{x}{2}\right)$ to evaluate the integral

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{1+2 \cos x} \tag{8}
\end{equation*}
$$

5. The function f is defined by

$$
f(x)=\ln (1+\sin x) .
$$

(a) Show that

$$
\begin{equation*}
f^{\prime \prime}(x)=-\frac{1}{1+\sin x} \tag{3}
\end{equation*}
$$

(b) (i) Find the first four terms of the Maclaurin series of $f(x)$.
(ii) Deduce the first four terms of the Maclaurin series of the function g given by

$$
g(x)=\ln (1-\sin x) .
$$

(iii) By combining your series, show that

$$
\begin{equation*}
\ln \cos x=-\frac{x^{2}}{2}-\frac{x^{4}}{12}+\ldots \tag{11}
\end{equation*}
$$

6. Given that

$$
I_{n}=\int_{0}^{4} x^{n} \sqrt{4-x} \mathrm{~d} x(n \geqslant 0)
$$

show that, for $n \geqslant 1$,

$$
I_{n}=\frac{8 n}{(2 n+3)} I_{n-1}
$$

Hence evaluate I_{2}.
7.

The diagram shows the curves C_{1} and C_{2} (not drawn to scale) with polar equations

$$
\begin{array}{ll}
C_{1}: r=1-\cos \theta & (0 \leqslant \theta \leqslant \pi) \\
C_{2}: r=\cos \theta & \left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right) .
\end{array}
$$

Find the area of the shaded region.

