WELSH JOINT EDUCATION COMMITTEE General Certificate of Education Advanced Subsidiary/Advanced

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

493/01

MATHEMATICS P3

Pure Mathematics

P.M. MONDAY, 23 January 2006

 $(1\frac{1}{2}$ hours)

LEGACY SPECIFICATION

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

Graphical calculators may be used for this paper.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that
$$f(x) = \frac{7x+4}{(x-2)(x+1)^2}$$
,
(a) express $f(x)$ in partial fractions, [4]

(b) find f'(1). [3]

2. (a) Find the values of θ between 0° and 360° satisfying the equation

$$2\cot^2\theta - \csc\theta - 4 = 0.$$
 [6]

(b) Express $24 \sin\theta + 7 \cos\theta$ in the form $R \sin(\theta + \alpha)$, where the values of R and α are to be determined. Hence find all values of θ between 0° and 360° satisfying the equation

$$24\sin\theta + 7\cos\theta = 10.$$
 [6]

- **3.** (a) Differentiate $\tan^{-1}(2x)$ with respect to x. [2]
 - (b) Find the equation of the tangent to the curve $x^4 + x^2y + y^3 = 21$ at the point (2, 1). [5]
- 4. Expand $\frac{3}{1+2x} + \frac{1}{(1+x)^2}$ in ascending powers of x up to and including the term in x^2 . State the range of values of x for which your expansion is valid. [6]

5. (a) Find
$$\int x e^{-x} dx$$
. [3]

(b) Use the substitution $u = 2 + \ln x$ to evaluate

$$\int_{1}^{e} \frac{1}{x(2+\ln x)^3} \, \mathrm{d}x.$$
[5]

6. The region *R* is bounded by the curve $y = \cos x$, the *x*-axis and the lines x = 0, $x = \frac{\pi}{4}$. Find the volume generated when *R* is rotated through four right-angles about the *x*-axis. [6]

7. A curve has parametric equations $x = 2 \cos t$, $y = 3 \sin t$. Show that the normal to the curve at the point *P*, whose parameter is *p*, has equation

 $(2 \sin p)x - (3 \cos p)y + 5 \sin p \cos p = 0.$

The normal at *P* meets the *x*-axis at *A* and the *y*-axis at *B*. Write down the values of *OA* and *OB*, where *O* is the origin, when $p = \frac{\pi}{3}$. [8]

8. Given that $y = \frac{\pi}{2}$ when $x = \frac{\pi}{2}$, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+2+\cos x}{\sin y},$$

expressing your answer in the form f(x) = g(y).

9. (a) The vector equation of the line L_1 is

$$\mathbf{r} = (4+2\lambda)\mathbf{i} + (1+\lambda)\mathbf{j} + (2+3\lambda)\mathbf{k},$$

where λ is a parameter.

A second line L_2 has vector equation

$$\mathbf{r} = (\mu + 3) \mathbf{i} + (2\mu + 5) \mathbf{j} + (8 + 4\mu) \mathbf{k},$$

where μ is a parameter.

Given that the lines intersect, find the position vector of their point of intersection. [5]

- (b) The points A and B have position vectors $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $2\mathbf{i} 4\mathbf{j} \mathbf{k}$, respectively. Find $\cos A\widehat{OB}$, where O is the origin. [5]
- 10. Complete the following proof by contradiction to show that $\sqrt{5}$ is irrational.

Assuming that $\sqrt{5}$ is rational, let $\sqrt{5} = \frac{a}{b}$ where a and b are integers that have no common factor. Then $5b^2 = a^2 \Rightarrow 5$ is a factor of a^2 . [5]

[6]