Simultaneous equations

	SET OF LINEAR EQUATIONS
	Consider the line $\mathrm{L}_{1}: a x+b y=c$ and the line $\mathrm{L}_{2}: d x+e y=f$ To work out the coordinates of the point of INTERSECTION, solve the equations SIMULTANEOUSLY. Solving by combination / elimination: $\left\{\begin{array} { l l } { a x + b y = c } & { (x d) } \\ { d x + e y = f } & { (x - a) } \end{array} \quad \left\{\begin{array}{c} a d x+b d y=c d \\ -a d x-a e y=-a f \end{array}\right.\right.$ Then add the equations to find the value of y. Use any other equation to find the value of x. Solving by identification: Make y the subject in both equations and identify the values of y : $L_{1}: y=m_{1} x+c_{1}$ $L_{2}: y=m_{2} x+c_{2} \quad$ this gives $(y=) m_{1} x+c_{1}=m_{2} x+c_{2}$ and solve. Solving by substitution: Make y the subject in one of the equation then substitute y by this expression in the second equation: $\begin{aligned} & \mathrm{L}_{1}: y=m x+c \\ & L_{2}: d x+e y=f \quad \text { this gives } d x+e(m x+c)=f \text { then solve. } \end{aligned}$
	SET OF QUADRATIC AND LINEAR EQUATIONS A parabola Chas equation $y=a x^{2}+b x+c$, a line L has equation $y=d x+e \quad$ (make y the subject if it is animplict equation) To work out the coordinates of the points of intersection of the parabola and the line, solve these equations simultaneoulsy Solving by identification: $(y=) a x^{2}+b x+c=d x+e \text { then re-arrange into }$ $a x^{2}+(b-d) x+c-e=0 \text { and solve. }$ Let's re-write as $A x^{2}+B x+C=0$
Simultaneous equations - exercises	

