Solution of linear equations - exam questions

Question 1: Jan 2006 - Q6

(a) Show that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)$$
 (5 marks)

(b) (i) Hence, or otherwise, show that the system of equations

$$x + y + z = p$$
$$3x + 3y + 5z = q$$
$$15x + 15y + 9z = r$$

has no unique solution whatever the values of p, q and r. (2 marks)

- (ii) Verify that this system is consistent when 24p 3q r = 0. (2 marks)
- (iii) Find the solution of the system in the case where p = 1, q = 8 and r = 0.

 (5 marks)

Question 2: Jun 2006 - Q5

A set of three planes is given by the system of equations

$$x + 3y - z = 10$$

 $2x + ky + z = -4$
 $3x + 5y + (k-2)z = k+4$

where k is a constant.

(a) Show that
$$\begin{vmatrix} 1 & 3 & -1 \\ 2 & k & 1 \\ 3 & 5 & k-2 \end{vmatrix} = k^2 - 5k + 6.$$
 (2 marks)

- (b) In each of the following cases, determine the **number** of solutions of the given system of equations.
 - (i) k = 1.
 - (ii) k = 2.

(iii)
$$k = 3$$
. (7 marks)

(c) Give a geometrical interpretation of the significance of each of the three results in part (b) in relation to the three planes. (3 marks)

Question 3: Jan 2007 - Q1

Show that the system of equations

$$x + 2y - z = 0$$
$$3x - y + 4z = 7$$
$$8x + y + 7z = 30$$

is inconsistent.

Question 4: Jun 2007 - Q4

Consider the following system of equations, where k is a real constant:

$$kx + 2y + z = 5$$

 $x + (k+1)y - 2z = 3$
 $2x - ky + 3z = -11$

- (a) Show that the system does not have a unique solution when $k^2 = 16$. (3 marks)
- (b) In the case when k = 4, show that the system is inconsistent. (4 marks)
- (c) In the case when k = -4:
 - (i) solve the system of equations; (5 marks)
 - (ii) interpret this result geometrically. (1 mark)

Question 5: Jan 2008 - Q5

A system of equations is given by

$$x + 3y + 5z = -2$$

 $3x - 4y + 2z = 7$
 $ax + 11y + 13z = b$

where a and b are constants.

- (a) Find the unique solution of the system in the case when a = 3 and b = 2. (5 marks)
- (b) (i) Determine the value of a for which the system does not have a unique solution.

 (3 marks)
 - (ii) For this value of a, find the value of b such that the system of equations is consistent. (4 marks)

Question 6: Jun 2008 - Q6

Three planes have equations

$$x + y - 3z = b$$

 $2x + y + 4z = 3$
 $5x + 2y + az = 4$

where a and b are constants.

- (a) Find the coordinates of the single point of intersection of these three planes in the case when a = 16 and b = 6. (5 marks)
- (b) (i) Find the value of a for which the three planes do not meet at a single point.
 - (ii) For this value of a, determine the value of b for which the three planes share a common line of intersection. (5 marks)

Question 7: Jan 2009 - Q7

Two fixed planes have equations

$$x - 2y + z = -1$$
$$-x + y + 3z = 3$$

- (a) The point P, whose z-coordinate is λ , lies on the line of intersection of these two planes. Find the x- and y-coordinates of P in terms of λ . (3 marks)
- (b) The point P also lies on the variable plane with equation 5x + ky + 17z = 1. Show that

$$(k+13)(2\lambda-1)=0$$
 (3 marks)

(c) For the system of equations

$$x-2y+z=-1$$

$$-x+y+3z=3$$

$$5x+ky+17z=1$$

determine the solution(s), if any, of the system, and their geometrical significance in relation to the three planes, in the cases:

(i) k = -13;

(ii)
$$k \neq -13$$
. (6 marks)

Question 8: Jun 2009 - Q4

(a) Show that the system of equations

$$3x - y + 3z = 11$$

 $4x + y - 5z = 17$
 $5x - 4y + 14z = 16$

does not have a unique solution and is consistent.

(You are not required to find any solutions to this system of equations.) (4 marks)

(b) A transformation T of three-dimensional space maps points (x, y, z) onto image points (x', y', z') such that

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x - y + 3z - 2 \\ 2x + 6y - 4z + 12 \\ 4x + 11y + 4z - 30 \end{bmatrix}$$

Find the coordinates of the invariant point of T.

(8 marks)

Question 9: Jan 2010 - Q4

(a) Determine the two values of k for which the system of equations

$$x - 2y + kz = 5$$

$$(k+1)x + 3y = k$$

$$2x + y + (k-1)z = 3$$

does not have a unique solution.

(4 marks)

(b) Show that this system of equations is consistent for one of these values of k, but is inconsistent for the other.

(You are not required to find any solutions to this system of equations.) (8 marks)

Question 10: Jun 2010 - Q6

The line L and the plane Π have vector equations

$$\mathbf{r} = \begin{bmatrix} 7 \\ 8 \\ 50 \end{bmatrix} + t \begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} -2 \\ 0 \\ -25 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 6 \\ 2 \end{bmatrix}$$

respectively.

(a) (i) Find direction cosines for L.

(2 marks)

(ii) Show that L is perpendicular to Π .

(3 marks)

(b) For the system of equations

$$6p + 5q + r = 9$$

 $2p + 3q + 6r = 8$
 $-9p + 4q + 2r = 75$

form a pair of equations in p and q only, and hence find the unique solution of this system of equations. (5 marks)

- (c) It is given that L meets Π at the point P.
 - (i) Demonstrate how the coordinates of P may be obtained from the system of equations in part (b). (2 marks)
 - (ii) Hence determine the coordinates of P.

(2 marks)

Solution of linear equations – exam questions MS

	Solution of linear equations – exam questions ivis						
Que	Question 1: Jan 2006 – Q6 Question 3: Jan 2007 – Q1						
6(a)	0 0 1	M1			2 -1 0 1 2 -1 0	M1	
	$\Delta = \begin{vmatrix} a-c & b-c & c \\ b(c-a) & a(c-b) & ab \end{vmatrix}$	1411			-1 4 $7 \rightarrow 0$ -1 7 7	A1	
	b(c-u) u(c-b) ub			8	1 7 30 0 -15 15 30		
	0 0 1				1 2 -1 0	A1	
	$= (a-c)(b-c) \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & c \\ -b & -a & ab \end{vmatrix}$	A1			0 -1 1 1 1	AI	
	·	A1			0 -1 1 2	B1F	4
	= (a-c)(b-c)(b-a)	M1			· 1 1 1 2		
	= (a-b)(b-c)(c-a)	A1	5	O	or $\Delta = -7 - 3 + 64 - 8 - 4 - 42 = 0$	(M1)	
b)(i)	Noting $a = b = 3$, $c = 5$ in coefft. matrix	M1			nd A on A on A — O shown also	(A1) (A1)	
	$\Rightarrow \Delta = 0 \text{ since factor } (a - b) = 0$				and Δ_x or Δ_y or $\Delta_z = 0$ shown also explaining this \Rightarrow inconsistency	(B1)	(4)
	Hence no unique soln. to system	A1	2				
(ii)	$3R_2 + R_3 = 24R_1$	M1		0	Or Solving (1) & (2), say, to get $x = \lambda$, $y = 1 - \lambda$, $z = 2 - \lambda$	(M1) (A1)	
	giving consistency iff $24p - 3q - r = 0$	A1	2		$x-\lambda$, $y-1-\lambda$, $z-z-\lambda$	(A1)	
(iii)	x + y + z = 1			S	$ubst^g$. in (3) $\Rightarrow 15 = 30$	(B1)	(4)
	3x + 3y + 5z = 8 $5x + 5y + 3z = 0$			0110	Total stion 4: Jun 2007 – Q4	I	4
	$(2) - 3 \times (1)$ or $(3) - 5 \times (1) \Rightarrow z = 2\frac{1}{2}$	M1 A1		4(a)		l	i
	Then $x + y = -1\frac{1}{2}$	B1			$\Delta = 1 k+1 -2$		
	Setting $x = \lambda$ (e.g.) $\Rightarrow y = -1\frac{1}{2} - \lambda$	M1			2 -k 3		
	All correct, any form	A1	5		$= 3k^2 + 3k - k - 8 - 2(k+1) - 2k^2 - 6$ = $k^2 - 16$	M1 A1	Ī
	Special Case ruling for those who don't attempt to	Ai			When $k^2 = 16 \Delta = 0 \implies$ no unique soln.	El	3
	parametrise but who show this is the full solution:				Co Calodi Buda do da and do da and		
	4 + B0				Or Subst ^g . Both $k=4$ and $k=-4$ and attempt at det.	(MI)	
Que	stion 2: Jun 2006 – Q5				Each case correctly shown	(A1)	
5(a)				(b)	4x + 2y + z = 5	(A1)	3
					$k=4 \implies x+5y-2z=3$		
	1 3 -1 2 k 1 3 5 k-2	M1			2x - 4y + 3z = -11	Bl	
	$= k^2 - 2k - 10 + 9 + 3k - 5 - 6(k - 2)$				Elim ⁸ . z from (1) & (2) \Rightarrow 9(x + y) = 13 (1) & (3) \Rightarrow 10(x + y) = 26	M1 A1	İ
	$= k^2 - 5k + 6$	A1	2		Or (2) & (3) $\Rightarrow 10(x+y) = 20$	Ai	1
(b)(i)		B1	2		Explaining inconsistency, eg from $\frac{13}{9} \neq \frac{26}{10}$	E1	4
(-)(-)	When it is a property of the semi-				9 10		
(ii)	When $k = 2$, $\Delta = 0$ (no unique soln.)				Alternatively (mark as above)		İ
	System is $x + 3y - z = 10$				Elim ⁸ . x from (1) & (2) \Rightarrow 9(2y-z) = 7 (2) & (3) \Rightarrow 7(2y-z) = 17		
	2x + 2y + z = -4 $3x + 5y = 6$	B1			(1) & (3) $\Rightarrow 5(2y-z) = 27$		
	$R_1 + R_2 = R_3$ on both sides	M1			Or		
					Elim ⁸ . y from (1) & (2) \Rightarrow 9(2x + z) = 19 (2) & (3) \Rightarrow 7(2x + z) = -43		
	⇒∃∞-ly many soln.s	A1			(1) & (3) \Rightarrow 5(2x + z) = -1		
(iii)	When $k = 3$, $\Delta = 0$ (no unique soln.)			(c)(i)	-4x + 2y + z = 5		
	System is $x + 3y - z = 10$				$k = -4 \implies x - 3y - 2z = 3$	D.	
	2x + 3y + z = -4 $3x + 5y + z = 7$	B1			2x + 4y + 3z = -11	Bl	
	$(1) + (2) \implies 3x + 6y = 6$				Eliminating one variable $-7x + y = 13$	Mi	Ī
	$(1) + (2) \implies 3x + 6y = 0$ $(1) + (3) \implies 4x + 8y = 17$	M1			Or $10y + 7z = -17$		
	⇒ System inconsistent and				Or $10x + z = -21$ Parametrisation	Al Ml	
	∃ no soln.s	A1	7		(x) (0) (1)	1411	
(c)	$\underline{k=1}$: the (single) point of intersection	5 4 A			$y = 13 + \lambda 7$	4.1	5
	of 3 planes $k=2$: 3 planes meet in a line	B1√			$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} -21 \end{bmatrix} \begin{bmatrix} -10 \end{bmatrix}$	Al	,
	(or form a sheaf)	B1√			Correct alternate answer forms:		
	k = 3: 3 planes form a "prism" (or have	B1√	3		x, y = 13 + 7x, z = -21 - 10x		
	three parallel lines of intersection;				y, $x = (y - 13) / 7$, $z = (-21 - 10y) / 7z$, $y = (-17 - 7z) / 10$, $x = (-21 - z) / 10$		
	or have no common intersection) Total		12		Do not accept a mixed parametrisation		
	. Idai			(ii)	The line of intersection of 3 planes	B1	1
				(11)	2.10 line of intersection of 5 pianes	Di	13

Question 5: Jan 2008 – Q5		
5(a) $ \text{eg } 3 \times (1) - (2) \Rightarrow 13y + 13z = -13$ $(3) - (2) \Rightarrow 15y + 11z = -5$	M1 A1A1 M1	
$x = 6$, $y = 1\frac{1}{2}$, $z = -2\frac{1}{2}$	A1	5
Alt I (Cramer's Rule):		
$ \Delta = \begin{vmatrix} 1 & 3 & 5 \\ 3 & -4 & 2 \\ 3 & 11 & 13 \end{vmatrix}, \Delta_{x} = \begin{vmatrix} -2 & 3 & 5 \\ 7 & -4 & 2 \\ 2 & 11 & 13 \end{vmatrix}, \Delta_{y} = \begin{vmatrix} 1 & -2 & 5 \\ 3 & 7 & 2 \\ 3 & 2 & 13 \end{vmatrix}, \Delta_{z} = \begin{vmatrix} 1 & 3 & -2 \\ 3 & -4 & 7 \\ 3 & 11 & 2 \end{vmatrix} $	(M1)	
= 52, 312, 78 and – 130 respectively	(A1 A1)	
$x = \frac{\Delta_x}{\Delta}$, $y = \frac{\Delta_y}{\Delta}$, $z = \frac{\Delta_z}{\Delta}$	(M1)	
$x = 6$, $y = 1\frac{1}{2}$, $z = -2\frac{1}{2}$	(A1)	(5)
Alt II (Augmented matrix method): $\begin{bmatrix} 1 & 3 & 5 & -2 \end{bmatrix}$		
$\begin{bmatrix} 3 & -4 & 2 & 7 \\ 3 & 11 & 13 & 2 \end{bmatrix} \rightarrow$	(M1)	
$\begin{bmatrix} 1 & 3 & 5 & & -2 \\ 0 & -13 & -13 & & 13 \\ 0 & 2 & -2 & & 8 \end{bmatrix}$	(A1)	
$\rightarrow \begin{bmatrix} 1 & 3 & 5 & & -2 \\ 0 & 1 & 1 & & -1 \\ 0 & 1 & -1 & & 4 \end{bmatrix}$	(A1)	
$\rightarrow \begin{bmatrix} 1 & 3 & 5 & & -2 \\ 0 & 1 & 1 & & -1 \\ 0 & 0 & -2 & & 5 \end{bmatrix}$		
Substituting back to get $x = 6$, $y = 1\frac{1}{2}$, $z = -2\frac{1}{2}$	(M1 A1)	(5)
Alt III (Inverse matrix method):		
$C^{-1} = \frac{1}{52} \begin{bmatrix} -74 & 16 & 26\\ -33 & -2 & 13\\ 45 & -2 & -13 \end{bmatrix}$	(M1) (A1 A1)	
$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = C^{-1} \begin{bmatrix} -2 \\ 7 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1.5 \\ -2.5 \end{bmatrix}$	(M1) (A1)	(5)

 $\begin{bmatrix} z \end{bmatrix} & \begin{bmatrix} 2 \end{bmatrix} & \begin{bmatrix} -2.5 \end{bmatrix}$ Question 6: Jun 2008 – Q6

	eg (2)-(1) $\Rightarrow x+7z=-3$ (3) $-2 \times (2) \Rightarrow x+8z=-2$ Solving 2×2 system $x=-10$, $y=19$, $z=1$ $\begin{vmatrix} 1 & 1 & -3 \\ 2 & 1 & 4 \\ 5 & 2 & a \end{vmatrix} = 15-a$	M1A1 A1 M1 A1	5
	Setting = to zero and solving for a $a = 15$	M1 A1	3
(ii)	$x+y-3z=b$ $2x+y+4z=3$ $5x+2y+15z=4$ eg (2)-(1) $\Rightarrow x+7z=3-b$	M1A1	
	$(3) - 2 \times (2) \Rightarrow x + 7z = -2$ Equating the two RHSs	A1 M1	-
	b = 5	A1	5
	Total Alternate Schemes		13
o(a)	Cramer's Rule $ \Delta = \begin{vmatrix} 1 & 1 & -3 \\ 2 & 1 & 4 \\ 5 & 2 & 16 \end{vmatrix}, \Delta_{x} = \begin{vmatrix} 6 & 1 & -3 \\ 3 & 1 & 4 \\ 4 & 2 & 16 \end{vmatrix}, $ $ \Delta_{y} = \begin{vmatrix} 1 & 6 & -3 \\ 2 & 3 & 4 \\ 5 & 4 & 16 \end{vmatrix}, \Delta_{z} = \begin{vmatrix} 1 & 1 & 6 \\ 2 & 1 & 3 \\ 5 & 2 & 4 \end{vmatrix} $ $ = -1, 10, -19 \text{ and } -1 \text{ respectively} $	M1	
	$x = \frac{\Delta_x}{\Delta}, \ y = \frac{\Delta_y}{\Delta}, \ z = \frac{\Delta_z}{\Delta}$	M1	
	x = -10, y = 19, z = 1	A1 A1	(5)
Que 7(a)	stion 7: Jan 2009 – Q7 $x-2y=-1-\lambda$ $-x+y=3-3\lambda$ Solving for x and y in terms of λ $x=7\lambda-5$ and $y=4\lambda-2$	B1 M1 A1	3
(b)	Subst ^g . x, y, z in terms of λ in	M1	
	$5x + ky + 17z = 1$ $35\lambda - 25 + k(4y - 2) + 17\lambda - 1 = 0$ Factsn. attempt: $(4y - 2)(k + 13) = 0$ $(2y - 1)(k + 13) = 0$	dM1 A1	3
c)(i)	When $k = -13$, $5x - 13y + 17z$ = $35\lambda - 25 - 52\lambda + 26 + 17\lambda \equiv 1$	B1	
	The three planes intersect in a line Solns. $x = 7\lambda - 5$, $y = 4\lambda - 2$, $z = \lambda$	B1 B1F	
(ii)	When $k \neq -13$, $\lambda = \frac{1}{2}$ Soln. $(-1\frac{1}{2}, 0, \frac{1}{2})$	B1 B1F	
	Three planes meet at a point	B1	6
ı	Total	ı	12

Ouestion 8: Jun 2009 - O4

	stion 8: Jun 2009 - Q4		
	$3 \times [1] - [2] \Rightarrow 5x - 4y + 14z = 16$	M2 A1	
	Giving no unique soln. and consistent	E1	
	For those who just show $\Delta = 0$ to	(M1)	
	conclude that there is no unique soln.	(A1)	
	OR	(MI)	
	Solving e.g. in [1] & [2]: $x = 4$ $y = 1$ $z = 7$	(M1) (A1)	
	$\frac{x-4}{2} = \frac{y-1}{27} = \frac{z}{7} = \lambda$		
	Subst ^g . in [3] for x, y, z in terms of λ	(M1)	
	Showing LHS = $RHS = 16$	(A1)	
	OR	(M1)	
	$\begin{vmatrix} 3 & -1 & 3 & 11 & 3 & -1 & 3 & 1 \\ 4 & 1 & -5 & 17 & \rightarrow & 1 & 2 & -8 & 6 \end{vmatrix}$	(A1)	
	$ \begin{vmatrix} 3 & -1 & 3 & & 11 & 3 & -1 & 3 & & 1 \\ 4 & 1 & -5 & & 17 & \rightarrow & 1 & 2 & -8 & & 6 \\ 5 & -4 & 14 & & 16 & & -1 & -2 & 8 & & -6 \\ \end{vmatrix} $	(A1)	
	$R_2' = -R_3' \implies$ no unique soln. and		
	consistency	(E1)	
	OR	0.00	
	Showing $\Delta = 0 \implies$ no unique soln.	(M1) (A1)	
	Attempt at each of $\Delta_x = \begin{vmatrix} 11 & -1 & 3 \\ 17 & 1 & -5 \\ 16 & -4 & 14 \end{vmatrix}$,		
	$\Delta_{y} = \begin{vmatrix} 3 & 11 & 3 \\ 4 & 17 & -5 \\ 5 & 16 & 14 \end{vmatrix} \text{ and } \Delta_{z} = \begin{vmatrix} 3 & -1 & 11 \\ 4 & 1 & 17 \\ 5 & -4 & 16 \end{vmatrix}$ Each shown = 0 and this \Rightarrow consistency	(M1) (A1)	4
	•		
(b)	Setting $x' = x$, $y' = y$, $z' = z$ 2 = -y + 3z	M1	
	2 = -y+3z $-12 = 2x+5y-4z$		
	$ \begin{array}{rcl} -12 &=& 2x + 5y - 4z \\ 30 &=& 4x + 11y + 3z \end{array} $	A1	
	30 = 4x + 11y + 3z	M1	
	E.g. $2=3z-y$ $54=11z+y$ by (3) $-2 \times (2)$	A1	
	z = 4, $y = 10$	M1 A1	
	x = -23	M1 A1	8
	OR		
	Other methods for solving a 3×3 system		
	will be constructed should they arise Total		12
	1 Otal	ı İ	12

Question 9: Jan 2010 - Q4

	Total		12
	$y = -\frac{1}{3}$ and $y = -\frac{7}{5}$ found	A1	8
	OR	A1	
	$x-z = \frac{13}{3} / 2x - 2z = \frac{10}{3} / 5x - 5z = 11$		
	-	M1	
	3 = 2x + y - 2z		
	$k = -1 \implies -1 = 3y$	B1	
	5 = x - 2y - z		
	8x + 9y = 5 / 15y - 8z = -21 / 5x + 3z = 11	A1;A1	
		M1	
	$3 = 2x + y + \frac{2}{3}z$		
	$k = \frac{5}{3} \implies \frac{5}{3} = \frac{8}{3}x + 3y$	B1	
	,		
(b)	$5 = x - 2y + \frac{5}{3}z$		
	$\kappa - \frac{1}{3}$, -1	AI	4
	$k = \frac{5}{3}, -1$	A1	4
	2 1 k-1	M1	
	$\begin{vmatrix} 1 & -2 & k \\ k+1 & 3 & 0 \\ 2 & 1 & k-1 \end{vmatrix} = 3k^2 - 2k - 5$	M1 A1	
4(a)			
	Stion 3. Jan 2010 – Q4		

Question 10: Jun 2010 – Q6

6(a)(i) $ \bullet = \sqrt{6^2 + 2^2 + 9^2} \text{ attempted } and $ $ \pm \left(\frac{6}{\bullet}, \frac{2}{\bullet}, \frac{-9}{\bullet}\right) $ $ \bullet = 11 \text{ and all correct} $ Al (ii) $ Either \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 1 \\ 6 \\ 2 \\ -9 \end{bmatrix} = -3 \begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} $ Explaining that d.v. of L is in dirn. of Π 's nml. $\Rightarrow L \perp^t \Pi$ $ Or \begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} = 0 \text{ and } \begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 6 \\ 2 \\ -9 \end{bmatrix} = 0 $ $ Explaining that d.v. of L is \perp^t to 2 (non-\ell/) vectors in \Pi \Rightarrow L \perp^t \Pi (B1) Explaining that d.v. of L is \perp^t = 0 (M1) (A1) Explaining that d.v. of L is \perp^t = 0 (B1) Explaining that d.v. of L is \perp^t = 0 (B1) Explaining that d.v. of L is \perp^t = 0 (B1) Explaining that d.v. of L is \perp^t = 0 (B1) Explaining that d.v. of L is \perp^t = 0 (B1)$	
(ii) Either $\begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 1 \\ 6 \\ 2 \\ -9 \end{bmatrix}$ Explaining that d.v. of L is in dirn. of Π 's nml. $\Rightarrow L \perp^t \Pi$ B1 Or $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} = 0$ and $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 6 \\ 2 \\ -9 \end{bmatrix} = 0$ (M1) (A1) Explaining that d.v. of L is \perp^t to 2 (non- ℓ /) vectors in $\Pi \Rightarrow L \perp^t \Pi$ (B1) (b) E.g. $6 \times \mathbb{O} - \mathbb{O}$: $46 = 34p + 27q$ M1 $2 \times \mathbb{O} - \mathbb{O}$: $-57 = 21p + 6q$ A1 A1	
(ii) Either $\begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 1 \\ 6 \\ 2 \end{bmatrix} = -3 \begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix}$ Explaining that d.v. of L is in dirn. of Π 's nml. $\Rightarrow L \perp^t \Pi$ B1 Or $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \bullet \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} = 0$ and $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 6 \\ 2 \\ -9 \end{bmatrix} = 0$ (M1) (A1) Explaining that d.v. of L is \perp^t to 2 (non- ℓ /) vectors in $\Pi \Rightarrow L \perp^t \Pi$ (B1) (b) E.g. $6 \times \mathbb{O} - \mathbb{O}$: $46 = 34p + 27q$ M1 $2 \times \mathbb{O} - \mathbb{O}$: $-57 = 21p + 6q$ A1 A1	
Either $\begin{bmatrix} 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 6 \\ 2 \end{bmatrix} = -3 \begin{bmatrix} 2 \\ -9 \end{bmatrix}$ Explaining that d.v. of L is in dirn. of Π 's nml. $\Rightarrow L \perp^r \Pi$ B1 Or $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} = 0$ and $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 6 \\ 2 \\ -9 \end{bmatrix} = 0$ Explaining that d.v. of L is \perp^r to 2 (non- ℓ /) vectors in $\Pi \Rightarrow L \perp^r \Pi$ (B1) (b) E.g. $6 \times \bigcirc -\bigcirc : 46 = 34p + 27q$ $2 \times \bigcirc -\bigcirc : -57 = 21p + 6q$ A1 A1	2
Or $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \bullet \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} = 0$ and $\begin{bmatrix} 6 \\ 2 \\ -9 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 6 \\ 2 \\ -9 \end{bmatrix} = 0$ (MI) Explaining that d.v. of L is \bot^c to 2 (non-//) vectors in $\Pi \Rightarrow L \bot^c \Pi$ (B1) (b) E.g. $6 \times \textcircled{0} - \textcircled{2}$: $46 = 34p + 27q$ M1 $2 \times \textcircled{0} - \textcircled{3}$: $-57 = 21p + 6q$	
(b) E.g. $6\times \bigcirc -\bigcirc$: $46 = 34p + 27q$ M1 $2\times \bigcirc -\bigcirc$: $-57 = 21p + 6q$ A1 A1	
2×① - ③: -57 = 21p + 6q	3
1 1 1 A1 A1 I	
② $-3\times$ ③: $-217 = 29p - 9q$	
2×4 + 9×5: 605 = - 121p M1	
p = -5, q = 8, r = -1 A1	5
(c) $7 + 6t = -2 + 5\lambda + \mu$	
(i) $8+2t = 0+3\lambda+6\mu$ $50-9t = -25+4\lambda+2\mu$	
MI	
$9 = -6t + 5\lambda + \mu$ $\rightarrow 8 = -2t + 3\lambda + 6\mu$	
$75 = 9t + 4\lambda + 2\mu$	
i.e. the above system with $p = -t$, $q = \lambda$ and $r = \mu$ A1	2
(ii) Subst ⁸ . $t = 5$ into L 's eqn.	
Or $\lambda = 8$ and $\mu = -1$ into Π 's eqn. M1 P = (37, 18, 5) A1	

Total