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The function ( ) and all its derivatives exist at 0

The Maclaurin series for a fu
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MacLaurin's series
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Some series are valid for all values of ,

but some series are valid for only some values of .

Refer to the formulae book to find the range of valid

For example:
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( ) ( ) are two functions

The Maclaurin's series of the function ( ) is the product the two maclaurin's series.

To obtain the Maclaurin's series of the 

Multiplying and composing Maclaurin's series
f x and g x
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function ( ( )), substitute

   in the Maclaurin's series by the Maclaurin's series of ( ).
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If a function is not defined when 0, we study the value of the function when  is very close to 0.

If a value exists, it is called the limit of ( ) when  tends to 0.

When 

Maclaurin's series and limits
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the limit is not obvious, work out the Maclaurin's series of the function

and substitute  by 0 in the

Example

 series (if possible) to obtain the limit.
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So when  tends to 0, ( ) tends to 1
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