Series and limits

Series

	MacLaurin's series The function $f(x)$ and all its derivatives exist at $x=0$ The Maclaurin series for a function $f(x)$ is given by: $f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{(r)}(0)}{r!} x^{r}+\ldots$ where $f^{\prime}, f{ }^{\prime \prime}, f$ "',... denote the first, second, third,... derivatives of f, respectively. $f^{(r)}$ is the derivative of order r.
	Range of validity Some series are valid for all values of $x \in \mathbb{R}$, but some series are valid for only some values of x. Refer to the formulae book to find the range of validity. For example: $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots$ is valid for $-1<x \leq 1$
	Multiplying and composing Maclaurin's series $f(x)$ and $g(x)$ are two functions - The Maclaurin's series of the function $f \times g(x)$ is the product the two maclaurin's series. - To obtain the Maclaurin's series of the function $f(g(x))$, substitute x in the Maclaurin's series f by the Maclaurin's series of $g(x)$. Examples : $e^{x}=1+x+\frac{x^{2}}{2}+\ldots$ and $\sin (x)=x-\frac{x^{3}}{6}+\ldots$ -The maclaurin's series of $e^{x} \sin (x)=\left(1+x+\frac{x^{2}}{2}+\ldots\right)\left(x-\frac{x^{3}}{6}+\ldots\right)$ $=x-\frac{x^{3}}{6}+x^{2}-\frac{x^{4}}{6}+\frac{x^{3}}{2}+\ldots=x-x^{2}+\frac{x^{3}}{3}-\frac{x^{4}}{6}+\ldots$ - The maclaurin's series of $\mathrm{e}^{\sin (x)}=1+\left(x-\frac{x^{3}}{6}+\ldots\right)+\frac{1}{2}\left(x-\frac{x^{3}}{6}+\ldots\right)^{2}+.$. $=1+x+\frac{x^{2}}{2}-\frac{x^{4}}{8}+\ldots$
	Maclaurin's series and limits If a function f is not defined when $x=0$, we study the value of the function when x is very close to 0 . If a value exists, it is called the limit of $f(x)$ when x tends to 0 . - When the limit is not obvious, work out the Maclaurin's series of the function and substitute x by 0 in the series (if possible) to obtain the limit. Example: $f(x)=\frac{e^{x}-1}{x} \lim _{x \rightarrow 0}\left(e^{x}-1\right)=0$ and $\lim _{x \rightarrow 0}(x)=0$. Not only the function f is not defined at $x=0$, but also its limit when x tends to 0 can not be determined (" $\frac{0}{0}$ "). The Maclaurin's series of f is $f(x)=\frac{1}{x}\left(1+x+\frac{x^{2}}{2}+\ldots-1\right)=1+\frac{x}{2}+\ldots$ So when x tends to $0, f(x)$ tends to $1+\frac{0}{2}+\ldots=1$ or $\lim _{x \rightarrow 0} f(x)=1$

