

Key dates

Further pure 2 exam: $\quad 6^{\text {th }}$ June 2013 am

Term dates:

Term 1: Monday 3 September 2012 - Wednesday 24 October 2012 (38 teaching days)	Term 4: Monday 18 February 2013 - Friday 22 March 2013 (25 teaching days)
Term 2: Monday 5 November 2012 - Friday 21 December 2012 (35 teaching days)	Term 5: Monday 8 April 2013 - Friday 24 May 2013 (34 teaching days)
Term 3: Monday 7 January 2013 - Friday 8 February 2013 (25 teaching days)	Term 6: Monday 3 June 2013 - Wednesday 24 July 2013 (38 teaching days)

F.Y.I: Further pure 1 (re-sit): $18^{\text {th }}$ January 2013 pm

Scheme of Ass essment Further Mathematics Advanced Subsidiary (AS) Advanced Level (AS + A2)

Candidates for AS and/or A Level Further Mathematics are expected to have already obtained (or to be obtaining concurrently) an AS and/or A Level award in Mathematics.

The Advanced Subsidiary (AS) award comprises three units chosen from the full suite of units in this specification, except that the Core units cannot be included. One unit must be chosen from MFP1, MFP2, MFP3 and MFP4. All three units can be at AS standard; for example, MFP1, MM1B and MS1A could be chosen. All three units can be in Pure Mathematics; for example, MFP1, MFP2 and MFP4 could be chosen.

The Advanced (A Level) award comprises six units chosen from the full suite of units in this specification, except that the Core units cannot be included. The six units must include at least two units from MFP1, MFP2, MFP3 and MFP4. All four of these units could be chosen. At least three of the six units counted towards A Level Further Mathematics must be at A2 standard.

All the units count for $33_{1 / 3} \%$ of the total AS marks
$162 / 3 \%$ of the total A level marks

Written Paper
1hour 30 minutes
75 marks

Further Pure 1

All questions are compulsory. A graphics calculator may be used

Grading System

The AS qualifications will be graded on a five-point scale: A, B, C, D and E. The full A level qualifications will be graded on a six-point scale: A^{*}, A, B, C, D and E.
To be awarded an A* in Further Mathematics, candidates will need to achieve grade A on the full A level qualification and 90% of the maximum uniform mark on the aggregate of the best three of the A2 units which contributed towards Further Mathematics. For all qualifications, candidates who fail to reach the minimum standard for grade E will be recorded as U (unclassified) and will not receive a qualification certificate.

Further pure 2 subject content
Roots of polynomials
Complex numbers
De Moivre's theorem
Proof by induction
Finite series
The calculus of inverse trigonometric functions
Hyperbolic functions
Arc length and area of surface of revolution about the x-axis

Further pure 2 specifications

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1, Core 2, Core 3, Core 4 and Further Pure 1.

Candidates may use relevant formulae included in the formulae booklet without proof except where proof is required in this module and requested in a question.

Roots of Polynomials

The relations between the roots and the coefficients of a polynomial equation; the occurrence of the non-real roots in conjugate pairs when the coefficients of the polynomial are real.

Complex Numbers

The Cartesian and polar coordinate forms of a complex number, its modulus, argument and conjugate.	$x+i y$ and $r(\cos \theta+i \sin \theta)$
The sum, difference, product and quotient of two complex numbers.	The parts of this topic also included in module Further Pure 1 will be examined only in the context of the content of this module.
The representation of a complex number by a point on an Argand diagram; geometrical illustrations.	
Simple loci in the complex plane.	For example, $\|z-2-i\| \leq 5, \arg (z-2)=\frac{\pi}{3}$ Maximum level of difficulty $\|z-a\|=\|z-b\|$ where a and b are complex numbers.
De Moivre's Theorem	
De Moivre's theorem for integral n.	Use of $z+\frac{1}{z}=2 \cos \theta$ and $z-\frac{1}{z}=2 i \sin \theta$ leading to, for example, expressing $\sin ^{5} \theta$ in terms of multiple angles and $\tan 5 \theta$ in term of powers of $\tan \theta$. Applications in evaluating integrals, for example, $\int \sin ^{5} \theta d \theta$.
De Moivre.s theorem; the $\mathrm{n}^{\text {th }}$ roots of unity, the exponential form of a complex number.	The use, without justification, of the identity $e^{i \theta}=\cos \theta+i \sin \theta$.
Solutions of equations of the form $z^{n}=a+i b$.	To include geometric interpretation and use, for example, in expressing $\cos \frac{5 \pi}{12}$ in surd form.

Proof by Induction

Applications to sequences and series, and other problems.
E.g. proving that $7^{n}+4^{n}+1$ is divisible by 6 , or $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ where n is a positive integer.

Finite Series
Summation of a finite series by any method such as induction, partial fractions or E.g. $\sum_{r=1}^{n} r \times r!=\sum_{r=1}^{n}((r+1)!-r!)$ differencing.

The calculus of inverse trigonometrical functions
Use of the derivatives of $\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$ as given in the formulae booklet.
To include the use of the standard integrals. $\int \frac{1}{a^{2}+x^{2}} d x ; \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x$ given in the formulae booklet.

Hyperbolic Functions

Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.

The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions.

To include solution of equations of the form $a \sinh x+b \cosh x=c$.
Use of basic definitions in proving simple identities.
Maximum level of difficulty:
$\sinh (x+y) \equiv \sinh x \cosh y+\cosh x \sinh y$.
The logarithmic forms of the inverse functions, given in the formulae
booklet, may be required. Proofs of these results may also be required.
Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included.
Knowledge, proof and use of:
$\cosh ^{2} x-\sinh ^{2} x=1$
$1-\tanh ^{2} x=\operatorname{sech}^{2} x$
$\operatorname{coth}^{2} x-1=\operatorname{cosech}^{2} x$
Familiarity with the graphs of
$\sinh x, \cosh x, \tanh x, \sinh ^{-1} x, \cosh ^{-1} x, \tanh ^{-1} x$.

Use of the following formulae will be expected:
$s=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
$S=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \pi \int_{t_{1}}^{t_{2}} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Mensuration

Surface area of sphere $=4 \pi r^{2}$
Area of curved surface of cone $=\pi r \times$ slant height

Arithmetic series

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n[2 a+(n-1) d]
\end{aligned}
$$

Geometric series

$$
\begin{aligned}
& u_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& S_{\infty}=\frac{a}{1-r} \text { for }|r|<1
\end{aligned}
$$

Summations

$$
\begin{aligned}
& \sum_{r=1}^{n} r=\frac{1}{2} n(n+1) \\
& \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& \sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
\end{aligned}
$$

Trigonometry - the Cosine rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Binomial Series

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N})
$$

$$
\text { where }\binom{n}{r}={ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}
$$

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{1.2} x^{2}+\ldots+\frac{n(n-1) \ldots(n-r+1)}{1.2 \ldots r} x^{r}+\ldots \quad(|x|<1, n \in \mathbb{R})
$$

Logarithms and exponentials

$$
a^{x}=\mathrm{e}^{x \ln a}
$$

Complex numbers

$\{r(\cos \theta+i \sin \theta)\}^{n}=r^{n}(\cos n \theta+i \sin n \theta)$
$\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta$
The roots of $z^{n}=1$ are given by $z=\mathrm{e}^{\frac{2 \pi k i}{n}}$, for $k=0,1,2, \ldots, n-1$

$$
\begin{aligned}
& \mathrm{f}(x)=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2!} \mathrm{f}^{\prime \prime}(0)+\ldots+\frac{x^{r}}{r!} \mathrm{f}^{(r)}(0)+\ldots \\
& \mathrm{e}^{x}=\exp (x)=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{r}}{r!}+\ldots \quad \text { for all } x \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{r+1} \frac{x^{r}}{r}+\ldots \quad(-1<x \leqslant 1) \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!}+\ldots \quad \text { for all } x \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\ldots \quad \text { for all } x
\end{aligned}
$$

Hyperbolic functions

$$
\begin{aligned}
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& \sinh 2 x=2 \sinh x \cosh x \\
& \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x \\
& \cosh ^{-1} x=\ln \left\{x+\sqrt{x^{2}-1}\right\} \quad(x \geqslant 1) \\
& \sinh ^{-1} x=\ln \left\{x+\sqrt{x^{2}+1}\right\} \\
& \tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \quad(|x|<1)
\end{aligned}
$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular hyperbola
Standard form	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$y^{2}=4 a x$	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$x y=c^{2}$
Asymptotes	none	none	$\frac{x}{a}= \pm \frac{y}{b}$	$x=0, y=0$

Trigonometric identities

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad\left(A \pm B \neq\left(k+\frac{1}{2}\right) \pi\right) \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}
\end{aligned}
$$

Differentiation	
$\mathbf{f}(\boldsymbol{x})$	$\mathbf{f}^{\prime}(\boldsymbol{x})$
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\cos ^{-1} x$	$-\frac{1}{\sqrt{1-x^{2}}}$
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$
$\tan k x$	$k \sec ^{2} k x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x^{\sec x}$
$\cot x$	$-\operatorname{cosec}^{2} x$
$\sinh x$	$\cosh x$
$\cosh x$	$\frac{1}{\sqrt{1+x^{2}}}$
$\tanh x$	$\frac{1}{\sqrt{x^{2}-1}}$
$\sinh { }^{-1} x$	$\frac{1}{1-x^{2}}$
$\cosh { }^{-1} x$	$\frac{\mathrm{f}^{\prime}(x) \mathrm{g}(x)-\mathrm{f}(x) \mathrm{g}^{\prime}(x)}{(\mathrm{g}(x))^{2}}$
$\tanh { }^{-1} x$	$\mathrm{f}(x)$
$\mathrm{g}(x)$	

Integration

(+ constant; $a>0$ where relevant)

$\mathbf{f}(\boldsymbol{x})$	$\int \mathbf{f}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$
$\tan x$	$\ln \|\sec x\|$
$\cot x$	$\ln \|\sin x\|$
$\operatorname{cosec} x$	$-\ln \|\operatorname{cosec} x+\cot x\|=\ln \left\|\tan \left(\frac{1}{2} x\right)\right\|$
$\sec x$	$\ln \|\sec x+\tan x\|=\ln \left\|\tan \left(\frac{1}{2} x+\frac{1}{4} \pi\right)\right\|$
$\sec ^{2} k x$	$\frac{1}{k} \tan k x$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\ln \cosh x$

$\frac{1}{\sqrt{a^{2}-x^{2}}}$	$\sin ^{-1}\left(\frac{x}{a}\right)$	$(\|x\|<a)$
$\frac{1}{a^{2}+x^{2}}$	$\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$	
$\frac{1}{\sqrt{x^{2}-a^{2}}}$	$\cosh ^{-1}\left(\frac{x}{a}\right)$ or $\ln \left\{x+\sqrt{x^{2}-a^{2}}\right\}$	$(x>a)$
$\frac{1}{\sqrt{a^{2}+x^{2}}}$	$\sinh ^{-1}\left(\frac{x}{a}\right)$ or $\ln \left\{x+\sqrt{x^{2}+a^{2}}\right\}$	
$\frac{1}{a^{2}-x^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{a+x}{a-x}\right\|=\frac{1}{a} \tanh ^{-1}\left(\frac{x}{a}\right)$	$(\|x\|<a)$
$\frac{1}{x^{2}-a^{2}}$	$\frac{1}{2 a} \ln \left\|\frac{x-a \mid}{x+a}\right\|$	
$\left.\iint \frac{\mathrm{d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \right\rvert\,$		

Area of a sector

$A=\frac{1}{2} \int r^{2} \mathrm{~d} \theta \quad$ (polar coordinates)

Arc length

$s=\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \quad$ (cartesian coordinates)
$s=\int \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \quad$ (parametric form)

Surface area of revolution

$S_{x}=2 \pi \int y \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \quad$ (cartesian coordinates)
$S_{x}=2 \pi \int y \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \quad$ (parametric form)

Numerical integration

The trapezium rule: $\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right\}$, where $h=\frac{b-a}{n}$
The mid-ordinate rule: $\int_{a}^{b} y \mathrm{~d} x \approx h\left(y_{\frac{1}{2}}+y_{\frac{3}{2}}+\ldots+y_{n-\frac{3}{2}}+y_{n-\frac{1}{2}}\right)$, where $h=\frac{b-a}{n}$
Simpson's rule: $\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{3} h\left\{\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\ldots+y_{n-1}\right)+2\left(y_{2}+y_{4}+\ldots+y_{n-2}\right)\right\}$ where $h=\frac{b-a}{n}$ and n is even
Roots of polynomials 11
Complex numbers 17
De Moivre's theorem 22
Proof by induction 28
Finite series 34
Techniques of integration 37
Calculus of inverse trig functions 41
Hyperbolic functions 44
Inverse hyperbolic functions 47
Arc length and area of surface of revolution 51
Past Papers 57

Roots of polynomials

	A polynomial $a x^{3}+b x^{2}+c x+d=0$ has roots α, β, γ -The sum of the roots: $\sum \alpha=\alpha+\beta+\gamma=-\frac{b}{a}$ -The sum of the double products: $\sum \alpha \beta=\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}$ -The product of the roots: $\alpha \beta \gamma=-\frac{d}{a}$
	If we are given the values of a) the sums of the roots, b) the sum of the double products and c) the product of all the roots, then we can form the corresponding cubic equation : $x^{3}-($ sum of roots $) x^{2}+($ sum of the double products $) x-($ product of roots $)=0$ or using the notations $x^{3}-\left(\sum \alpha\right) x^{2}+\left(\sum \alpha \beta\right) x-(\alpha \beta \gamma)=0$
r	Identities to remember: - $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$ Using the notations: $\begin{gathered} \sum\left(\alpha^{2}\right)=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta \\ \cdot \alpha^{3}+\beta^{3}+\gamma^{3}=(\alpha+\beta+\gamma)^{3}-3(\alpha \beta+\alpha \gamma+\beta \gamma)(\alpha+\beta+\gamma)-3 \alpha \beta \gamma \end{gathered}$
	If all the coefficients of the polynomial (of order 3) are REAL numbers, there are either: - 3 real roots -1 real root and 2 complex CONJUGATE roots If the coefficients of the polynomial are complex numbers, there are no rules.

Roots of polynomials - General case

| Consider a polynomial of order n (degree n):
 $a_{n} z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\ldots+a_{2} z^{2}+a_{1} z+a_{0}=0$
 where $a_{n}, a_{n-1}, . ., a_{1}, a_{0}$ are numbers
 This polynomial has roots $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$
 \bullet The sum of the roots: $\sum \alpha_{i}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots+\alpha_{n}=-\frac{a_{n-1}}{a_{n}}$
 \bullet The sum of the double products: $\sum \alpha \beta=\frac{a_{n-2}}{a_{n}}$
 \bullet The sum of the triple products: $\sum \alpha \beta \gamma=-\frac{a_{n-3}}{a_{n}}$
 $\ldots . . .$.
 \bullet The product of the roots: $\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}$ |
| :---: | :--- |

When all the coefficients of the polynomial are REAL numbers, If a root α is a complex number, then its conjugate α^{*} is also a root.

Question 1:
The following equations have roots α, β, γ.
In each case, work out $i) \sum \alpha=\alpha+\beta+\gamma$

$$
\begin{aligned}
& \text { ii) } \sum \alpha \beta=\alpha \beta+\alpha \gamma+\beta \gamma \\
& \text { iii) } \alpha \beta \gamma
\end{aligned}
$$

a) $z^{3}+2 z^{2}-4 z+6=0$
b) $2 z^{3}+6 z^{2}-4=0$
c) $z^{3}+(2+i) z^{2}-i z+3-i=0$
$i v)$ For each of the above equations, work out $\alpha^{2}+\beta^{2}+\gamma^{2}$

Question 2:

The equation $z^{3}-9 z^{2}+p z-36=0$ has roots α, β and γ
a) W rite down the value of
i) $\alpha+\beta+\gamma$
ii) $\alpha \beta \gamma$
b) It is given that $\alpha^{2}+\beta^{2}+\gamma^{2}=73$
i) Work out the value of p
c) It is also known that α is of the form ki, where k is a positive real number.
i) work out α and β
ii) work out γ

Question 3: AQA June 2005
The cubic equation $x^{3}-11 x-150=0$ has roots α, β, γ.
a) Write the value of $\alpha+\beta+\gamma$
b) i) Explain why $\alpha^{3}=11 \alpha+150$
ii) Hence or ortherwise show that $\alpha^{3}+\beta^{3}+\gamma^{3}=450$
c) Given that $\alpha=-3+4 i$, write down the other non-real root β and find the third root γ.
d) Show that $(3-4 i)^{3}+(3+4 i)^{3}=-234$

Question 4:
The cubic equation $x^{3}+p x^{2}+q x+30=0$, where p and q are real numbers, has a root $\alpha=1+2 i$
a) Write down the other non-real root, β, of the equation.
b) Find
i) $\alpha \beta$
ii) the third root, γ, of the equation.
c) Hence, or otherwise, find the value of p and q.

Question 5:

The cubic equation $z^{3}+z^{2}+p z+15=0$ has roots α, β, γ
It is given that $\alpha^{3}+\beta^{3}+\gamma^{3}=-49$
a) Write down the value of $\alpha+\beta+\gamma$.
b) i) Explain why $\alpha^{3}+\alpha^{2}+p \alpha+15=0$
ii) Hence, show that $\alpha^{2}+\beta^{2}+\gamma^{2}=p+4$
iii) Deduce that $p=-1$
c) i) Find the REAL root α of the equation
ii) Find β and γ

Question 6:

The cubic equation $z^{3}-(8+4 i) z^{2}+q z-30 i=0$ has roots α, β, γ
a) Write down the value of
i) $\alpha+\beta+\gamma$
ii) $\alpha \beta \gamma$
b) It is given that $\alpha=\beta+\gamma$

Show that
i) $\alpha=4+2 i$
ii) $\beta \gamma=3+6 i$
iii) $q=15+22 i$
c) Show that β and γ are the roots of the equation

$$
z^{2}-(4+2 i)+(3+6 i)=0
$$

d) Given that β is a real number, find β then γ

Question 7:

The cubic equation $x^{3}+p x^{2}+q x+r=0$ with p, q and r real numbers has roots α, β, γ
a) $\alpha+\beta+\gamma=7$ and $\alpha^{2}+\beta^{2}+\gamma^{2}=31$

Find p and q
b) Given that one root is $4-i$, find r

Question 8:

The cubic equation $z^{3}+p z^{2}+49 z+q=0$ has roots α, β, γ.
a) Write down the value of $\alpha \beta+\alpha \gamma+\beta \gamma$
b) Given that q and p are positive real numbers and that $\alpha^{2}+\beta^{2}+\gamma^{2}=-17$
i) Explain why the cubic equation has 2 non-real roots
ii) Find p.
c) One root is $-2+5 i$
i) Find the other root
ii) Find q

> Question 6:
> a) $i) \alpha+\beta+\gamma=8+4 i$ $\begin{aligned} & \text { ii) } \alpha \beta \gamma=30 i \\ & \text { b) } \alpha=\beta+\gamma\end{aligned}$
> i) $\alpha+\beta+\gamma=8+4 i$
> $\alpha+\alpha=8+4 i$
> ii) $\alpha \beta \gamma=30 i$
> $\begin{aligned} & \beta \gamma=\frac{30 i}{\alpha}=\frac{30 i}{4+2 i}=\frac{15 i}{2+i}=\frac{15 i(2-i)}{(2+i)(2-i)}=\frac{15+30 i}{5}=3+6 i \\ & q=\alpha \beta+\alpha \gamma+\beta \gamma=\alpha(\beta+\gamma)+\beta \gamma=\alpha^{2}+\beta \gamma \\ & q=(4+2 i)^{2}+3+6 i=16+16 i-4+3+6 i \\ & q=15+22 i\end{aligned}$
> c) the sum $\beta+\gamma=4+2 i$ and the product $\beta \gamma=3+6 i$
$\beta=$ ris real $x^{2}-(4+2 i) z+3+6 i=0$
$\beta=x$ is real so $x^{2}-4 x-2 i x+3+6 i=0$
$0=\left(x_{乙}-9\right)!+\left(\varepsilon+x_{\downarrow}-{ }_{\tau} x\right)$
so $6-2 x=0$ and $x^{2}-4 x+3=0$
$0=\varepsilon+\tau I-6=\varepsilon+\varepsilon \times \nabla-{ }_{\tau} \varepsilon$ pun $\quad \varepsilon=x$
$\beta=3$ and $\gamma=4+2 i-\beta=\gamma=1+2 i$
b) All the coefficients are real so if $4-i$ is a root then $4+i$ is also a root
$\alpha+\beta+\gamma=4+i+4-i+\gamma=7$
$\gamma=-1$

Question 5:
b)i) α is a root is it satisfies the equation:

$$
\alpha^{3}+\alpha^{2}+p \alpha+15=0
$$

 By adding the equalities
$\alpha^{2}+\beta^{2}+\gamma^{2}=p+4$
iii) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}$
iii) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$ $p+4=(-1)^{2}-2 p$

$$
3 p=-3
$$

$-49+\alpha^{2}+\beta^{2}+\gamma^{2}+p \times-1+45=0$
$\alpha^{3}+\alpha^{2}+p \alpha+15+\beta^{3}+\beta^{2}+p \beta+15+\gamma^{3}+\gamma^{2}+p \gamma+15=0$
$\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)+\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+p(\alpha+\beta+\gamma)+45=0$ (p
$p=-1$
$\alpha=-3$ is a root of the equation

$$
z^{3}+z^{2}-z+15=(z+3)\left(z^{2}-2 z+5\right)=0
$$

Discriminant: $(-2)^{2}-4 \times 1 \times 5=-16=(4 i)^{2}$
roots are $\beta=\frac{2+4 i}{2}=\beta=1+2 i$ and $\gamma=\beta^{*}=1-2 i$
Question 8:
a) $\alpha \beta+\alpha \gamma+\beta \gamma=49$
b) $\alpha^{2}+\beta^{2}+\gamma^{2}=-17<0$ sooneof the root is complex
and all the coefficients of the equation are real
soif one root is complex then its CONJUGATE is also a root.
ii) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$
$-17=(\alpha+\beta+\gamma)^{2}-2 \times 49$
$81=(\alpha+\beta+\gamma)^{2}$
$p= \pm 9 \quad p$ is po
c) $-2+5 i-2-5 i+\gamma=-9$

[^0]
Complex numbers

Question 1:

On a Argand diagram, represent the locus of the points satisfying
a) $|z|=5$
b) $|z-2-3 i|=2$
c) $|z-2 i| \leq 4$
d) $|z-3|=|z-1-i|$
e) $|z|=|z-5+3 i|$
f) $\arg (z)=\frac{\pi}{4}$
g) $\arg (z+4-5 i)=\frac{\pi}{6}$
h) $0 \leq \arg (z+3+2 i) \leq \frac{\pi}{3}$
i)shade the locus: $|z+5 i| \leq 3$ and $|z+5 i| \geq|z-2+5 i|$

Question 2:

The complex number z satisfies the relation

$$
|z+2-2 i|=2
$$

a) Sketch, on an Argand diagram, the locus of z.
b) Show that the greatest value of $|z|$ is $2(1+\sqrt{2})$
c) Find the value of z for which $\arg (z+2-2 i)=\frac{1}{3} \pi$

Question 3:

a) On one Argand diagram. sketch the locus of the points satisfying

$$
\begin{aligned}
& \text { i) }|z-4+i|=3 \\
& \text { ii) } \arg (z-2)=-\frac{\pi}{4}
\end{aligned}
$$

$b)$ Indicate on your sketch the set of points satisfying both

$$
|z-4+i| \leq 3 \text { and } \arg (z-2)=-\frac{\pi}{4}
$$

Question 4:

a) Sketch on one Argand diagram
$i)$ the locus of points satisfying $|z-3+2 i|=3$
$i i$) the locus of points satisfying $|z-2|=|z-2+4 i|$
b) Shade on your sketch the region in which

$$
\text { both }|z-3+2 i| \leq 3 \text { AND }|z-2| \leq|z-2+4 i|
$$

Question 5:

a) Indicate on an Argand diagram the region for which $|z+6 i| \leq 3$
b) The complex number z satisfies $|z+6 i| \leq 3$. Find the range of possible values of $\arg z$.

Question 6:

A circle C and a half-line L have equations

$$
\begin{array}{ll}
& |z-1-2 i \sqrt{3}|=4 \\
\text { and } \quad \arg (z+1)=\frac{\pi}{3} & \text { respectively }
\end{array}
$$

a) Show that:
i) The circle C passes through the point where $z=-1$
ii) the half line L passes through the centre of C.
b) On one Argand diagram, sketch C ad L .
c) Shade on your sketch the set of points satisfying both

$$
|z-1-2 i \sqrt{3}| \leq 4
$$

and

$$
0 \leq \arg (z+1) \leq \frac{\pi}{3}
$$

Question 1:

a) Circle centre $(0,0)$ radius 5
c) Disc centre $(0,2)$ radius 4
e) Perpendicular bisector of $(0,0)$ and $(5,-3)$
b) Circle centre $(2,3)$ radius 2
d) Perpendicular bisector of $(3,0)$ and $(1,1)$
f) Half line from $(0,0)$ gradient $\tan \frac{\pi}{4}=1$ with $x>0$
g) Half line from $(-4,5)$ gradient $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$ with $x>-4$
h) and e) see diagram

Question 2:

a) The locus is the circle centre $(-2,2)$ radius $r=2$
b) The greatest value of $|z| i s|-2+2 i|+r=\sqrt{(-2)^{2}+(2)^{2}}+2$

$$
=2 \sqrt{2}+2=2(1+\sqrt{2})
$$

c) We need to find the coordinates of the point Z .

Using trigonometry in the right-angled triangle AEZ,
we have: $E Z=2 \times \sin \frac{\pi}{3}=2 \times \frac{\sqrt{3}}{2}=\sqrt{3}$ and $A E=2 \times \cos \frac{\pi}{3}=1$
This gives $Z(-1,2+\sqrt{3})$

Question 3:

a) i) The locus is the circle centre $(4,1)$ radius $r=3$
ii) Half line from $(2,0)$ with gradient $\tan \left(-\frac{\pi}{4}\right)=-1$ with $x>2$
b) The set of points which are solutions contitute the segment line intersection between the half line and the disc (inside of the circle)

Question 4:

a) i) Circle centre $(3,-2)$ and radius $r=3$
ii) Perpendicular bisector of $(2,0)$ and $(2,-4)$
b) $|z-3+2 i| \leq 3$ is the disc $(3,-2)$ and radius $r=3$
$|z-2| \leq|z-2+4 i|$ is the half plane containing the point $(2,0)$

Question 5:

a) The locus is the disc centre $(0,-6)$ radius $r=3$
b) The range of the $\arg (\mathrm{z})$ is given by drawing the tangents to the circle going through the origin $(0,0)$.
Knowing that the radius is perpendicular to the tangent, we can use trigonometry to work out the angles needed.
In OAD , angle $A O D=\operatorname{Sin}^{-1}\left(\frac{o p p}{h y p}\right)=\operatorname{Sin}^{-1}\left(\frac{3}{6}\right)=\frac{\pi}{6}$
The $\arg (\mathrm{z})$ goes from $-\frac{2 \pi}{3}$ to $-\frac{\pi}{3}\left(-120^{\circ}\right.$ to $\left.-60^{\circ}\right)$

Question 6:
a) $i)|z-1-2 i \sqrt{3}|=|-1-1-2 i \sqrt{3}|=|-2-2 i \sqrt{3}|=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}}=\sqrt{16}=4$
$z=-1$ belongs to C
ii) $\arg (z+1)=\arg (1+2 i \sqrt{3}+1)=\arg (2+2 i \sqrt{3})=\theta$

$$
\tan \theta=\frac{2 \sqrt{3}}{2}=\sqrt{3} \quad \tan ^{-1} \sqrt{3}=\frac{\pi}{3}
$$

$z=1+2 i \sqrt{3}$ belongs to L
b)
c) see diagram.

De Moivre's theorem

$\square=$	Trigonometric form of a complex number $z=x+i y$ and $\|z\|=r, \arg (z)=\theta$ The trigonometric form of \mathbf{z} is : $z=r(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)$
	De Moivre's Theorem For all $\mathrm{n} \in \mathbb{Q}$, and all $\theta \in \mathbb{R},(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{n}=\operatorname{Cos}(n \theta)+i \operatorname{Sin}(n \theta)$
	Expressions of $\sin \theta$ and $\cos \theta$ If $z=\cos \theta+i \sin \theta$ then $z+\frac{1}{z}=2 \cos \theta \quad$ and $\quad z-\frac{1}{z}=2 i \sin \theta$ AND $z^{n}+\frac{1}{z^{n}}=2 \cos (n \theta) \quad \text { and } \quad z^{n}-\frac{1}{z^{n}}=2 i \sin (n \theta)$
\longrightarrow	Exponential form of a complex number $z=r(\cos \theta+i \sin \theta) \text { is noted } z=r e^{i \theta}$ The rules of calculation with exponential remain valid with complex numbers. $\begin{array}{ll} \text { i.e: } & \mathrm{e}^{i \theta} \times e^{i \alpha}=e^{i(\theta+\alpha)} \\ & \frac{e^{i \theta}}{e^{i \alpha}}=e^{i(\theta-\alpha)} \\ & \left.\left(e^{i \theta}\right)^{n}=e^{i n \theta} \quad \text { (Demoivre's theorem }\right) \\ \hline \end{array}$
\Longrightarrow	Expressions of $\sin \theta$ and $\cos \theta$ If $z=e^{i \theta}$ then $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$ and $\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$ AND $\cos (n \theta)=\frac{1}{2}\left(e^{i n \theta}+e^{-i n \theta}\right) \text { and } \sin (n \theta)=\frac{1}{2 i}\left(e^{i n \theta}-e^{-i n \theta}\right)$
\Longrightarrow	The $\mathrm{n}^{\text {th }}$ roots of the unity: $z^{n}=1$ $z=e^{i \frac{2 k \pi}{n}} \quad k=0,1,2, \ldots, n-1$
	Solving $z^{n}=x+i y$ $\begin{aligned} & z^{n}=r^{n} e^{i n \theta} \text { and } x+i y=r_{0} e^{i \theta_{0}} \\ & \quad z=r_{0}^{\frac{1}{n}} e^{i \theta_{0}+2 k \pi}{ }^{\frac{\theta_{0}}{n}} \quad k=0,1,2, \ldots, n-1 \end{aligned}$

Question 1:

Work out the exact value of the following complex numbers:
a) $\left(\cos \frac{3 \pi}{7}+i \sin \frac{3 \pi}{7}\right)^{7}$
b) $\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)^{5}$
c) $\frac{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}{\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}}$
d) $\frac{\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}}{\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)^{6}}$

Question 2:
By finding the modulus and argument first,
work out the exact value of the power of these complex numbers
a) $\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)^{5}$
b) $(1+i \sqrt{3})^{6}$
c) $(4-4 i)^{8}$
d) $(3+\sqrt{3} i)^{6}$
e) $(-2-2 i \sqrt{3})^{9}$
f) $(-1-i)^{12}$

Question 3:

Using De moivre's theorem, express
a) $\cos (2 \theta)$ in terms of $\cos \theta$ and $\sin \theta$
b) $\sin (3 \theta)$ in terms of $\cos \theta$ and $\sin \theta$
c) $\cos (3 \theta)$ in terms of $\cos \theta$

Question 4:

The complex number $z=\cos \theta+i \sin \theta$ with $\theta \in \mathbb{R}$.
a)Show that $z+\frac{1}{z}=2 \cos \theta$ and work out $z-\frac{1}{z}$ interms of $\sin \theta$.
b) Using the exponential notation, $z=e^{i \theta}$, show $z^{n}+\frac{1}{z^{n}}=2 \cos (n \theta)$ for any integer n.
c) Find a similar identity for $z^{n}-\frac{1}{z^{n}}$.
d) Linearise $\cos ^{3} \theta$
e) Linearise $\sin ^{4} \theta$
f)Work out $\int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta d \theta$

Question 5:

Using the De Moivre's theorem, show that
a) $\sin 5 \theta=5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta$
b) Find a similar expression for $\cos 5 \theta$
c) Hence or otherwise, show that $\tan 5 \theta=\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}$
d) Show that $x=\tan \frac{\pi}{20}$ is a solution of the equation $x^{5}-5 x^{4}-10 x^{3}+10 x^{2}+5 x+1=0$
e) Find the other 4 solutions.
f) Show that $\tan \frac{\pi}{20}+\tan \frac{9 \pi}{20}-\tan \frac{7 \pi}{20}-\tan \frac{3 \pi}{20}=4$

Question 6:

a) Solve the complex equation $z^{6}=1$.

Give your answers in exponential form.
b) If ω is one of the solution (not 1), show that $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}=0$
c) Illustrate your solutions in an Argand diagram.

Question 7:
a) Solve $z^{4}=-i$. Give your answers in the form $\mathrm{e}^{i \theta}$ with $-\pi<\theta \leq \pi$.
b) Explain why the sum of the solutions is 0 .

Question 8:

a) Solve in the set of complex numbers

$$
z^{5}=32
$$

Give your answers in the exponential form: $\mathrm{e}^{i \theta}$ with $-\pi<\theta \leq \pi$
b) Given that the sum of the root is 0 , show that

$$
\cos \left(\frac{2 \pi}{5}\right)+\cos \left(\frac{4 \pi}{5}\right)=-\frac{1}{2}
$$

Question 9:

a) Expand $\left(z^{3}-e^{i \theta}\right)\left(z^{2}-e^{-i \theta}\right)$
b) Hence, solve $z^{5}+z^{3}+z^{2}+1=0$

Give your answers in the for $x+i y$
c) Illustrate these solutions on an Argand diagram.

Question 3:

a) $(\cos \theta+i \sin \theta)^{2}=\cos 2 \theta+i \sin 2 \theta$

Question 5:

Question 4:
$\left(\theta^{-}\right) \mathrm{UIS}!+\left(\theta^{-}\right) \mathrm{SOO}={ }_{\mathrm{I}_{-}}(\theta \mathrm{U}!\mathrm{S}!+\theta \operatorname{soo})=\frac{-}{\mathrm{I}}$ pup $\theta \mathrm{U}!\mathrm{S}!+\theta^{\operatorname{soo}=z}$
$\operatorname{soz} z+\frac{1}{z}=\cos \theta+i \sin \theta+\cos \theta-i \sin \theta=2 \cos \theta$
$z-\frac{1}{z}=\cos \theta+i \sin \theta-\cos \theta+i \sin \theta=2 i \sin \theta$
$z=e^{i \theta}$ so $z^{n}=\left(e^{i \theta}\right)^{n}=e^{i n \theta}=\cos n \theta+i \sin n \theta$
$\frac{1}{z^{n}}=z^{-n}=\left(e^{i \theta}\right)^{-n}=e^{-i n \theta}$
$=\cos (-n \theta)+i \sin (-n \theta)=\cos n \theta-i \sin n \theta$

e) $\sin ^{4} \theta=\left(\frac{1}{2 i}\left(z-\frac{1}{z}\right)\right)=\frac{1}{16}\left(z^{4}-4\right.$

$$
\left.z \times \frac{1}{z^{3}}+\frac{1}{z^{4}}\right)
$$

$$
\begin{aligned}
&f) \int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta d \theta \\
&=\int_{0}^{\frac{\pi}{2}} \frac{1}{8} \cos 4 \theta-\frac{1}{2} \cos 2 \theta+\frac{3}{8} d \theta=\left[\frac{1}{32} \sin 4 \theta-\frac{1}{4} \sin 2 \theta+\frac{3}{8} \theta\right]_{0}^{\frac{\pi}{2}} \\
& \int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta d \theta=\frac{3 \pi}{16}
\end{aligned}
$$

$\cos ^{3} \theta=\frac{1}{4} \cos 3 \theta+\frac{3}{4} \cos \theta$

$$
\begin{aligned}
& \text { Question 8: } \\
& z^{5}=32 \\
& r^{5} e^{i 5 \theta}=32 e^{i 0} \\
& r^{5}=32 \text { and } 5 \theta=0+k 2 \pi \\
& r=2 \text { and } \theta=k \frac{2 \pi}{5} \quad k=-2,-1,0,1,2 \\
& \text { Solutions }: z_{1}=2 e^{-i \frac{4 \pi}{5}}, z_{2}=2 e^{-i \frac{2 \pi}{5}}, z_{3}=2, z_{4}=2 e^{i \frac{2 \pi}{5}}, z_{5}=2 e^{i \frac{4 \pi}{5}} \\
& \text { b) } z_{1}+z_{2}+z_{3}+z_{4}+z_{5}=0 \\
& \cos \frac{4 \pi}{5}-i \sin \frac{4 \pi}{5}+\cos \frac{2 \pi}{5}-i \sin \frac{2 \pi}{5}+2+\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}=0 \\
& 2 \cos \frac{4 \pi}{5}+2 \cos \frac{2 \pi}{5}=-2 \\
& \cos \frac{4 \pi}{5}+\cos \frac{2 \pi}{5}=-\frac{1}{2} \\
& \text { Question } 9: \\
& \text { a) }\left(z^{3}-e^{i \theta}\right)\left(z^{2}-e^{-i \theta}\right)=z^{5}-z^{3} e^{-i \theta}-z^{2} e^{i \theta}+1 \\
& \text { b) } w h e n ~ \theta=\pi, \text { the expression becomes } z^{5}+z^{3}+z^{2}+1 \\
& \text { and can be factorised: }\left(z^{3}-e^{i \pi}\right)\left(z^{2}-e^{-i \pi}\right) \\
& z^{5}+z^{3}+z^{2}+1=0 \text { for } z^{3}=e^{i \pi} \\
& z=e^{i \frac{\pi}{3}} \text { or } z=e^{i \frac{3 \pi}{3}}=-1 \text { or } z^{2}=e^{-i \pi}=e^{-i \frac{\pi}{3}} \text { OR } z=i \text { or } z=-i
\end{aligned}
$$

> Question 6:
> The coefficient of z^{3} is 0 , hence the sum of the roots is 0 .

Proof by induction

| INDUCTION PRINCIPAL |
| :--- | :--- |
| A proposition P_{n}, is to be proven true for $\mathrm{n} \geq \mathrm{n}_{0}$ |
| \bullet Basis case: Show that $\mathrm{P}_{n_{0}}$ is true. |
| \bullet Assumption / Hypothesis |
| Suppose that P_{k} is true. |
| \bullet Induction: Show that P_{k+1} is then also true. |
| \bullet Conclusion: |
| "If the proposition P_{k} is true then P_{k+1} is true. |
| Because $\mathrm{P}_{n_{0}}$ is true, according to the induction principal |
| we conclude that the proposition is true for all $\mathrm{n} \geq \mathrm{n}_{0} "$ |

Question 1:

Prove by induction that

$$
\text { for all } \mathrm{n} \geq 1, \sum_{r=1}^{n} r^{2}-4 r=\frac{1}{6} n(n+1)(2 n-11)
$$

Question 2:

Prove by induction that

$$
\text { for all } \mathrm{n} \geq 1, \mathrm{n}^{2}-9 n+7 \text { is divisible by } 2
$$

Question 3:

A sequence is given by

$$
u_{1}=3 \text { and } u_{n+1}=2 u_{n}-5
$$

a)Work out u_{2}, u_{3}, u_{4}.
b) Show by induction that for all $\mathrm{n} \geq 1, u_{n}=5-2^{n}$

Question 4:

The function f, is defined by

$$
f(n)=3^{2 n}-2^{2 n} \quad \text { for all } n \geq 1
$$

a) Work out $f(1), f(2), f(3)$.
b) Express $f(k+1)-4 f(k)$ in terms of k.
c) Prove by induction that for all $\mathrm{n} \geq 1,3^{2 n}-2^{2 n}$ is divisible by 5

Question 5:

a) i) Show that $x=1$ is a root of $x^{3}+5 x^{2}+2 x-8=0$
ii) Factorise fully $x^{3}+5 x^{2}+2 x-8$
b) Prove by induction that

$$
\text { for all } \mathrm{n} \geq 1, \sum_{r=1}^{n} 4 r^{3}-12 r=n(n+1)(n+3)(n-2)
$$

Question 6:
A sequence is given by

$$
u_{1}=6 \text { and } u_{n+1}=3 u_{n}-6
$$

a)Work out u_{2}, u_{3}, u_{4}.
b) Show by induction that for all $\mathrm{n} \geq 1, u_{n}=3^{n}+3$

Question 7:

The function f, is defined by

$$
f(n)=7^{2 n}-2 \times 3^{2 n}+1 \text { for all } n \geq 1
$$

a) Work out $f(1), f(2), f(3)$.
b) Show that $f(k+1)-49 f(k)=a \times\left(b \times 3^{2 k}+c\right)$ where a, b and c are to be found.
c) Prove by induction that for all $\mathrm{n} \geq 1,7^{2 n}-2 \times 3^{2 n}+1$ is divisible by 16
Question 2:
Let's call P_{n} the proposition: $\mathrm{n}^{2}-9 n+7$ is divisible by 2
We have to prove that this proposition is true for all $\mathrm{n} \geq 1$. - Basis case : $n=1$
$n^{2}-9 n+6=1^{2}-9 \times 1+6=-2(=2 \times-1)$
The proposition P_{1} is true.

- Assumption:
Let's assume that the proposition is true for $n=k$ (P_{k} is true).
Let's show that the proposition is true for $n=k+1$ (showthat P_{k+1} is true). i.e: let's show that $(k+1)^{2}-9(k+1)+6$ is divisible by 2 . -Induction:
$(k+1)^{2}-9(k+1)+6=k^{2}+2 k+1-9 k-9+6$ $=\left(k^{2}-9 k+6\right)+2 k-8$ $=\left(k^{2}-9 k+6\right)+2(k-4)$ $k^{2}-9 k+6$ is divisible by 2 by assumption $2(\mathrm{k}-4)$ is divisible by 2 so $(k+1)^{2}-9(k+1)+6$ is divisible by 2 Q.E.D - Conclusion: If the proposition is true for $n=k$, then it is also true for $n=k+1$. Because it is true for $n=1$, according to the induction principal, we can conclude that P_{n} is true for all $\mathrm{n} \geq 1$.
Proof by induction - exercises - answers Question 1:
Let's call P_{n} the proposition: $\sum_{r=1}^{n} r^{2}-4 r=\frac{1}{6} n(n+1)(2 n-11)$
We have to prove that this proposition is true for all $\mathrm{n} \geq 1$.
- Basis case $: n=1$
Left Hand Side $($ LHS $): \sum_{r=1}^{1} r^{2}-4 r=1^{2}-4 \times 1=-3$
Right Hand side $(R H S): \frac{1}{6} n(n+1)(2 n-11)=\frac{1}{6} \times 1 \times 2 \times-9=-3$
The proposition P_{1} is true.
- Assumption:
Let's assume that the proposition is true for $n=k\left(P_{k}\right.$ is true $)$.
Let's show that the proposition is true for $n=k+1\left(\right.$ showthat P_{k+1} is true $)$.
i.e :let's show that $\sum_{r=1}^{k+1} r^{2}-4 r=\frac{1}{6}(k+1)(k+2)(2 k-9)$
-Induction:
$\begin{array}{r}\sum_{r=1}^{k+1} r^{2}-4 r\end{array} \quad=\sum_{r=1}^{k} r^{2}-4 r+\left((k+1)^{2}-4(k+1)\right)$
$\quad=\frac{1}{6} k(k+1)(2 k-11)+(k+1)(k-3)$
$\quad=\frac{1}{6}(k+1)(k(2 k-11)+6(k-3))=\frac{1}{6}(k+1)\left(2 k^{2}-5 k-18\right)$
$\quad=\frac{1}{6}(k+1)(2 k-9)(k+2) Q . E . D$ -Conclusion:
If the proposition is true for $n=k$, then it is also true for $n=k+1$. Because it is true for $n=1$, according to the induction principal,
we can conclude that P_{n} is true for all $n \geq 1$.
Question 4:
a) $f(1)=3^{2}-2^{2}=9-4=5$ $f(2)=3^{4}-2^{4}=81-16=65$
$f(3)=3^{6}-2^{6}=665$
$f(3)=3^{6}-2^{6}=665$
b) $f(k+1)-4 f(k)=3^{2 k+2}$
b) $f(k+1)-4 f(k)=3^{2 k+2}-2^{2 k+2}-4 \times 3^{2 k}+4 \times 2^{2 k}$ $=9 \times 3^{2 k}-4 \times 2^{2 k}-4 \times 3^{2 k}+4 \times 2^{2 k}$ $f(k+1)-4 f(k)=5 \times 3^{2 k}$
c) Proposition $\mathrm{P}_{n}: f(n)=3^{2}$
- Basis case $: n=1$

$$
f(1)=5 \text { is divisible by } 5
$$

$f(1)=5$ is divisible by 5
The proposition is true for $n=1$ (P_{1} istrue)

- Assumption
c) Proposition $\mathrm{P}_{n}: f(n)=3^{2 n}-2^{2 n}$ is divisible by 5
Question 4:

a) $f(1)=3^{2}-2^{2}=9-4=5$
$f(2)=3^{4}-2^{4}=81-16=65$

$f(2)=3^{4}-2^{4}=81-16=65$
$f(3)=3^{6}-2^{6}=665$
b) $f(k+1)-4 f(k)=3^{2 k+2}-2^{2 k+2}-4 \times 3^{2 k}+4 \times 2^{2 k}$
$\begin{aligned}= & 9 \times 3^{2 k}-4 \times 2^{2 k}-4 \times 3^{2 k}+4 \times \\ f(k+1)-4 f(k)= & 5 \times 3^{2 k}\end{aligned}$

$$
\bullet \text { Basis case }: n=1
$$

Let's suppose that P_{k} true i.e $f(k)=3^{2 k}-2^{2 k}$ is divisible by 5
Let's show that P_{k+1} is true,
Let's suppose that P_{k} true i.e $f(k)=3^{2 k}-2^{2 k}$ is divisible by 5
i.e. let's show that $f(k+1)=3^{2 k+2}-2^{2 k+2}$ is divisible by 5

-Induction

$f(k+1)-4 f(k)=5 \times 3^{2 k}$
$f(k+1)=5 \times 3^{2 k}-4 f(k)$
$5 \times 3^{2 k}$ is a multiple of 5
$4 f(k)$ is a multiple of 5 because $f(k)$ is one by supposition.
$f(k+1)$ is therefore a multiple of 5 (as the sum of two multiples of 5) -Conclusion
If P_{k} is true then P_{k+1} is true. P_{1} is true so according to the induction
principle, we can say that P_{n} is true for all $\mathrm{n} \geq 1$.
Question 5:
a) i) $x^{3}+5 x^{2}+2 x-8=(1)^{3}+5 \times(1)^{2}+2 \times(1)-8=1+5+2-8=0$
1 is a root of $x^{3}+5 x^{2}+2 x-8$
ii) $x^{3}+5 x^{2}+2 x-8=(x-1)\left(x^{2}+6 x+8\right)=(x-1)(x+4)(x+2)$ b) Proposition $\mathrm{P}_{n}: \sum_{r=1}^{n} 4 r^{3}-12 r=n(n+1)(n+3)(n-2)$

- Basis case $: n=1$
$L H S: \sum 4 r^{3}-12 r=4 \times 1^{3}-12 \times 1=4-12=-8$
$R H S: n(n+1)(n+3)(n-2)=1 \times 2 \times 4 \times-1=-8$
P_{1} is true
- Assumption
Let's suppose that P_{k} is true i.e $\sum^{k} 4 r^{3}-12 r=k(k+1)(k+3)(k-2)$
Let's show that P_{k+1} is true, let's show that $\sum^{k+1} 4 r^{3}-12 r=(k+1)(k+2)(k+4)(k-1)$
$\begin{aligned} \sum_{r=1}^{k+1} 4 r^{3}-12 r & =\sum_{r=1}^{k} 4 r^{3}-12 r+4(k+1)^{3}-12(k+1) \\ & =k(k+1)(k+3)(k-2)+4(k+1)^{3}-12(k+1) \\ & =(k+1)\left(k(k+3)(k-2)+4(k+1)^{2}-12\right) \\ & =(k+1)\left(k^{3}+k^{2}-6 k+4 k^{2}+8 k+4-12\right) \\ & =(k+1)\left(k^{3}+5 k^{2}+2 k-8\right)=(k+1)(k-1)(k+4)(k+2) \text { Q.E.D }\end{aligned}$
-Conclusion
-Induction
Conclusion
If P_{k} is true
If P_{k} is true then P_{k+1} is true. P_{1} is true, so according to the induction principle
we conclude that the proposition P_{n} is true for all $\mathrm{n} \geq 1$.

$$
\begin{aligned}
& \text { Question 6: } \\
& \begin{array}{l}
\text { a) } u_{1}=6 \text { and } u_{n+1}=3 u_{n}-6 \\
u_{2}=3 \times 6-6=12 \\
u_{3}=3 \times 12-6=30 \\
u_{4}=3 \times 30-6=84 \\
\text { b) Proposition } \mathrm{P}_{n}: u_{n}=3^{n}+3 \\
\text { - Basis case }: n=1 \\
\qquad \text { LHS : } u_{1}=6 \\
\text { RHS : } 3^{n}+3=3^{1}+3=6 \\
P_{1} \text { is true } \\
\text { - Assumption } \\
\text { Suppose that } \mathrm{P}_{k} \text { is true i.e } u_{k}=3^{k}+3 \\
\text { Let's show that } \mathrm{P}_{k+1} \text { is true, i.e Let's show that } u_{k+1}=3^{k+1}+3 \\
\text { - Induction } \\
\quad u_{k+1}=3 u_{k}-6=3\left(3^{k}+3\right)-6=3^{k+1}+9-6 \\
\quad u_{k+1}=3^{k+1}+3 \\
\text {-Conclusion } \\
\text { If } \mathrm{P}_{k} \text { is true the } \mathrm{P}_{k+1} \text { is true. Because } \mathrm{P}_{1} \text { is true } \\
\text { we can conclude that } \mathrm{P}_{n} \text { is true for all } \mathrm{n} \geq 1 \text {. } \\
\text { for all } \mathrm{n}>1 . u=3^{n}+3
\end{array}
\end{aligned}
$$

Question 7:
a) $f(1)=7^{2}-2 \times 3^{2}+1=49-18+1=32$ $f(2)=7^{4}-2 \times 3^{4}+1=2240$
$f(3)=7^{6}-2 \times 3^{6}+1=116192$
b) $f(k+1)-49 f(k)=7^{2 k+2}-2 \times 3^{2 k+2}+1-49\left(7^{2 k}-2 \times 3^{2 k}+1\right)$ $=49 \times 7^{2 k}-18 \times 3^{2 k}-49 \times 7^{2 k}+98 \times 3^{2 k}-48$
$f(k+1)-49 f(k)=80 \times 3^{2 k}-48=16\left(5 \times 3^{2 k}-3\right)$
c) Proposition $\mathrm{P}_{n}: f(n)=7^{2 n}-2 \times 3^{2 n}+1$ is divisible by 16 - Basis case $: n=1$
$f(1)=32=16 \times 2$ is divisible by 16 The proposition is true for $n=1$ (P_{1} is true) - Assumption
Let's suppose that P_{k} true i.e $f(k)=7^{2 k}-2 \times 3^{2 k}+1$ is divisible by 16 Let's show that P_{k+1} is true,
i.e. let's show that $f(k+1)=7^{2 k+2}-2 \times 3^{2 k+2}+1$ is divisible by 16 -Induction
$f(k+1)-49 f(k)=16\left(5 \times 3^{2 k}-3\right)$
$f(k+1)=16\left(5 \times 3^{2 k}-3\right)+49 f(k)$
$16\left(5 \times 3^{2 k}-3\right)$ is a multiple of 16
$49 f(k)$ is a multiple of 16 because $f(k)$ is one by supposition.
$f(k+1)$ is therefore a multiple of 16 (as the sum of two multiples of 16)
-Conclusion
If P_{k} is true then P_{k+1} is true. P_{1} is true so according to the induction
principle, we can say that P_{n} is true for all $\mathrm{n} \geq 1$.

$=$	Method 1: You might be asked to prove a result using the induction principal. e.g.: Show by induction that "for all $n \geq 1, \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$ " In FP2, do not use the standard series from the formula book (unless told to do so).
\square	Method 2: Differencing Consider two functions $u(r)$ and $f(r)$ If we can write $u(r)=f(r+1)-f(r)$ then $\sum_{r=1}^{n} u(r)=\sum_{r=1}^{n} f(r+1)-f(r)=f(n+1)-f(1)$ $e . g: f(r)=2 r^{2}-1$ a) Show that $4 r+2=f(r+1)-f(r)$ b) Hence work out $\sum_{r=1}^{n} 4 r+2$ Anwers: a) $\begin{gathered} f(r+1)-f(r)=2(r+1)^{2}-1-\left(2 r^{2}-1\right)=2 r^{2}+4 r+2-1-2 r^{2}+1 \\ =4 r+2 \end{gathered}$ $\text { b) } \begin{aligned} \sum_{r=1}^{n} 4 r+2 & =\sum_{r=1}^{n} f(r+1)-f(r)=f(n+1)-f(1)=2(n+1)^{2}-1-1 \\ & =2 n^{2}+4 n \end{aligned}$
$=$	$\begin{aligned} & \text { Partial fractions } \\ & \qquad \begin{array}{l} \text { if } F(x)=\frac{a x+b}{(c x+d)(e x+f)} \text { then it exists two real numbers A and B } \\ \text { so that } F(x)=\frac{A}{c x+d}+\frac{B}{e x+f} \end{array} \\ & \text { e.g: } \frac{1}{r(r+1)}=\frac{A}{r}+\frac{B}{r+1} \quad(\times r(r+1) \text { gives }) \\ & \quad 1=A(r+1)+B(r) \\ & r=0 \text { gives } A=1 \\ & r=-1 \text { gives } B=-1 \quad \frac{1}{r(r+1)}=\frac{1}{r}-\frac{1}{r+1} \end{aligned}$

Question 1:
(a) Given that $f(r)=\frac{1}{2} r(r+2)$, show that

$$
f(r+1)-f(r)=r+\frac{3}{2}
$$

(b) Use the method of differences to find the value of

$$
\sum_{r=50}^{99}\left(r+\frac{3}{2}\right)
$$

Question 2:

(a) Consider the polynomial $P(x)=x^{3}+10 x^{2}+37 x+60$
i) Show that -5 is a root of P
ii) Show that $P(x)=(x+5)\left(x^{2}+5 x+12\right)$
(b) Given that $f(r)=\frac{1}{4}(r+1)^{2}(r+2)^{2}$, show that

$$
f(r+1)-f(r)=(r+2)^{3}
$$

(c) Use the method of differences to work out in terms of n

$$
\sum_{r=1}^{n}(r+2)^{3}
$$

Question 3:
a) Given that $\frac{2 r^{2}+2 r-2}{r(r+1)}=A+B\left(\frac{1}{r}-\frac{1}{r+1}\right)$
find the value of A and B
b) Find the value of

$$
\sum_{r=1}^{99} \frac{2 r^{2}+2 r-2}{r(r+1)}
$$

Question 4:
a) Show that

$$
\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}
$$

b) Hence find the sum of the first n terms of the series

$$
\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\ldots
$$

Question 5:
The sum to r terms, S_{r}, of a series is given by

$$
S_{r}=r(r+1)(r-1)^{2}
$$

Given that u_{r} is the $r^{\text {th }}$ term of the series whose sum is S_{r}, show that:
(a) i) $u_{1}=0$
ii) $u_{2}=6$ and $u_{3}=42$
(iii) $u_{n}=n(n-1)(4 n-5)$
(b) Show that

$$
\sum_{r=n+1}^{2 n} u_{r}=n\left(15 n^{3}-7 n^{2}-3 n+1\right)
$$

Question 3:
Question 3:
I am going to express the R.H.S as a single fraction
and identify with the L.H.S
and identify with the L.H.S
$A+B\left(\frac{1}{r}-\frac{1}{r+1}\right)=\frac{A r(r+1)+B(r+1)-B r}{r(r+1)}=\frac{A r^{2}+A r+B}{r(r+1)}$
$A+B\left(\frac{1}{r}-\frac{1}{r+1}\right)=\frac{A}{r(r+1)}=\frac{2 r^{2}+2 r-2}{r(r+1)}$
This should be equal to $\frac{2(r+1)}{r} A=2$ and $B=-2$
b) $\sum_{r=1}^{99} \frac{2 r^{2}+2 r-2}{r(r+1)}=\sum_{r=1}^{99} 2-2\left(\frac{1}{r}-\frac{1}{r+1}\right)=\sum_{r=1}^{99} 2-2 \sum_{r=1}^{99} \frac{1}{r}-\frac{1}{r+1}=2 \times 99-2\left(1-\frac{1}{100}\right)=196.02$
b) $\sum_{r=1}^{99} \frac{2 r^{2}+2 r-2}{r(r+1)}=\sum_{r=1}^{99} 2-2\left(\frac{1}{r}-\frac{1}{r+1}\right)=\sum_{r=1}^{99} 2-2 \sum_{r=1}^{99} \frac{1}{r}-\frac{1}{r+1}=2 \times 99-2\left(1-\frac{1}{100}\right)=196.02$ Question 4:
$\frac{1}{(n+1)(n+2)}=\frac{A}{n+1}+\frac{B}{n+2} \quad(\times(n+1)(n+2)$ gives $)$
$1=A(n+2)+B(n+1)$
for $n=-1 \quad 1=A$
for $n=-1$
for $n=-2$
for $n=-2 \quad 1=-B \quad B=-1$
Conclusion: $\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}$
b) $\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots=\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\ldots=\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)}=\sum_{r=1}^{n} \frac{1}{r+1}-\frac{1}{r+2}$
$r=1$ $S_{3}=u_{1}+u_{2}+u_{3}=0+6+u_{3}=3 \times 4 \times 2^{2}=48 \quad$ hence $u_{3}=48-6=42$
iii) $u_{n}=S_{n}-S_{n-1}=n(n+1)(n-1)^{2}-(n-1)(n)(n-2)^{2}=n(n-1)\left[(n+1)(n-1)-(n-2)^{2}\right]$
$\quad=n(n-1)\left[n^{2}-1-n^{2}+4 n-4\right] \quad u_{n}=n(n-1)(4 n-5)$$\quad \begin{aligned} \text { b) } \sum_{r=n+1}^{2 n} u_{r}=\sum_{r=1}^{2 n} u_{r}-\sum_{r=1}^{n} u_{r} \\ =S_{2 n}-S_{n}=2 n(2 n+1)(2 n-1)^{2}-n(n+1)(n-1)^{2}=n\left[2(2 n+1)(2 n-1)^{2}-(n+1)(n-1)^{2}\right] \\ =n\left[(4 n+2)\left(4 n^{2}-4 n+1\right)-(n+1)\left(n^{2}-2 n+1\right)\right]=n\left(16 n^{3}-8 n^{2}-4 n+2-n^{3}+n^{2}+n-1\right) \\ =n\left(15 n^{3}-7 n^{2}-3 n+1\right)\end{aligned}$

Finite series - exercises - Answers

$$
\begin{aligned}
& \text { On the other hand (R.H.S.) : }(r+2)^{3}=r^{3}+3 \times r^{2} \times 2+3 \times r \times 2^{2}+2^{3}=r^{3}+6 r^{2}+12 r+8 \\
& \qquad \begin{aligned}
& f(r+1)-f(r)=(r+2)^{3} \\
\text { c) } \sum_{r=1}^{n}(r+2)^{3}= & \sum_{r=1}^{n} f(r+1)-f(r)=f(n+1)-f(1)=\frac{1}{4}(n+2)^{2}(n+3)^{2}-\frac{1}{4}(36) \\
= & \frac{1}{4}\left(n^{4}+10 n^{3}+37 n^{2}+60 n\right)=\frac{1}{4} n\left(n^{3}+10 n^{2}+37 n+60\right) \\
\sum_{r=1}^{n}(r+2)^{3}= & \frac{1}{4} n(n+5)\left(n^{2}+5 n+12\right)
\end{aligned}
\end{aligned}
$$

Techniques of integration

I) The usual functions

1) Power, logarithm, exponential, trigonometric functions

- $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c \quad n \neq-1$
- $\int \frac{1}{x} d x=\ln |x|+c$
- $\int e^{x} d x=e^{x}+c \quad \mathrm{c}$ is any real number : $c \in \mathbb{R}$
- $\int \cos (x) d x=\sin (x)+c$
- $\int \sin (x) d x=-\cos (x)+c$

2) Usual function composed with a linear function :

The general integral is $\int g(a x+b) d x=\frac{1}{a} G(a x+b)+c \quad$ where G is an integral of g which means:

- $\int(a x+b)^{n} d x=\frac{1}{a} \times \frac{1}{n+1}(a x+b)^{n+1}+c \quad n \neq-1$
- $\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+c$
- $\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+c \quad \mathrm{c}$ is any real number : $c \in \mathbb{R}$
- $\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c$
- $\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c$
II) Recognising expressions

The general integral is $\int f^{\prime} \times g[f(x)] d x=G[f(x)]+c \quad$ where G is an integral of g which means:

- $\int f^{\prime} \times f^{n} d x=\frac{1}{n+1} f^{n+1}+c \quad n \neq-1$
- $\int \frac{f^{\prime}}{f} d x=\ln |f|+c$
- $\int f^{\prime} \times e^{f} d x=e^{f}+c$
- $\int f^{\prime} \times \cos (f) d x=\sin (f)+c$
- $\int f^{\prime} \times \sin (f) d x=-\cos (f)+c$

Formula: $\int_{a}^{b} u{ }^{\prime} \times v=[u \times v]_{a}^{b}-\int_{a}^{b} u \times v^{\prime}$

This technique is used to integrate functions like:
$x^{n} e^{x}, x^{n} \ln (x), x^{n} \cos (x), x^{n} \sin (x) \quad$ where n is an positive integer

IV) Integration by substitution

We use this technique when changing variable make the integral easier to work out

1) Direct substitution

Consider
$I=\int f(x) d x \quad$ let $x=h(u)$
We have then $f(x)=f[h(u)]$ and $d x=h^{\prime}(u) d u$
the integral becomes $I=\int f[h(u)] \times h^{\prime}(u) d u$ (and should be easier to integrate)
If the integral is definite (integrate between two values), do not forget to change them according to u.

2) Indirect substitution

It is the same principal, but instead, we let a whole expression of x be u.

V) Partial fractions

An algebraic fraction can be written $\frac{P(x)}{Q(x)}$ where $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are polynomials.
Like for example: $\frac{3 x+4}{x^{2}-4 x+6}$ or $\frac{4 x-5}{x+1} \ldots$ How do we integrate those functions?

Case 1: degree of $P=$ degree of $Q(=1)$

If $\frac{P(x)}{Q(x)}=\frac{a x+b}{c x+d}$, transforminto $\frac{a}{c}+\frac{e}{c x+d}$ where $e=b-\frac{a d}{c}$.
Example 1: $\frac{2 x+3}{x+2}=\frac{2(x+2)+e}{x+2}=\frac{2(x+2)-1}{x+2}=\frac{2(x+2)}{x+2}-\frac{1}{x+2}=2-\frac{1}{x+2}$
Therefore $\int \frac{2 x+3}{x+2} d x=\int 2-\frac{1}{x+2} d x=2 x-\ln (x+2)+c$

Example 2: $\frac{3 x+2}{2 x-1}=\frac{\frac{3}{2}(2 x-1)+e}{2 x-1}=\frac{\frac{3}{2}(2 x-1)+\frac{7}{2}}{2 x-1}=\frac{3}{2}+\frac{7 / 2}{2 x-1}=\frac{3}{2}+\frac{7}{2} \times \frac{1}{2 x-1}$
Therefore $\int \frac{3 x+2}{2 x-1} d x=\int \frac{3}{2}+\frac{7}{2} \times \frac{1}{2 x-1} d x=\frac{3}{2} x+\frac{7}{2} \times \frac{1}{2} \ln (2 x-1)+c=\frac{3}{2} x+\frac{7}{4} \ln (2 x-1)+c$

Case 2: degree of $\mathrm{P}<$ degree of Q

Theorem:
If an algebraic fraction is $R(x)=\frac{c x+d}{(r x+s)(p x+q)}$, then we can find two numbers A and B so that

$$
R(x)=\frac{A}{r x+s}+\frac{B}{p x+q} .
$$

How to find A and B ?

Consider the algebraic fraction $\frac{5 x+4}{x^{2}+x-2}$.
Factorise the denominator: $\frac{5 x+4}{(x+2)(x-1)}$, then equal this expression to $\frac{A}{x+2}+\frac{B}{x-1}$
$\frac{5 x+4}{(x+2)(x-1)}=\frac{A}{(x+2)}+\frac{B}{(x-1)}$. Now multiply by $(x+2)(x+1)$ both sides
We have
$5 x+4=A(x-1)+B(x+2)$.Because this identity is true for all values of x,
it is true in particular for $x=1$ and $x=-2$.
If $x=1, \quad 5 \times 1+4=A(1-1)+B(1+2)$

$$
9=3 B \quad B=3
$$

If $x=-2, \quad 5 \times-2+4=A(-2-1)+B(-2+2)$

$$
-6=-3 A \quad A=2
$$

$\frac{5 x+4}{(x+2)(x-1)}=\frac{2}{x+2}+\frac{3}{x-1}$. We can now integrate this function.
$\int \frac{5 x+4}{(x+2)(x-1)} d x=\int \frac{2}{x+2}+\frac{3}{x-1} d x=2 \ln |x+2|+3 \ln |x-1|+c=\ln \left((x+2)^{2}|x-1|^{3}\right)+c$

VI) Trigonometric functions

1) $\tan (x)$

Remember: $\frac{d}{d x} \tan (x)=\frac{1}{\cos ^{2}(x)}=1+\tan ^{2}(x)=\sec ^{2}(x)$
Therefore also remember that:

- $\int \sec ^{2}(x) d x=\int \frac{1}{\cos ^{2}(x)} d x=\tan (x)+c$
$-\int \tan ^{2}(x)=\tan (x)-x+c$
Explanation : $\int \tan ^{2}(x) d x=\int 1+\tan ^{2}(x)-1 d x=\tan (x)-x+c$

2) Recognising expressions

Instead of learning yet another formula, it is often useful to recognise familiar expressions (see chapter II)
$\int \tan (x) d x=\int \frac{\sin (x)}{\cos (x)}=-\int \frac{-\sin (x)}{\cos (x)} d x$. This is the form $\frac{f^{\prime}}{f}$ which integrate into $\ln |f|+c$
$\int \tan (x) d x=-\ln |\cos (x)|+c=\ln \left|\frac{1}{\cos (x)}\right|+c=\ln |\sec (x)|+c$
$\int \sec (x) \tan (x) d x=\int \frac{1}{\cos (x)} \times \frac{\sin (x)}{\cos (x)} d x=-\int \frac{-\sin (x)}{\cos ^{2}(x)} d x$. This is the form $f^{\prime} \times f^{n}$ with $n=-2$, which integrate into $\frac{1}{n+1} f^{n+1}+c$.
$-\int \sec (x) \tan (x) d x=-\frac{1}{-1} \cos ^{-1}(x)+c=\sec (x)+c$
3) Linearisation of $\cos ^{2}$ and $\sin ^{2}$

How to integrate $\cos ^{2}(x)$ and $\sin ^{2}(x)$?
We use the following formulae ("double angle" formulae re-arranged)
$\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$
$\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$
VII) *Useful substitution

If the integral includes	try
$(a x+b)^{n}$	$a x+b=u$
$\sqrt[n]{a x+b}$	$a x+b=u^{n}$
$a-b x^{2}$	$x=\sqrt{\frac{b}{a}} \sin (u)$
$a+b x^{2}$	$x=\sqrt{\frac{b}{a}} \tan (u)$
$b x^{2}-a$	$x=\sqrt{\frac{b}{a}} \sec (u)$
e^{x}	$e^{x}=u$
$\ln (a x+b)$	$a x+b=e^{u}$

VIII) Useful trigonometric substitution $t=\operatorname{Tan}\left(\frac{1}{2} x\right)$

When using this substitution, $\operatorname{Tan}(x), \operatorname{Cos}(x)$ and $\operatorname{Sin}(x)$ become rational functions.
$\operatorname{Tan}(x)=\frac{2 t}{1-t^{2}}$
$\operatorname{Cos}(x)=\frac{1-t^{2}}{1+t^{2}}$
Example: $\int \frac{1}{\operatorname{Sin} x} d x=\int \frac{1}{\frac{2 t}{1+t^{2}}} \times \frac{2}{1+t^{2}} d t=\int \frac{2}{2 t} d t=\int \frac{1}{t} d t=\ln |t|+c$
$\operatorname{Sin}(x)=\frac{2 t}{1+t^{2}}$
$\int \frac{1}{\operatorname{Sin} x} d x=\ln \left|\operatorname{Tan}\left(\frac{1}{2} x\right)\right|+c$
$d x=\frac{2}{1+t^{2}} d t$

Calculus of inverse trig functions

Calculus with inverse trig functions
Differentiation

$y=\cos ^{-1} x$	$\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$	for $-1<x<1$
$y=\sin ^{-1} x$	$\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$	for $-1<x<1$
$y=\tan ^{-1} x$	$\frac{d y}{d x}=\frac{1}{1+x^{2}}$	for all x

Integration
$\begin{array}{|ll|}\text { If } a>0 \\ \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+k & \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+k\end{array}$

Question 1: Differentiation

Differentiate the following functions
a) $y=\sin ^{-1} 4 x$
b) $y=\sin ^{-1} \frac{1}{2} x$
c) $y=3 \cos ^{-1} \frac{x}{3}$
d) $y=x \tan ^{-1}(x)$
e) $y=\cos ^{-1}(\sqrt{x}) \quad$ f) $y=3 \tan ^{-1}\left(4 x^{2}\right)$

Question 2: Integration

Find the value of the integrals
a) $\int_{0}^{6} \frac{d x}{\sqrt{36-x^{2}}}$
b) $\int_{0}^{1} \frac{d x}{1+x^{2}}$
c) $\int_{-\frac{3}{2}}^{\frac{3}{2}} \frac{d x}{4 x^{2}+9}$
d) $\int \frac{d x}{x^{2}+6 x+18}$
e) $\int \frac{4 x+5}{\sqrt{4-6 x-x^{2}}} d x$
f) $\int \frac{6 x+3}{x^{2}+6 x+13} d x$

Question 3:

Use the substitution $x \sqrt{3}=2 \operatorname{Tan} \theta$ to show that $\int_{0}^{2} \frac{1}{\left(3 x^{2}+4\right)^{\frac{3}{2}}} d x=\frac{1}{8}$

Question 4:

(a) Differentiate $x \tan ^{-1} x$ with respect to x.
(b) Show that

$$
\begin{equation*}
\int_{0}^{1} \tan ^{-1} x \mathrm{~d} x=\frac{\pi}{4}-\ln \sqrt{2} \tag{5marks}
\end{equation*}
$$

Question 5:

By using the substitution $u=x-2$, or otherwise, find the exact value of

$$
\begin{equation*}
\int_{-1}^{5} \frac{\mathrm{~d} x}{\sqrt{32+4 x-x^{2}}} \tag{5marks}
\end{equation*}
$$

Question 6:
a) Use the substitution $t=\tan \theta$ to transforms the integral $\int \frac{d \theta}{9 \operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta}$ into $\int \frac{d t}{9+t^{2}}$
b) Hence show that $\int_{0}^{\frac{\pi}{3}} \frac{d \theta}{9 \operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta}=\frac{\pi}{18}$

$$
=3 \ln \left(x^{2}+6 x+13\right)-15 \int \frac{d x}{(x+3)^{2}+4}=3 \ln \left(x^{2}+6 x+13\right)-\frac{15}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+c
$$

Question 3:

$$
\begin{aligned}
& x \sqrt{3}=2 \tan \theta \quad x=\frac{2}{\sqrt{3}} \tan \theta \quad \frac{d x}{d \theta}=\frac{2}{\sqrt{3}}\left(1+\tan ^{2} \theta\right) \\
& x=0 \quad \theta=0 \quad \text { and } \quad x=2 \tan \theta=\sqrt{3} \quad \theta=\frac{\pi}{3} \\
& I=\int_{0}^{2} \frac{1}{\left(3 x^{2}+4\right)^{\frac{3}{2}}} d x=\int_{0}^{\frac{\pi}{3}} \frac{2}{\sqrt{3}} \frac{1+\tan ^{2} \theta}{\left(4 \tan ^{2} \theta+4\right)^{\frac{3}{2}}} d \theta=\int_{0}^{\frac{\pi}{3}} \frac{1}{4 \sqrt{3}} \frac{1}{\sqrt{1+\tan ^{2} \theta}} d \theta \\
& \stackrel{\rightharpoonup}{\omega} \quad=\frac{\sqrt{3}}{12} \int_{0}^{\frac{\pi}{3}} \cos \theta d \theta=\frac{\sqrt{3}}{12}[\sin \theta]_{0}^{\frac{\pi}{3}}=\frac{\sqrt{3}}{12}\left(\sin \frac{\pi}{3}-\sin 0\right)=\frac{\sqrt{3}}{12} \times \frac{\sqrt{3}}{2}=\frac{3}{24}=\frac{1}{8}
\end{aligned}
$$

Hyperbolic functions

	Property:Any function can be written as the some of an even and odd function In particular, $y=e^{x}$ can be written $\mathrm{e}^{x}=\cosh x+\sinh x$. $\begin{array}{lll} \mathbb{R} \rightarrow[1,+\infty[& \text { and } & \mathbb{R} \rightarrow \mathbb{R} \\ x \rightarrow \cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right) & & x \rightarrow \sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \end{array}$ - \cosh is an even function because $\cosh (-x)=\cosh (x)$ The graph of cosh is symmetrical around the y-axis - \sinh is an odd function because $\sinh (-x)=-\sinh (x)$ The graph of sinh is symmetrical around the point O (or rotational symmetry order 2)
	Properties and calculus In a certain respect, the properties of cosh and sinh are very similar to those of cos and sin. You need to know and to be able to prove that: $\begin{array}{\|l} \hline \text { - } \cosh ^{2} x-\sinh ^{2} x \equiv 1 \quad(" \equiv \text { "indicates an identity and means " }=\text { for all } x \text { ") } \\ \text { - } \cosh (\mathrm{A} \pm \mathrm{B}) \equiv \cosh \mathrm{A} \operatorname{coshB} \pm \sinh \mathrm{A} \sinh \mathrm{~B} \\ \sinh (\mathrm{~A} \pm \mathrm{B}) \equiv \sinh \mathrm{A} \operatorname{coshB} \pm \cosh \mathrm{A} \sinh B \\ \bullet \cosh (2 A) \equiv \cosh ^{2} A+\sinh ^{2} A \equiv 1+2 \sinh ^{2} A \equiv 2 \cosh ^{2} A-1 \\ \sinh 2 A \equiv 2 \sinh A \cosh A \\ \hline \end{array}$ Calculus $\begin{array}{lll} y=\cosh x & \frac{d y}{d x}=\sinh x & \text { and } \end{array} \int \sinh x d x=\cosh x+k ~ 子 ~ a n d ~ d ~ \int \cosh x d x=\sinh x+k$
	Other hyperbolic functions Tanh - $\mathbb{R} \rightarrow]-1,1[$ $x \rightarrow \tanh (x)=\frac{\sinh x}{\cosh x}$ - $y=\tanh x \quad \frac{d y}{d x}=1-\tanh ^{2} x=\frac{1}{\cosh ^{2} x}=\operatorname{sech}^{2} x$ $\begin{array}{ll} -\frac{1}{\cosh x}=\operatorname{sech} x & \frac{1}{\sinh x}=\operatorname{cosech}(x) \\ \frac{1}{\tanh x}=\operatorname{coth} x & \end{array}$

Question 1:

Express, in terms of exponentials:
a) $\operatorname{sech} x$
b) $\operatorname{coth} x$
c) $\tanh \left(\frac{1}{2} x\right)$
(d) $\operatorname{cosech}(3 x)$.

Question 2:

Show that
a) $\cosh ^{2} x-\sinh ^{2} x=1$
b) $\sinh (x-y)=\sinh x \cosh y-\cosh x \sinh y$
c) $\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$
d) $\tanh 2 x=\frac{2 \tanh x}{1+\tanh ^{2} x}$

Question 3:

Given that $u=\tanh x$, use the definitions of $\sinh x$ and $\cosh x$ in terms of e^{x} and e^{-x}
to show that $x=\frac{1}{2} \ln \left(\frac{1+u}{1-u}\right)$
Question 4:
Differentiate the following expressions:
a) $\cosh 3 x$
b) $\cosh ^{2}(3 x)$
c) $x^{2} \cosh x$,
d) $\frac{\cosh 2 x}{x}$
e) $x \tanh x$
$f) \operatorname{sech} x$
g) $\operatorname{cosech} x$.

Question 5:

It is given that $x=\frac{1}{2} \cosh 2 t \quad$ and $\quad y=2 \sinh t$
Express $\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}$ in terms of $\cosh t$.
Question 6:
Given that $y=\ln \left(\tanh \frac{x}{2}\right)$, where $x>0$, show that $\frac{d y}{d x}=\operatorname{cosech} x \quad(6$ marks $)$
Question 7:
Evaluate the following integrals:
(a) $\int \cosh 3 x d x$
b) $\int \cosh ^{2} x d x$
c) $\int x \sinh 2 x d x$
d) $\int \tanh ^{2} x d x$

Question 8:

a) Given that $u=\cosh ^{2} x$, show that $\frac{d u}{d x}=\sinh 2 x$.
b) Hence show that $\int_{0}^{1} \frac{\sinh 2 x}{1+\cosh ^{4} x} d x=\tan ^{-1}\left(\cosh ^{2} 1\right)-\frac{\pi}{4}$ (5 marks)

Question 9:
Use the substitution $x=4 \sinh ^{2} \theta$ to show that $\int \sqrt{\frac{x+4}{x}} d x=2 \sinh 2 \theta+4 \theta+c$
(5marks)

Hyperbolic functions - exercises - answers

Inverse hyperbolic functions

$=$	Definition and graphs - $[1,+\infty[\rightarrow[0,+\infty[$ $x \rightarrow \cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$ - $\mathbb{R} \rightarrow \mathbb{R}$ $x \rightarrow \sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$ $\bullet]-1,1[\rightarrow \mathbb{R}$ $x \rightarrow \tanh ^{-1}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
-	CALCULUS Differentiation $\begin{array}{ll} y=\cosh ^{-1} x & \frac{d y}{d x}=\frac{1}{\sqrt{x^{2}-1}} \\ y=\sinh ^{-1} x & \frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}} \\ y=\tanh ^{-1} & \frac{d y}{d x}=\frac{1}{1-x^{2}} \end{array}$ Integration $\text { if } \begin{aligned} a>0, & \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \end{aligned}=\cosh ^{-1}\left(\frac{x}{a}\right)+k=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+k .$

Question 1:

Show that
a) $\operatorname{Sinh}^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
b) $\operatorname{Tanh}^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$

Question 2:
Differentiate the following:
a) $\tanh ^{-1} \frac{x}{3}$
b) $\sinh ^{-1} \frac{x}{4}$
c) $\cosh ^{-1} 2 x$
d) $\mathrm{e}^{x} \sinh ^{-1} x$
e) $\frac{1}{x} \cosh ^{-1} x^{2}$
f) $\cosh ^{-1} \frac{1}{x}$

Question 3:

a) Show that the equation $14 \sinh x-10 \cosh x=5$ can be expressed as $2 e^{2 x}-5 e^{x}-12=0$.
b) Hence solve the equation $14 \sinh x-10 \cosh x=5$, giving your answer as a natural logarithm.

Question 4:

Solve the equations:
a) $4 \sinh x+3 e^{x}=9$
b) $3 \sinh x+4 \cosh x=4$
c) $\cosh 2 x-3 \sinh x=5$
d) $\cosh 2 x-3 \cosh x=4$
e) $8 \sinh x=3 \operatorname{sech} x$
f) $3 \operatorname{sech}^{2} x+7 \tanh x=5$

Question 5:

Evaluate the following integrals
a) $\int \frac{d x}{\sqrt{x^{2}+9}}$
b) $\int \frac{d x}{\sqrt{x^{2}-16}}$
c) $\int \frac{d x}{\sqrt{4 x^{2}+25}}$
d) $\int \frac{d x}{\sqrt{9 x^{2}+49}}$
e) $\int \frac{d x}{\sqrt{(x+1)^{2}+4}}$
f) $\int \frac{d x}{\sqrt{(x-2)^{2}-16}}$
g) $\int \frac{d x}{\sqrt{x^{2}+4 x+5}} d x$
h) $\int \frac{d x}{\sqrt{x^{2}-2 x-2}}$

Question 1:

a) $y=\sinh ^{-1} x$ so $\sinh y=x$

$$
\begin{aligned}
& e^{y}=\sinh y+\cosh y=\sinh y+\sqrt{1+\sinh ^{2} y} \\
& e^{y}=x+\sqrt{1+x^{2}} \\
& y=\ln \left(x+\sqrt{1+x^{2}}\right)
\end{aligned}
$$

b) $y=\tanh ^{-1} x$ so $\tanh y=x$
$\tanh y=\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=\frac{e^{2 y}-1}{e^{2 y}+1}=x$ making $e^{2 y}$ the subject :
$e^{2 y}-1=e^{2 y} x+x \quad e^{2 y}=\frac{1+x}{1-x} \quad y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
Question 2:
a) $\frac{d y}{d x}=\frac{1}{3} \times \frac{1}{1-\left(\frac{x}{3}\right)^{2}}=\frac{3}{9-x^{2}}$
b) $\frac{d y}{d x}=\frac{1}{4} \times \frac{1}{\sqrt{1+\left(\frac{x}{4}\right)^{2}}}=\frac{1}{\sqrt{16+x^{2}}}$
c) $\frac{d y}{d x}=2 \times \frac{1}{\sqrt{(2 x)^{2}-1}}=\frac{2}{\sqrt{4 x^{2}-1}}$
d) $\frac{d y}{d x}=e^{x} \sinh ^{-1} x+\frac{e^{x}}{\sqrt{1+x^{2}}}$
e) $-\frac{1}{x^{2}} \cosh ^{-1} x^{2}+\frac{1}{x} \times 2 x \times \frac{1}{\sqrt{\left(x^{2}\right)^{2}-1}}=-\frac{1}{x^{2}} \cosh ^{-1} x^{2}+\frac{2}{\sqrt{x^{4}-1}}$

Question 3:

a) $14 \sinh x-10 \cosh x=14 \times \frac{e^{x}-e^{-x}}{2}-10 \times \frac{e^{x}+e^{-x}}{2}=2 e^{x}-12 e^{-x}$ so $14 \sinh x-10 \cosh x=5$ becomes $2 e^{x}-12 e^{-x}=5$

$$
\left(x e^{x}\right) 2 e^{2 x}-12-5 e^{x}=0
$$

b) $2 e^{2 x}-5 e^{x}-12=0$

$$
\left(2 e^{x}+3\right)\left(e^{x}-4\right)=0
$$

$$
e^{x}=-\frac{3}{2}(\text { impossible }) \text { or } e^{x}=4
$$

$$
x=\ln 4=2 \ln 2
$$

Question 4:

a) $4 \sinh x+3 e^{x}=9$

$$
\begin{array}{ll}
4 \times \frac{e^{x}-e^{-x}}{2}+3 e^{x}-9=0 & \text { b) } 3 \sinh x+4 \cosh x=4 \\
5 e^{x}-2 e^{-x}-9=0 \quad\left(\times e^{x}\right) & 3 \times \frac{e^{x}-e^{-x}}{2}+4 \times \frac{e^{x}+e^{-x}}{2}=4 \quad\left(\times 2 e^{x}\right) \\
5 e^{2 x}-9 e^{x}-2=0 & 7 e^{2 x}+1-8 e^{x}=0 \\
\left(5 e^{x}+1\right)\left(e^{x}-2\right)=0 & \left(7 e^{x}-1\right)\left(e^{x}-1\right)=0 \\
e^{x}=-\frac{1}{2}(\text { impossible }) \text { or } e^{x}=2 & e^{x}=\frac{1}{7} \text { or } e^{x}=1 \\
x=\ln 2 & x=-\ln (7) \text { or } x=0
\end{array}
$$

c) $\cosh 2 x-3 \sinh x=6$
$2 \sinh ^{2} x+1-3 \sinh x-6=0$
$2 \sinh ^{2} x-3 \sinh x-5=0$
$(2 \sinh x-5)(\sinh x+1)=0$
$\sinh x=\frac{5}{2}$ or $\sinh x=-1$
$x=\ln \left(\frac{5}{2}+\sqrt{\left(\frac{5}{2}\right)^{2}+1}\right)$
or $x=\ln \left(-1+\sqrt{(-1)^{2}+1}\right)$

$$
x=\ln \left(\frac{5+\sqrt{29}}{2}\right) \text { or } x=\ln (\sqrt{2}-1)
$$

d) $\cosh 2 x-3 \cosh x=4$

$$
2 \cosh ^{2} x-1-3 \cosh x-4=0
$$

$$
2 \cosh ^{2} x-3 \cosh x-5=0
$$

$$
(2 \cosh x-5)(\cosh x+1)=0
$$

$$
\cosh x=\frac{5}{2} \text { or } \cosh x=-1 \text { (impossible) } \quad \sinh x= \pm \sqrt{\frac{3}{8}}
$$

e) $8 \sinh x=3 \operatorname{sech} x$

$$
8 \sinh x=\frac{3}{\sinh x}
$$

$$
\sinh ^{2} x=\frac{3}{8}
$$

$$
x=\ln \left(\frac{\sqrt{3}+\sqrt{11}}{2 \sqrt{2}}\right) \text { or } x=\ln \left(\frac{\sqrt{11}-\sqrt{3}}{2 \sqrt{2}}\right)
$$

$$
x=\ln \left(\frac{\sqrt{22}+\sqrt{6}}{4}\right) \text { or } x=\ln \left(\frac{\sqrt{22}-\sqrt{6}}{4}\right)
$$

$$
x= \pm \cosh ^{-1}\left(\frac{5}{2}\right)= \pm \ln \left(\frac{5}{2}+\sqrt{\left(\frac{5}{2}\right)^{2}-1}\right) \quad x=\ln \left(\sqrt{\frac{3}{8}}+\sqrt{\frac{3}{8}+1}\right) \text { or } x=\ln \left(-\sqrt{\frac{3}{8}}+\sqrt{\frac{3}{8}+1}\right)
$$

$$
x= \pm \ln \left(\frac{5+\sqrt{21}}{2}\right)
$$

f) $3 \operatorname{sech}^{2} x+7 \tanh x=5$

$$
3\left(1-\tanh ^{2} x\right)+7 \tanh x-5=0
$$

$$
3 \tanh ^{2} x-7 \tanh x+2=0
$$

$$
(3 \tanh x+1)(\tanh x+2)=0
$$

$$
\tanh x=-\frac{1}{3} \text { or } \tanh x=-2(\text { impossible })
$$

$$
x=\tanh ^{-1}\left(-\frac{1}{3}\right)=\frac{1}{2} \ln \left(\frac{1-\frac{1}{3}}{1+\frac{1}{3}}\right)=\frac{1}{2} \ln \left(\frac{1}{2}\right)
$$

Question 5:

a) $\int \frac{d x}{\sqrt{x^{2}+9}}=\sinh ^{-1}\left(\frac{x}{3}\right)+c$
b) $\int \frac{d x}{\sqrt{x^{2}-16}}=\cosh ^{-1}\left(\frac{x}{4}\right)+c$
c) $\int \frac{d x}{\sqrt{4 x^{2}+25}}=\int \frac{1}{2} \times \frac{d x}{\sqrt{x^{2}+\left(\frac{25}{4}\right)}}=\frac{1}{2} \sinh ^{-1}\left(\frac{2 x}{5}\right)+c$
d) $\int \frac{d x}{\sqrt{9 x^{2}+49}}=\int \frac{1}{3} \times \frac{d x}{\sqrt{x^{2}+\left(\frac{49}{9}\right)}}=\frac{1}{3} \cosh ^{-1}\left(\frac{3 x}{7}\right)+c$
e) $\int \frac{d x}{\sqrt{(x+1)^{2}+4}}=\sinh ^{-1}\left(\frac{x+1}{2}\right)+c$
f) $\int \frac{d x}{\sqrt{(x-2)^{2}-16}}=\cosh ^{-1}\left(\frac{x-2}{4}\right)+c$
g) $\int \frac{d x}{\sqrt{x^{2}+4 x+5}}=\int \frac{d x}{\sqrt{(x+2)^{2}+1}}=\sinh ^{-1}(x+2)+c$
h) $\int \frac{d x}{\sqrt{x^{2}-2 x-2}}-\int \frac{d x}{\sqrt{(x-1)^{2}-3}}=\sinh ^{-1}\left(\frac{x-1}{\sqrt{3}}\right)+c$

Arc length and area of surface of revolution

Question 1:

Find the length of the arc of the curve with equation $y=\frac{1}{3} x^{\frac{3}{2}}$, from the origin to the point
with x-coordinate 12. (Hint:substitute $\left(1+\frac{1}{4} x\right) b y " u$ "to integrate)

Question 2:

The curve C has equation $y=\ln (\cos x)$. Find the length of the arc of C between the points with x -coordinate 0 and $\frac{\pi}{3}$.
Question 3:
The parabola P has the following parametric definition: $\quad x=4 t^{2}$ and $y=4 t$.
Work out the length of the arc between the point $\mathrm{A}(t=0)$ and $\mathrm{B}(t=3)$.
(Integration hint: Let $\frac{1}{2} \sinh u=t$)

Question 4:

(a) Use the definitions

$$
\sinh \theta=\frac{1}{2}\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right) \quad \text { and } \quad \cosh \theta=\frac{1}{2}\left(\mathrm{e}^{\theta}+\mathrm{e}^{-\theta}\right)
$$

to show that:
(i) $2 \sinh \theta \cosh \theta=\sinh 2 \theta$; (2 marks)
(ii) $\cosh ^{2} \theta+\sinh ^{2} \theta=\cosh 2 \theta$. (3 marks)
(b) A curve is given parametrically by

$$
x=\cosh ^{3} \theta, \quad y=\sinh ^{3} \theta
$$

(i) Show that

$$
\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}=\frac{9}{4} \sinh ^{2} 2 \theta \cosh 2 \theta \quad \quad(6 \text { marks) }
$$

(ii) Show that the length of the arc of the curve from the point where $\theta=0$ to the point where $\theta=1$ is

$$
\frac{1}{2}\left[(\cosh 2)^{\frac{3}{2}}-1\right]
$$

(6 marks)

Question 5:

(a) Given that $y=\ln \tanh \frac{x}{2}$, where $x>0$, show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosech} x
$$

(6 marks)
(b) A curve has equation $y=\ln \tanh \frac{x}{2}$, where $x>0$. The length of the arc of the curve between the points where $x=1$ and $x=2$ is denoted by s.
(i) Show that

$$
s=\int_{1}^{2} \operatorname{coth} x \mathrm{~d} x
$$

(ii) Hence show that $s=\ln (2 \cosh 1)$.
(4 marks)

Question 6:

The arc of the curve $y=x^{3}$, between the origin and the point $(1,1)$, is rotated through
4 right-angles about the x -axis. Find the area of the surface generated.

Question 7:

The arc, in the first quadrant, of the curve with parametric equations

$$
x=\operatorname{sech} t \text { and } y=\tanh t
$$

between the points where $t=0$ and $t=\ln 2$, is rotated completely about the x -axis.
Show that the area of the surface generated is $\frac{2 \pi}{5}$.

Question 8:

A curve has parametric equations

$$
x=t-\frac{1}{3} t^{3}, \quad y=t^{2}
$$

(a) Show that

$$
\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=\left(1+t^{2}\right)^{2} \quad \quad \quad(3 \text { marks })
$$

(b) The arc of the curve between $t=1$ and $t=2$ is rotated through 2π radians about the x-axis.

Show that S, the surface area generated, is given by $S=k \pi$, where k is a rational number to be found.

Question 9:

(a) Use the definition $\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ to show that $\cosh 2 x=2 \cosh ^{2} x-1$.
(b) (i) The arc of the curve $y=\cosh x$ between $x=0$ and $x=\ln a$ is rotated through 2π radians about the x-axis. Show that S, the surface area generated, is given by

$$
S=2 \pi \int_{0}^{\ln a} \cosh ^{2} x \mathrm{~d} x
$$

(ii) Hence show that

$$
S=\pi\left(\ln a+\frac{a^{4}-1}{4 a^{2}}\right)
$$

Question 10:
A curve has parametric equations
$x=a\left(1-\cos ^{3} \theta\right)$ and $y=a \sin ^{3} \theta$, for $0 \leq \theta \leq \frac{\pi}{2}$, where a is a positive constant.
Show that, when this curve is rotated through 2π radians about the x -axis, the curved surface area generated is $\frac{6}{5} \pi a^{2}$.

Arc length and area of surface of revolution - exercises -
answers

Question 6:
$S=2 \pi \int_{0}^{1} x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x=\frac{2 \pi}{36} \int_{0}^{1} 36 x^{3} \sqrt{1+9 x^{4}} d x$
Question 7:
$x=\operatorname{sech} t \quad$ and
$\frac{d x}{d t}=-\frac{\sinh t}{\cosh ^{2} t} \quad$ and $\quad y=\frac{1}{\cosh ^{2} t}$
$\frac{\pi}{27}(10 \sqrt{10}-1)$
$S=2 \pi \int_{0}^{\ln 2} \tanh t \times \sqrt{\left(-\frac{\sinh t}{\cosh t}\right)^{2}+\left(\frac{1}{\cosh ^{2} t}\right)^{2} d t}$
$S=2 \pi \int^{\ln 2} \frac{\sinh t}{\cosh } \times \frac{\cosh t}{\cosh } d t=2 \pi \int_{0}^{\ln 2} \sinh t \times \cosh ^{-2} t d t$
$S=2 \pi\left[-\frac{1}{\cosh t}\right]_{0}^{\ln 2}=2 \pi\left(1-\frac{1}{\cosh (\ln 2)}\right)$
$\cosh (\ln 2)=\frac{e^{\ln 2}+e^{-\ln 2}}{2}=\frac{e^{\ln 2}+e^{\ln \frac{1}{2}}}{2}=\frac{2+\frac{1}{2}}{2}=\frac{5}{4}$
$\begin{aligned} & \cosh (\ln 2)=\frac{e}{2}= \\ & \text { so } S=2 \pi\left(1-\frac{4}{5}\right)=\frac{2 \pi}{5}\end{aligned}$
$x=t-\frac{1}{3} t^{3} \quad$ and $y=t^{2}$
a) $\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(1-t^{2}\right)^{2}+(2 t)^{2}=1+t^{4}-2 t^{2}+4 t^{2}=1+t^{4}+2 t^{2}=\left(1+t^{2}\right)^{2}$
b) $S=2 \pi \int_{1}^{2} t^{2} \sqrt{\left(1+t^{2}\right)^{2}} d t=2 \pi \int_{1}^{2} t^{2}\left(1+t^{2}\right) d t$
$S=2 \pi \int_{1}^{2} t^{2}+t^{4} d t=2 \pi\left[\frac{1}{3} t^{3}+\frac{1}{5} t^{5}\right]_{1}^{2}=2 \pi\left(\frac{8}{3}+\frac{32}{5}-\frac{1}{3}-\frac{1}{5}\right)$
$S=\frac{256}{15} \pi$

4	(a)	Prove by induction that	
		$2+(3 \times 2)+\left(4 \times 2^{2}\right)+\ldots+(n+1) 2^{n-1}$	
		for all integers $n \geqslant 1$.	(6 marks)
		Show that	
		$\sum_{r=n+1}^{2 n}(r+1) 2^{r-1}=n 2^{n}\left(2^{n+1}-1\right)$	(3 marks)
5	The complex number z satisfies the relation		
		$\|z+4-4 i\|=4$	
		Sketch, on an Argand diagram, the locus of z.	(3 marks)
		Show that the greatest value of $\|z\|$ is $4(\sqrt{2}+1)$.	(3 marks)
		Find the value of z for which	
		$\arg (z+4-4 i)=\frac{1}{6} \pi$	
		Give your answer in the form $a+\mathrm{i} b$.	(3 marks)

MFP2

MFP2

MFP2

$\begin{gathered} \text { MFP2 (cont) } \\ \hline \mathrm{Q} \\ \hline \end{gathered}$				
	Solution	Marks	Total	Comments
4(a)	Assume result true for $n=k$			
	$\sum_{r=1}^{k}(r+1) 2^{r-1}=k 2^{k}$			
	$\sum_{x=1}^{k+1}(r+1) 2^{r-1}=k 2^{k}+(k+2) 2^{k}$	M1A1		
	$=2^{k}(k+k+2)$	m1		
	$=2^{k}(2 k+2)$			
	$=2^{k+1}(k+1)$	A1		
	$n=1 \quad 2 \times 2^{0}=2=1 \times 2^{1}$	B1		
	$P_{k} \Rightarrow P_{k+1}$ and P_{1} is true	E1	6	Provided previous 5 marks earned
(b)	$\sum_{r=1}^{2 n}(r+1) 2^{r-1}-\sum_{r=1}^{n}(r+1) 2^{r-1}$	M1		Sensible attempt at the difference between 2 series
	$=2 n 2^{2 n}-n 2^{n}$	A1		
	$=n\left(2^{n+1}-1\right) 2^{n}$	A1	3	${ }^{\text {AG }}$
	Total		9	

MFP2

MFP2

P2 (cont)					
Q	Solution	Marks	Total	Comments	
6(a)(i)	$\begin{aligned} & z+\frac{1}{z}=\cos \theta+\mathrm{i} \sin \theta+ \\ & \cos (-\theta)+\mathrm{i} \sin (-\theta) \end{aligned}$	M1		$\text { Orz }+\frac{1}{z}=\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}$	
	$=2 \cos \theta$	A1	2	AG	
(ii)	$\begin{aligned} z^{2}+\frac{1}{z^{2}}=\cos 2 \theta & +i \sin 2 \theta \\ & +\cos (-2 \theta)+i \sin (-2 \theta) \end{aligned}$	M1			
	$=2 \cos 2 \theta$	A1	2	OE	
(iii)	$z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}$				
	$=2 \cos 2 \theta-2 \cos \theta+2$	M1			
	Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$	m1			
	$=4 \cos ^{2} \theta-2 \cos \theta$	A1	3	AG	
(b)	$z+\frac{1}{z}=0 \quad z= \pm i$	M1A1			
	$z+\frac{1}{z}=1 \quad z^{2}-z+1=0$	M1A1		Alternative: $\cos \theta=0 \quad \theta= \pm \frac{1}{2} \pi$	M1
				$z= \pm \mathbf{i}$	A1
	$z=\frac{1 \pm \mathrm{i} \sqrt{3}}{2}$	A1F	5	$\cos \theta=\frac{1}{2} \quad \theta= \pm \frac{1}{3} \pi$	M1
	Accept solution to (b) if done otherwise			$z=\mathrm{e}^{+\frac{1}{3} \pi \mathrm{i}}=\frac{1}{2}(1 \pm \mathrm{i} \sqrt{3})$	A1 A1
	Alternative	M1			
	$\text { If } \theta=+\frac{1}{2} \pi \quad \theta=\frac{1}{3} \pi$				
	$z-i z=\frac{1+\sqrt{3}}{} \mathbf{i}$	A1			
	$z=1 \quad \mathrm{z}=\frac{1}{2}$				
	Or any correct z values of θ	M1			
	Any 2 correct answers One correct answer only	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$			
	Total		12		

AQA - Further pure 2 - Jan 2006 - Answers

Question 1	Exam report
a) $\frac{1}{r^{2}}-\frac{1}{(r+1)^{2}}=\frac{(r+1)^{2}}{r^{2}(r+1)^{2}}-\frac{r^{2}}{r^{2}(r+1)^{2}}=\frac{r^{2}+2 r+1-r^{2}}{r^{2}(r+1)^{2}}=\frac{2 r+1}{r^{2}(r+1)^{2}}$	
b) $\frac{3}{1^{2} \times 2^{2}}+\frac{5}{2^{2} \times 3^{2}}+\frac{7}{3^{2} \times 4^{2}}+\ldots+\frac{2 n+1}{n^{2}(n+1)^{2}}=\sum_{r=1}^{n} \frac{2 r+1}{r^{2}(r+1)^{2}}$ and	
$\sum_{r=1}^{n} \frac{2 r+1}{r^{2}(r+1)^{2}}=\sum_{r=1}^{n} \frac{1}{r^{2}}-\frac{1}{(r+1)^{2}}$	There were many fully correct answers to this question. A few candidates did not spot the connection between the parts (a) and (b). Otherwise, the only errors in part (b) were errors of sign leading to the
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\ldots .+\frac{1}{(n-1)^{2}}-\frac{1}{n^{2}}+\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}$	
All the terms cancel out except the first and the last one $:$	anser $1-\frac{1}{(n+1)^{2}}$ or the summation of $\mathrm{n}+1$ terms rather than n terms of the given series.
$\sum_{r=1}^{n} \frac{2 r+1}{r^{2}(r+1)^{2}}=1-\frac{1}{(n+1)^{2}}$	

Question 2:	Exam report

a) $x^{3}+p x^{2}+q x+r=0$ has three roots α, β and γ.
$\alpha+\beta+\gamma=4 \quad$ so $p=-4$
$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$

$$
\begin{aligned}
20 & =(4)^{2}-2 q \\
q & =-2
\end{aligned}
$$

b) p, q and r are REAL numbers so
if $3+i$ is a root, then its conjugate is also a root
$\alpha=3+i, \beta=3-i$
$\alpha+\beta+\gamma=4$ gives $6+\gamma=4$ and $\gamma=-2$
$r=-\alpha \beta \gamma=-(3+i)(3-i)(-2)=\left(9-i^{2}\right) \times 2=20$
$r=20$

Exam report

Candidates were also able to achieve good results on this question. In part (a), where errors occurred they were almost always errors of signs. For instance the value of p was given as 2 instead of .2 or the formula for $\left(\sum \alpha\right)^{2}$ was incorrectly quoted as $\sum \alpha^{2}-2 \sum \alpha \beta$. There were fewer completely correct solutions to part (b) often due to inelegant methods of solution. The most successful candidates obtained the values of the other two roots and then worked out the product $\alpha \beta \gamma$. The main loss of marks using this method was to equate r to $\alpha \beta \gamma$ instead of $-\alpha \beta \gamma$. The other main method of approach to this part of the question was to substitute $3+i$ into the cubic equation with the values of p and q already found in part (a). However any error in the values of p and q or in the substitution inevitably led to r having a complex value. Surprisingly this did not seem to worry the candidates in spite of the fact that the question stated that r was real.
Question 3:

$z_{1}=\frac{1+i}{1-i} \quad$ and $\quad z_{2}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$
a) $z_{1}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}=\frac{1+2 i+i^{2}}{1-i^{2}}=\frac{2 i}{2}=i$
b) $\left\|z_{1}\right\|=\|i\|=\|0+1 i\|=\sqrt{0^{2}+1^{2}}=1$
$\left\|z_{2}\right\|=\left\|\frac{1}{2}+\frac{\sqrt{3}}{2} i\right\|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{3}{4}}=\sqrt{1}=1$
$\left\|z_{1}\right\|=\left\|z_{2}\right\|$
c) $z_{1}=i=e^{i \frac{\pi}{2}}$
$z_{2}=\frac{1}{2}+\frac{\sqrt{3}}{2} i=\operatorname{Cos}\left(\frac{\pi}{3}\right)+i \operatorname{Sin}\left(\frac{\pi}{3}\right)=e^{i \frac{\pi}{3}}$

Exam report

Part (a) was well done, as was part (b). In part (c) it was surprising to note how many candidates could not
express the complex number in the form $r e^{i \theta}$, although z_{2} was almost invariably correctly written as $e^{i \frac{\pi}{3}}$
Errors in part (c) however did not deter candidates from drawing a correct Argand diagram as they usually used the form $\boldsymbol{a}+\mathrm{i} \boldsymbol{b}$ when plotting their points. Although the vast majority of scripts ended with $\operatorname{Tan} \frac{5 \pi}{12}=2+\sqrt{3}$, very, very few candidates gave convincing proof that $\arg \left(z_{1}+z_{2}\right)$ was $\frac{5 \pi}{12}$, but rather seemed to take it for granted.
d)
e) The argument of z_{3} is $\arg \left(z_{2}\right)+\frac{\arg \left(z_{1}\right)-\arg \left(z_{2}\right)}{2}$
$\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6} \quad$ and $\quad \frac{1}{2}$ of $\frac{\pi}{6}=\frac{\pi}{12}$
$\arg \left(z_{3}\right)=\frac{\pi}{3}+\frac{\pi}{12}=\frac{5 \pi}{12}$.
and $z_{3}=z_{1}+z_{2}=i+\frac{1}{2}+\frac{\sqrt{3}}{2} i=\frac{1}{2}+i\left(1+\frac{\sqrt{3}}{2}\right)$
So $\operatorname{Tan} \frac{5 \pi}{12}=\frac{1+\frac{\sqrt{3}}{2}}{\frac{1}{2}}=2+\sqrt{3}$

a) Notation: $2+(3 \times 2)+\left(4+2^{2}\right)+\ldots+(n+1) 2^{n-1}=\sum_{r=1}^{n}(r+1) 2^{r-1}$.

Proposition $\mathrm{P}_{n}: \sum_{r=1}^{n}(r+1) 2^{r-1}=n 2^{n}$ is to be proven by induction.

- Base case: $n=1$

LHS:2 and RHS: $(1+1) \times 2^{1-1}=2$ The proposition is true for $n=1$.
\bullet Propostion $\mathrm{P}_{k}:$ Let's suppose that for $n=k$, the proposition is true,

$$
\text { meaning we suppose that } \sum_{r=1}^{k}(r+1) 2^{r-1}=k 2^{k} \text {. }
$$

Let's show that the proposition is then true for $n=k+1$,

$$
\text { meaning let's show that } \sum_{r=1}^{k+1}(r+1) 2^{r-1}=(k+1) 2^{k+1} \text {. }
$$

$$
\text { -济 } \begin{aligned}
& k+1 \\
&(r+1) 2^{r-1}=\sum_{r=1}^{k}(r+1) 2^{r-1}+(k+2) 2^{k} \\
&=k 2^{k}+(k+2) 2^{k}=k 2^{k}+k 2^{k}+2^{k+1}=2 k 2^{k}+2^{k+1} \\
&=k 2^{k+1}+2^{k+1}=(k+1) 2^{k+1} .
\end{aligned}
$$

-Conclusion:
If the propostion is true for $n=k$ then it is true for $n=k+1$, because it is true for $\mathrm{n}=1$,
we can conclude, according to the induction principal,
that it is true for all $\mathrm{n} \geq 1$: for all $n \geq 1, \sum_{r=1}^{n}(r+1) 2^{r-1}=n 2^{n}$

Exam report

Responses to this question were only fair. Although candidates had some idea of what was required for the inductive process, in part (a) they appeared to be easily confused. Common statements were for instance
$(k+2) 2^{k}=k 2^{k}$ or $(k+1) 2^{k-1}+(k+2) 2^{k}$ or to even write down correctly $k 2^{k}+(k+2) 2^{k}$ but without any reference whatsoever as to what the expression represented.

Question 4:	Exam report

b) $\sum_{r=n+1}^{2 n}(r+1) 2^{r-1}=\sum_{r=1}^{2 n}(r+1) 2^{r-1}-\sum_{r=1}^{n}(r+1) 2^{r-1}$

$$
=2 n \times 2^{2 n}-n 2^{n}=n 2^{n}\left(2 \times 2^{n}-1\right)
$$

$\sum_{r=n+1}^{2 n}(r+1) 2^{r-1}=n 2^{n}\left(2^{n+1}-1\right)$
In part (b), unless candidates realised that the given series was the difference of two other series no progress was made and only a few realised the connection with part (a). A common approach was to try and prove this result by induction also.

Question 5:

Exam report

b) The furthest point away from O on the circle is K .

$$
\begin{aligned}
& |z|_{\max }=O K=O A+r=\left|z_{A}\right|+4=\sqrt{(-4)^{2}+4^{2}}+4 \\
& |z|_{\max }=\sqrt{32}+4=4 \sqrt{2}+4=4(\sqrt{2}+1)
\end{aligned}
$$

c) $\arg (z+4-4 i)=\frac{\pi}{6}$ means angle $(A M, o x)=\frac{\pi}{6}$.

We show the position with the point L .
Using trigonometry in ALH, we have

$$
x_{L}=a=-4+A H=-4+4 \operatorname{Cos} \frac{\pi}{6}=-4+2 \sqrt{3}
$$

and $y_{L}=b=4+L H=4+4 \operatorname{Sin} \frac{\pi}{6}=6$

$$
z_{L}=(-4+2 \sqrt{3})+6 i
$$

$z=e^{i \theta}$
a) i) $z+\frac{1}{z}=e^{i \theta}+\frac{1}{e^{i \theta}}=e^{i \theta}+e^{-i \theta}$

$$
=\operatorname{Cos} \theta+i \operatorname{Sin} \theta+\operatorname{Cos} \theta-i \operatorname{Sin} \theta
$$

$$
z+\frac{1}{z}=2 \operatorname{Cos} \theta
$$

ii) $z^{2}+\frac{1}{z^{2}}=e^{i 2 \theta}+\frac{1}{e^{i 2 \theta}}=e^{i 2 \theta}+e^{-i 2 \theta}$

$$
=\operatorname{Cos} 2 \theta+i \operatorname{Sin} 2 \theta+\operatorname{Cos} 2 \theta-i \operatorname{Sin} 2 \theta
$$

$z^{2}+\frac{1}{z^{2}}=2 \operatorname{Cos} 2 \theta$
iii) $z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}=2 \operatorname{Cos} 2 \theta-2 \operatorname{Cos} \theta+2$
we know that $\operatorname{Cos} 2 \theta=2 \operatorname{Cos}^{2} \theta-1$ so

$$
\begin{aligned}
& z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}=2\left(2 \operatorname{Cos}^{2} \theta-1\right)-2 \operatorname{Cos} \theta+2 \\
& z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}=4 \operatorname{Cos}^{2} \theta-2 \operatorname{Cos} \theta
\end{aligned}
$$

b) $z^{4}-z^{3}+2 z^{2}-z+1=0 \quad$ factorise by z^{2}

$$
(z=0 \text { is not a solution })
$$

$z^{2}\left(z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}\right)=0$ This gives
$z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}=0$
$4 \operatorname{Cos}^{2} \theta-2 \operatorname{Cos} \theta=0$
$2 \operatorname{Cos} \theta(2 \operatorname{Cos} \theta-1)=0$
$\operatorname{Cos} \theta=0$ or $\operatorname{Cos} \theta=\frac{1}{2}$
$\theta=\frac{\pi}{2}$ or $\theta=-\frac{\pi}{2}$ or $\theta=\frac{\pi}{3}$ or $\theta=-\frac{\pi}{3}$
$z=e^{ \pm i \frac{\pi}{2}}= \pm i$ or $z=e^{ \pm i \frac{\pi}{3}}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

Parts (a) was quite well done and many candidates scored the available seven marks. There were however some serious algebraic errors, the commonest of which was to equate $z^{2}+\frac{1}{z^{2}}$ to $\left(z+\frac{1}{z}\right)^{2}$ in part (a)(ii) with some consequent faking to arrive at the printed result in part (a)(iii). Part (b) however was very poorly attempted. Candidates did not seem to realise that z could be equal to zero and consequently multiplied $(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{2}$ by $4 \operatorname{Cos}^{2} \theta-2 \operatorname{Cos} \theta$. Of those candidates who realised that $4 \operatorname{Cos}^{2}-2 \operatorname{Cos} \theta$ was equal to zero, the factorisation of this quadratic in $\operatorname{Cos} \theta$ evaded most and, even when attempts were made to solve $4 \operatorname{Cos}^{2} \theta-2 \operatorname{Cos} \theta=0$, the factor $\operatorname{Cos} \theta$ disappeared and the other solution $\operatorname{Cos} \theta=\frac{1}{2}$ usually produced just one root from $\theta=\frac{\pi}{3}$. Candidates who were able to obtain both $\operatorname{Cos} \theta=0$ and $\operatorname{Cos} \theta=\frac{1}{2}$ usually produced only two solutions and subsequently two roots. It did not seem to occur to candidates that a quartic equation would have four roots.

Question 7:
a) $i) \operatorname{Sinh} \theta=\frac{1}{2}\left(e^{\theta}-e^{-\theta}\right)$ and $\operatorname{Cosh} \theta=\frac{1}{2}\left(e^{\theta}+e^{-\theta}\right)$

$$
\begin{aligned}
2 \operatorname{Sinh} \theta \operatorname{Cosh} \theta & =2 \times \frac{1}{2}\left(e^{\theta}-e^{-\theta}\right) \times \frac{1}{2}\left(e^{\theta}+e^{-\theta}\right) \\
& =\frac{1}{2}\left(e^{2 \theta}+e^{0}-e^{0}-e^{-2 \theta}\right) \\
& =\frac{1}{2}\left(e^{2 \theta}-e^{-2 \theta}\right)=\operatorname{Sinh}(2 \theta)
\end{aligned}
$$

ii) $\operatorname{Cosh}^{2} \theta+\operatorname{Sinh}^{2} \theta=\left(\frac{1}{2}\left(e^{\theta}-e^{-\theta}\right)\right)^{2}+\left(\frac{1}{2}\left(e^{\theta}+e^{-\theta}\right)\right)^{2}$

$$
\begin{align*}
& =\frac{1}{4}\left(e^{2 \theta}-2 e^{0}+e^{-2 \theta}\right)+\frac{1}{4}\left(e^{2 \theta}+2 e^{0}+e^{-2 \theta}\right) \\
& =\frac{1}{4}\left(2 e^{2 \theta}+2 e^{2 \theta}\right)=\frac{1}{2}\left(e^{2 \theta}+e^{-2 \theta}\right)=\operatorname{Cosh}(2
\end{align*}
$$

b) $x=\operatorname{Cosh}^{3} \theta \quad, \quad y=\operatorname{Sinh}^{3} \theta$

$$
\text { i) } \begin{aligned}
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2} & =\left(3 \operatorname{Sinh} \theta \operatorname{Cosh}^{2} \theta\right)^{2}+\left(3 \operatorname{Cosh} \theta \operatorname{Sinh}^{2} \theta\right)^{2} \\
& =9 \operatorname{Sinh}^{2} \theta \operatorname{Cosh}^{4} \theta+9 \operatorname{Cosh}^{2} \theta \operatorname{Sinh}^{4} \theta \\
& =9 \operatorname{Sinh}^{2} \theta \operatorname{Cosh}^{2} \theta\left(\operatorname{Cosh}^{2} \theta+\operatorname{Sinh}^{2} \theta\right) \\
& =9\left(\frac{1}{2} \operatorname{Sinh} 2 \theta\right)^{2}(\operatorname{Cosh} 2 \theta)
\end{aligned}
$$

$$
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=\frac{9}{4} \operatorname{Sinh}^{2} 2 \theta \operatorname{Cosh} 2 \theta
$$

ii) $S=\int_{0}^{1} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\int_{0}^{1} \sqrt{\frac{9}{4} \operatorname{Sinh}^{2} 2 \theta \operatorname{Cosh} 2 \theta} d \theta$
$S=\int_{0}^{1} \frac{3}{2} \operatorname{Sinh} 2 \theta \sqrt{\operatorname{Cosh} 2 \theta} d \theta=\frac{3}{2} \int_{0}^{1} \operatorname{Sinh} 2 \theta \sqrt{\operatorname{Cosh} 2 \theta} d \theta$ $S=\frac{3}{2} \int_{0}^{1} \operatorname{Sinh} 2 \theta \times \operatorname{Cosh}^{\frac{1}{2}} 2 \theta d \theta$.

This is an integral of the form $\int f^{\prime} \times f^{n}=\frac{1}{n+1} f^{n+1}$
$S=\frac{3}{2}\left[\frac{1}{2} \times \frac{2}{3} \times \operatorname{Cosh}^{\frac{3}{2}} 2 \theta\right]_{0}^{1}=\frac{1}{2}\left(\operatorname{Cosh}^{\frac{3}{2}} 2-\operatorname{Cosh}^{\frac{3}{2}} 0\right)$
$S=\frac{1}{2}\left((\operatorname{Cosh} 2)^{\frac{3}{2}}-1\right)$

Candidates were generally well drilled in proving the identities of parts (a)(i) and (a)(ii) although in (a)(ii) sometimes $\left(e^{\theta}-e^{-\theta}\right)^{2}$ was written as $e^{2 \theta}+e^{-2 \theta}$ with the same result from $\left(e^{\theta}+e^{-\theta}\right)^{2}$ thus obtaining the correct answer from incorrect algebra. Part (b)(i) was usually quite well done so long as candidates did not write
$\operatorname{Cosh}^{3} \theta$ as $\frac{1}{8}\left(e^{\theta}+e^{-\theta}\right)^{3}$. Those who worked in powers of e^{θ} and $e^{-\theta}$ found it impossible to reconcile their formula with the printed result and so make little meaningful progress. Part (b)(ii) proved to be beyond all but the most able candidates. The required integral,
$\int \frac{3}{2} \operatorname{Sinh} 2 \theta \sqrt{\operatorname{Cosh} 2 \theta} d \theta$, was tackled
successfully by these candidates by a variety of methods. Some spotted the integral, others used the substitution $u=\operatorname{Cosh} 2 \theta$ whilst others again integrated by parts.

Grade Boundaries

Comp.
 Code

MFP2

Component Title

 GCE MATHEMATICS UNIT FP2Maximum

75

A
58

Scaled Mark Grade Boundaries

B	C	D
51	44	38

E 32

[^1]5 The cubic equation
(1 mark)
(1 mark)
(1 mark)
(2 marks)
(3 marks)
(2 marks)
(3 marks)
(syımu t)
(b) Prove by induction that $15^{n}-8^{n-2}$ is a multiple of 7 for all integers $n \geqslant 2$. (4 marks)
MFP2

No Method Shown

M
m or dM
A
B
E
Vorft or F
CAO
CSO
AWFW
AWRT
ACF
AG
SC
OE
A2,
-- EE
NMS
PI
SCA

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner
will alert you to these and details will be provided on the mark scheme.
Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the
obvious penalty to candidates showing no working is that incorrect answers, however close, earn no
Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly,
the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.
Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

MFP2 (cont)				
Q	Solution	Marks	Total	Comments
3(a)(i)	$\frac{\mathrm{e}^{k}+\mathrm{e}^{-k}}{2}-\frac{3\left(\mathrm{e}^{k}-\mathrm{e}^{-k}\right)}{2}=-1$	M1		Allow if 2's are missing or if cosh x and sinh x interchanged
	$-2 \mathrm{e}^{k}+4 \mathrm{e}^{-k}=-2$	A1		
	$\mathrm{e}^{2 k}-\mathrm{e}^{k}-2=0$	A1	3	AG Condone x instead of k
(ii)	$\left(\mathrm{e}^{k}+1\right)\left(\mathrm{e}^{k}-2\right)=0$	M1		
	$\mathrm{e}^{k} \neq-1$	E1		Must state something to earn E1. Do not
	$\mathrm{e}^{k}=2$	A1		aceept ignoring or crossing out.
	$k=\ln 2$	AlF	4	
(b)(i)	$\cosh x=3 \sinh x$ or in terms of e^{x}	M1		
	$\tanh x=\frac{1}{3}$ or $2 \mathrm{e}^{x}=4 \mathrm{e}^{x}$	A1		
	$x=\frac{1}{2} \ln \left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right) \text { or } \mathrm{e}^{2 x}=2$	A1F		
	$x=\frac{1}{2} \ln 2$	A1	4	CAO
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sinh x-3 \cosh x \text { or }-\mathrm{e}^{x}-2 \mathrm{e}^{-x}$	M1		
	$=0$ when tanh $x=3$ or $\mathrm{e}^{2 x}=-2$	A1		
	Correct reason	E1	3	Must give a reason
(iii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=y=0 \operatorname{at}\left(\frac{1}{2} \ln 2,0\right)$ ie one point	B1F	1	
	Total		15	

ZdHW

MFP2

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$$
\begin{gathered}
\text { MFP2 (cont) } \\
\hline \mathbf{Q}
\end{gathered}
$$} \& \& \& \& \multirow[t]{2}{*}{Comments}

\hline \& Solution \& Marks \& Total \&

\hline \multirow[t]{13}{*}{$6(a)$
(b)} \& $\mathrm{f}(n+1)-8 \mathrm{f}(n)=15^{n+1}-8^{n-1}$ \& \& \multirow[t]{13}{*}{4

4
8} \&

\hline \& $$
-8\left(15^{n}-8^{n-2}\right)
$$ \& M1A1 \& \&

\hline \& $=15^{n+1}-8.15^{n}$ \& \& \&

\hline \& $=15^{n}(15-8)$ \& M1 \& \& For multiples of powers of 15 only

\hline \& $=7.15^{n}$ \& A1 \& \& For valid method ie not using 120^{n} etc

\hline \& Assume $\mathrm{f}(n)$ is $\mathrm{M}(7)$ \& \& \&

\hline \& Then $\mathrm{f}(n+1)-8 \mathrm{f}(n)=7 \times 15^{n}$ \& M1 \& \& Or considering $\mathbf{f}(n+1)-\mathbf{f}(n)$

\hline \& $\mathrm{f}(n+1)=\mathrm{M}(7)+\mathrm{M}(7)$ \& \& \&

\hline \& $=\mathrm{M}(7)$ \& A1 \& \&

\hline \& $n=2: \mathrm{f}(n)=15^{2}-8^{0}=224$ \& \& \&

\hline \& $=7 \times 32$ \& B1 \& \& $n=1 \mathrm{~B} 0$

\hline \& $\mathrm{P}(n) \Rightarrow \mathrm{P}(n+1)$ and $\mathrm{P}(2)$ true \& E1 \& \& Must score previous 3 marks to be awarded E1

\hline \& Total \& \& \&

\hline
\end{tabular}

Question 1:

1) a) $\frac{r^{2}+r-1}{r(r+1)}=A+B\left(\frac{1}{r}-\frac{1}{r+1}\right)=A+B\left(\frac{r+1-r}{r(r+1)}\right)$

$$
=\frac{A r(r+1)+B}{r(r+1)}=\frac{A r^{2}+A r+B}{r(r+1)}
$$

It is now clear that $A=1$ and $B=-1$
b) $\sum_{r=1}^{99} \frac{r^{2}+r-1}{r(r+1)}=\sum_{r=1}^{99} 1-\left(\frac{1}{r}-\frac{1}{r+1}\right)=\sum_{r=1}^{99} 1-\sum_{r=1}^{99} \frac{1}{r}-\frac{1}{r+1}$

$$
\begin{aligned}
\sum_{r=1}^{99} \frac{r^{2}+r-1}{r(r+1)} & =99-\left(1-\frac{\nsim}{2}+\frac{\not x}{2}-\frac{1}{3}+\ldots+\frac{\not \partial}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right) \\
& =99-1+\frac{1}{100}=98.01
\end{aligned}
$$

Exam report

Many candidates experienced difficulty in finding the values of A and B in part (a). They seemed to want to equate the left hand side of the identity to $\frac{C}{r}+\frac{D}{r+1}$, thus ignoring the fact that the powers of r in the numerator and denominator were equal. Generally the most successful candidates were those who rewrote the left hand side of the equation as $1-\frac{1}{r(r+1)}$ with the subsequent expressing of 1 in partial fractions. If candidates were $r(r+1)$
successful in finding the values of A and B, they usually went on to complete part (b) correctly. The main source of error in this part, if mistakes were made, was to overlook the fact that that the constant term, as well as the variable terms, had to be summed from 1 to 99 . The constant term was often left as 1.

Question 2:	Exam report
$\text { a) } \begin{aligned} \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2} & =\left(1-t^{2}\right)^{2}+(2 t)^{2}=1-2 t^{2}+t^{4}+4 t^{2} \\ & =1+2 t^{2}+t^{4}=\left(1+t^{2}\right)^{2} \end{aligned}$	
b) From the formula book: $S=2 \pi \int_{1}^{2} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$ $S=2 \pi \int_{1}^{2} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=2 \pi \int_{1}^{2} t^{2} \times\left(1+t^{2}\right) d t$	This was a very well-answered question with the vast majority of candidates either gaining full marks or losing one mark through faulty arithmetic. Very occasionally a candidate differentiated $\mathrm{t}^{2}+\mathrm{t}^{4}$ or integrated $\mathrm{t}^{2}+\mathrm{t}^{4}$, but wrote down $\frac{t^{3}}{3}+\frac{t^{4}}{4}$
$\begin{aligned} & S=2 \pi \int_{1}^{2} t^{2}+t^{4} d t=2 \pi\left[\frac{1}{3} t^{3}+\frac{1}{5} t^{5}\right]_{1}^{2}=2 \pi\left(\frac{8}{3}+\frac{32}{5}-\frac{1}{3}-\frac{1}{5}\right) \\ & S=\frac{256}{15} \pi \end{aligned}$	

Question 3:	Exam report

a)i) $y=\operatorname{Cosh} x-3 \operatorname{Sinh} x$ meets $y=-1$ at $(k,-1)$

This gives $-1=\operatorname{Cosh} k-3 \operatorname{Sinh} k$

$$
\begin{aligned}
& -1=\frac{1}{2}\left(e^{k}+e^{-k}\right)-\frac{3}{2}\left(e^{k}-e^{-k}\right) \\
& -1=\frac{1}{2} e^{k}+\frac{1}{2} e^{-k}-\frac{3}{2} e^{k}+\frac{3}{2} e^{-k} \\
& -1=-e^{k}+2 e^{-k} \quad\left(\times e^{k}\right) \\
& -e^{k}=-e^{2 k}+2 \\
& e^{2 k}-e^{k}-2=0
\end{aligned}
$$

ii) $\quad\left(e^{k}\right)^{2}-e^{k}-2=0$
$\left(e^{k}-2\right)\left(e^{k}+1\right)=0$
$e^{k}=2$ or $e^{k}=-1$ (Nosolution)
$k=\ln (2) \quad\left(\mathrm{e}^{x}\right.$ is positive for all $\left.x\right)$

Again, this question proved to be a good source of marks for many candidates. Some candidates in part (a)(i) mixed the exponential forms for cosh x and $\sinh x$, whilst others, having expressed $\cosh x$ and $\sinh x$ in exponential form correctly and having arrived at $-e^{k}+2 e^{-k}=-1$ were unable to take the final step which led to the printed result. There was, also, not always a very convincing reason for the rejection of $e^{k}=-1$ in this part of the question. A very common error in part (a)(ii) was to write
$2 k-k-\ln 2=0$ after the printed answer, leading to the correct answer by totally incorrect mathematics.
b) C intersect the x-axis when $y=0$,
we have to solve: $\operatorname{Cosh} x-3 \operatorname{Sinh} x=0$

$$
\begin{aligned}
& \frac{1}{2}\left(e^{x}+e^{-x}\right)-\frac{3}{2}\left(e^{x}-e^{-x}\right)=0 \\
& e^{x}+e^{-x}-3 e^{x}+3 e^{-x}=0 \\
& 4 e^{-x}-2 e^{x}=0 \quad\left(x e^{x} / 2\right) \\
& 2-e^{2 x}=0 \\
& e^{2 x}=2 \quad 2 x=\ln (2) \\
& \quad x=\frac{1}{2} \ln (2)
\end{aligned}
$$

ii) $\frac{d y}{d x}=\operatorname{Sinh} x-3 \operatorname{Cosh} x=0$

$$
\operatorname{Sinh} x=3 \operatorname{Cosh} x
$$

$$
\operatorname{Tanh} x=3
$$

No solution as : for all $x,-1<\operatorname{Tanh} x<1$
Chas no stationary point.
iii) $\frac{d^{2} y}{d x^{2}}=\operatorname{Cosh} x-3 \operatorname{Sinh} x=y$
and $y=0$ only for $x=\frac{1}{2} \ln (2)$

Question 4:	Exam report
a) i) Let z_{A} be $3-2 i$ and $A(3,-2)$ and $M(z)$ Then $\|z-3+2 i\|=4$ is equivalent to $A M=4$ This is a circle, centre A, radius $r=4$. ii) Let $z_{B}=1$ and $B(1,0)$ andf $M(z)$ Then $\arg (z-1)=-\frac{\pi}{4}$ is equivalent to angle $(B M, o x)=-\frac{\pi}{4}$ This is a half-line, $y=\operatorname{Tan}\left(-\frac{\pi}{4}\right) x=-x, x>1$	Responses to this question were usually quite good and it was pleasing to note some quite accurate neat diagrams using a ruler and compasses. Errors in parts (a)(i) and part (a)(ii) were usually errors of sign. For instance in part (a)(i) the centre of the circle was sometimes taken to be the point $(-3,2)$ or even $(3,2)$ and in part (a) (ii) the half line would be drawn from either (0,1) or $(-1,0)$. Just occasionally the radius of the circle was taken to be 2 , or the direction of the line was taken to be $+\frac{\pi}{4}$ or $+\frac{3 \pi}{4}$. In part (b), a substantial number of candidates thought that the set of points must involve an area and consequently shaded some region in their sketch.

Question 5:
$z^{3}-4 i z^{2}+q z-(4-2 i)=0$ has roots α, β, γ

a) $i) \alpha+\beta+\gamma=4 i$
ii) $\alpha \beta \gamma=4-2 i$
b) $\alpha=\beta+\gamma$
i) $\alpha+\beta+\gamma=4 i$ becomes

$$
\alpha+\alpha=4 i \quad \text { so } \quad \alpha=2 i
$$

ii) $\alpha \beta \gamma=4-2 i$

$$
\beta \gamma=\frac{4-2 i}{\alpha}=\frac{4-2 i}{2 i} \times \frac{i}{i}=\frac{4 i+2}{-2}
$$

$$
\beta \gamma=-2 i-1=-(1+2 i)
$$

iii) $q=\alpha \beta+\alpha \gamma+\beta \gamma$
$=\alpha(\beta+\gamma)+\beta \gamma$
$=\alpha^{2}+\beta \gamma=(2 i)^{2}-(1+2 i)$
$q=-4-1-2 i$
$q=-5-2 i$
c) $\beta+\gamma=2 i$ and $\beta \gamma=-(1+2 i)$
so β and γ are roots of the equations

$$
z^{2}-2 i z-(1+2 i)=0
$$

d) $\beta=1$ is an "obvious"root $\left(1^{2}-2 i-(1+2 i)=0\right)$

$$
\begin{array}{r}
z^{2}-2 i z-(1+2 i)=(z-1)\left(z^{2}+(1+2 i)\right)=0 \\
\text { roots are } \beta=1 \text { and } \gamma=1+2 i
\end{array}
$$

Exam report

Apart from the occasional sign errors, part (a) was answered well. Where sign errors did occur there was some faking to establish the printed answers in part (b).

Part (b) is an example of what was mentioned at the beginning of this report in that with all three answers being printed, sufficient working needed to be shown in order to obtain full credit.

Whilst most candidates knew roughly what was required for part (c), few candidates could express their argument succinctly. A number of candidates attempted to divide the cubic equation by $z-2 i$ with varying success.

Probably the commonest method of approach in part (d) was to substitute β for z in the quadratic equation in z and then to equate real parts. Equating real parts led to $\beta^{2}=1$ from which a substantial number of candidates assumed that $\beta=1$ instead of considering the imaginary parts of the equation as well.

Question 6:
a)$f(n+1)-8 f(n)$ $=\left(15^{n+1}-8^{n-1}\right)-8\left(15^{n}-8^{n-2}\right)$ $=15^{n+1}-8^{n-1}-8 \times 15^{n}+8^{n-1}$ $=15^{n}(15-8)$
$f(n+1)-8 f(n)=7 \times 15^{n}$
b) Propostion, $\mathrm{P}_{n}:$ For all $\mathrm{n} \geq 2,15^{n}-8^{n-2}$ is a multiple of 7.
Basecase: for $n=2, \quad 15^{2}-8^{2-2}=225-1=224=7 \times 32$

Base case: for $n=2, \quad 15^{2}-8^{2-2}=225-1=224=7 \times 32$
the proposition is true for $n=2$.
We suppose that P_{k} is true: for $n=k, f(k)=15^{k}-8^{k-2}$ is a multiple of 7 .
Let's show that P_{k+1} is the true:let's show that $f(k+1)=15^{k+1}-8^{k-1}$ is a multiple of 7 .

According to question a) $f(k+1)=7 \times 15^{k}+8 f(k)$

7×15^{k} is a multiple of 7

$8 f(k)$ is a multiple of 7 , because $f(k)$ is (hypothesis) therefore $f(k+1)$ is a multiple of 7

Conclusion : If P_{k} is true then P_{k+1} is also true, because P_{2} is true, according to the induction principle, we can conclude that for all $\mathrm{n} \geq 2, \mathrm{P}_{n}$ is true.

Exam report

Although there were some good solutions to part(a) of this question it did show in many cases a lack of understanding of the theory of indices. It was quite common to see 8×15^{n} written as a 120^{n} and $8 \times 8^{n-2}$ as 64^{n-2}. There was also a lack of clarity in part (b). It was not unusual to see the first line of the inductive proof to state "Assume result true for $n=k$ i.e. that $\mathrm{f}(k)=15^{\mathrm{k}}-8^{\mathrm{k}}-2^{\prime \prime}$ to be followed by " $\mathrm{f}(k+1)-8 \mathrm{f}(k)$ is a multiple of 7 ", showing a lack of understanding of the proof by induction in the case of multiples of integers. Some candidates tried to establish the result for $n=1$ in spite of being told that n was greater than or equal to 2 . A substantial minority of candidates ignored the hint in part (a) and in part (b) considered $\mathrm{f}(k+1)-\mathrm{f}(k)$ with a measure of success
a) Let note $z=r e^{i \phi}$ then $z^{6}=r^{6} \times e^{i 6 \phi}$
and $1=1 e^{i 0}$
The equation $\mathrm{z}^{6}=1$ is equivalent to

$$
r^{6} \times e^{i 6 \phi}=1 \times e^{i 0}
$$

This gives $r^{6}=1 \quad r=1$

$$
\begin{aligned}
6 \phi & =0+k 2 \pi \quad-3<k \leq 3 \\
\phi & =k \frac{\pi}{3} \quad-2 \leq k \leq 3
\end{aligned}
$$

So $z=e^{-i \frac{2 \pi}{3}}$ or $e^{-i \frac{\pi}{3}}$ or $e^{i 0}$ or $e^{i \frac{\pi}{3}}$ or $e^{i \frac{2 \pi}{3}}$ or $e^{i \pi}$
b) $i) \frac{w^{2}-1}{w}=\frac{e^{i 2 \theta}-1}{e^{i \theta}}=\frac{e^{i \theta}\left(e^{i \theta}-e^{-i \theta}\right)}{e^{i \theta}}=e^{i \theta}-e^{-i \theta}=2 i \operatorname{Sin} \theta$
ii) $\frac{w}{w^{2}-1}=\frac{1}{2 i \operatorname{Sin} \theta}=\frac{1}{2 i \operatorname{Sin} \theta} \times \frac{i}{i}=-\frac{i}{2 \operatorname{Sin} \theta}$
iii) $\frac{2 i}{w^{2}-1}=\frac{2 i}{2 i w \operatorname{Sin} \theta}=\frac{1}{e^{i \theta} \times \operatorname{Sin} \theta}=\frac{e^{-i \theta}}{\operatorname{Sin} \theta}=\frac{\operatorname{Cos} \theta-i \operatorname{Sin} \theta}{\operatorname{Sin} \theta}$

$$
=\frac{\operatorname{Cos} \theta}{\operatorname{Sin} \theta}-i \frac{\operatorname{Sin} \theta}{\operatorname{Sin} \theta}=\operatorname{Cot} \theta-i
$$

$i v) z=\operatorname{Cot} \theta-i$ so $\frac{2 i}{w^{2}-1}=z$

$$
2 i=z w^{2}-z
$$

$$
z+2 i=z w^{2}
$$

c) $i)(z+2 i)^{6}=z^{6}$ is equivalent to
order 5 polynomial $=0$
(the terms in z^{6} cancel out)
ii) $(z+2 i)^{6}=z^{6}$

$$
\begin{gathered}
\left(\frac{z+2 i}{z}\right)^{6}=1 \\
\left(w^{2}\right)^{6}=1
\end{gathered}
$$

So $w^{2}=e^{i \frac{\pi k}{3}}($ question $(a))$

$$
w=e^{i \frac{\pi k}{6}}
$$

This gives

$z=\cot 0-i, \cot \frac{\pi}{6}-i, \cot \frac{\pi}{3}-i$
$\cot \frac{2 \pi}{3}-i, \cot \frac{5 \pi}{6}-i$
$z=-i, \sqrt{3}-i, \frac{\sqrt{3}}{3}-i,-\frac{\sqrt{3}}{3}-i,-\sqrt{3}-i$

Although part (a) of this question was standard work it was surprising to see many candidates fail to obtain full marks. The commonest errors were either to express the six roots of $z^{6}=1$ in the form $a+i b$, or to give the roots in the range 0 to 2π. A few candidates wrote down the 6 roots as $e^{i \frac{k \pi}{3}}$ with $k= \pm 1, \pm 2, \pm 3$. In part (b), parts (i) and (iv) were often well done, but relatively few candidates spotted part (b)(ii) as the reciprocal of part $(\mathrm{b})(\mathrm{i})$, and it was not unusual to see $\frac{w}{w^{2}-1}$ rewritten as $w^{-1}-w$.

Part (b)(iii) was beyond all but the most able candidates although quite a number arrived at $\frac{1}{\operatorname{Sin} \theta e^{i \theta}}$ at which point their solutions usually petered out. There was a wide variety of reasons why the equation $(z+2 i)^{6}=z^{6}$ had only 5 roots with about 50% of them spurious.

In part (c)(ii) only one or two candidates used the hints given in the earlier parts of the question, but instead, solved the equation $(z+2 i)^{6}=z^{6}$ from first principles by writing $z+2 i=z e^{i \frac{k \pi}{3}}$ followed by $z=\frac{2 i}{e^{i \frac{\pi}{3}}-1}$

Of the few serious attempts made by candidates at this part of the question, most solutions ended at the point indicated and only the most able candidates found the five roots of the equation in the required form.

7 (a) Use the identity $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$ with $A=(r+1) x$ and $B=r x$ to show
that

$$
\tan r x \tan (r+1) x=\frac{\tan (r+1) x}{\tan x}-\frac{\tan r x}{\tan x}-1 \quad \text { (4 marks) }
$$

(b) Use the method of differences to show that
$\tan \frac{\pi}{50} \tan \frac{2 \pi}{50}+\tan \frac{2 \pi}{50} \tan \frac{3 \pi}{50}+\ldots+\tan \frac{19 \pi}{50} \tan \frac{20 \pi}{50}=\frac{\tan \frac{2 \pi}{5}}{\tan \frac{\pi}{50}}-20 \quad$ (5 marks)
end of questions

5	Prove by induction that, if n is a positive integer, $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$	(5 marks)
	Find the value of $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}$.	(2 marks)
	Show that	
	$(\cos \theta+\mathrm{i} \sin \theta)(1+\cos \theta-\mathrm{i} \sin \theta)=1+\cos \theta+\mathrm{i} \sin \theta$	(3 marks)
	Hence show that	
	$\left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}=0$	(4 marks)
(a)	Find the three roots of $z^{3}=1$, giving the non-real roots in the form $\mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<0 \leqslant \pi$.	(2 marks)
(b)	Given that ω is one of the non-real roots of $z^{3}=1$, show that	
	$1+\omega+\omega^{2}=0$	(2 marks)
(c)	By using the result in part (b), or otherwise, show that:	
	(i) $\frac{\omega}{\omega+1}=-\frac{1}{\omega}$;	(2 marks)
	(ii) $\frac{\omega^{2}}{\omega^{2}+1}=-\omega$;	(1 mark)
	(iii) $\left(\frac{\omega}{\omega+1}\right)^{k}+\left(\frac{\omega^{2}}{\omega^{2}+1}\right)^{k}=(-1)^{k} 2 \cos \frac{2}{3} k \pi$, where k is an integer.	(5 marks)

Key to mark scheme and abbreviations used in marking
$\begin{array}{ll}M & \text { mark is for method } \\ m \text { or } d M & \text { mark is dependent }\end{array}$
mark is for method
mark is dependent on one or more M marks and is for method
mark is dependent on M or m marks and is for accuracy
mark is dependent on M or m marks and is for accuracy
mark is independent of M or m marks and is for method

MC
MR
RA
RF
FISW
FIW
BOD
WR
FB
NOS
G
c
sf
dp

follow through from previous
incorrect result
correct answer only
correct answer only
anything which falls within
anything which falls within
anything which rounds to any correct form
answer given
special case
or equivalent
given benefit of doub candidate formulae book
not on scheme
candidate
significant figure(s)
decimal place(s)
Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be details will be provided on the mark scheme.
Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to
candidates showing no working is that incorrect answers, however close, earn no marks.
Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark
scheme, when it gains no marks.
Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2 (cont)				
Q	Solution	Marks	Total	Comments
3(a) (b)	$-k^{3} \mathbf{i}+2(1-\mathbf{i})\left(-k^{2}\right)+32(1+\mathrm{i})=0$ Equate real and imaginary parts: $\begin{aligned} & -k^{3}+2 k^{2}+32=0 \\ & -2 k^{2}+32=0 \\ & k= \pm 4 \\ & k=+4 \end{aligned}$ Sum of roots is $-2(1-i)$ Third root 2-2i	M1 A1 A1 A1 E1 M1 A1	5 2	Any form AG Or $\alpha \beta \gamma=-(32+32 i)$ Must be correct for M1
	Total		7	
4(a)(i)	$\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{\cosh t}\right)=-1(\cosh t)^{-2} \sinh t$	M1A1	3	$\operatorname{Or} \frac{-2\left(\mathrm{e}^{t}-\mathrm{e}^{-t}\right)}{\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)^{2}}$
(ii)	Use of $\tanh ^{2} t=1-\operatorname{sech}^{2} t$ Printed result	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	
(b)(i)	$\begin{aligned} & \dot{x}=1-\operatorname{sech}^{2} t \quad(\dot{y}=-\operatorname{sech} t \tanh t) \\ & \dot{x}^{2}+\dot{y}^{2}=\left(1-\operatorname{sech}^{2} t\right)^{2}+\operatorname{sech}^{2} t-\operatorname{sech}^{4} t \\ & =1-\operatorname{sech}^{2} t=\tanh ^{2} t \end{aligned}$	$\begin{gathered} \text { B1 } \\ \hline \text { M1A1 } \\ \text { A1 } \end{gathered}$	4	Any form AG
(ii)	$\begin{aligned} & s=\int_{0}^{t} \tanh t \mathrm{~d} t \\ & =[\ln \cosh t]_{0}^{t} \\ & =\ln \cosh t \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Ignore limits for M1 and first A1 AG
(iii)	$\begin{aligned} & \mathrm{e}^{s}=\cosh t \\ & y=\mathrm{e}^{-s} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	AG
(c)	$S=2 \pi \int_{0}^{t} \operatorname{sech} t \tanh t \mathrm{~d} t$	M1		Ignore limits for M1 and first A1
	$=2 \pi[-\mathrm{sech} t]_{0}^{t}$	A1		
	$=2 \pi(1-\operatorname{sech} t)$	A1		
	$=2 \pi\left(1-\mathrm{e}^{-s}\right)$	A1	4	AG
	Total		18	

2 (cont				
Q	Solution	Marks	Total	Comments
7(a)	$\tan ((r+1) x-r x)$			
	$=\frac{\tan (r+1) x-\tan r x}{1-2}$	M1A1		
	$1+\tan (r+1) x \tan r x$			
	Multiplying up Printed result	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	AG
(b)	$x=\frac{\pi}{50}$			
	$\tan \frac{\pi}{50} \tan \frac{2 \pi}{50}=\frac{\tan \frac{2 \pi}{50}}{\tan \frac{\pi}{50}}-\frac{\tan \frac{\pi}{50}}{\tan \frac{\pi}{50}}-1$			
	$\tan \frac{2 \pi}{50} \tan \frac{3 \pi}{50}=\frac{\tan \frac{3 \pi}{50}}{\tan \frac{\tan \frac{2 \pi}{50}}{\pi}}-1$	M1A1		At least three lines to be shown Accept if x 's used
	$\tan \frac{19 \pi}{50} \tan \frac{20 \pi}{50}=\frac{\tan \frac{20 \pi}{50}}{\tan \frac{\pi}{50}}-\frac{\tan \frac{19 \pi}{50}}{\tan \frac{\pi}{50}}-1$			
	Clear cancellation	m1		
	$\operatorname{Sum}=\frac{\tan \frac{20 \pi}{50}}{\tan \frac{\pi}{50}}-\frac{\tan \frac{\pi}{50}}{\tan \frac{\pi}{50}}-19$	A1		
	$=\frac{\tan \frac{2 \pi}{5}}{\tan \frac{\pi}{50}}-20$	A1	5	AG
	Total		9	
	TOTAL		75	

Question 1:	Exam report
a) $4 \operatorname{Cosh}^{2} x=7 \operatorname{Sinh} x+1$ Using $\operatorname{Cosh}^{2} x-\operatorname{Sinh}^{2} x=1$, The equation becomes $\begin{aligned} & 4\left(\operatorname{Sinh}^{2} x+1\right)=7 \operatorname{Sinh} x+1 \\ & 4 \operatorname{Sinh}^{2} x-7 \operatorname{Sinh} x+3=0 \\ & (4 \operatorname{Sinh} x-3)(\operatorname{Sinh} x-1)=0 \end{aligned}$ $\operatorname{Sinh} x=\frac{3}{4}$ or $\operatorname{Sinh} x=1$ $\text { b) } \begin{aligned} x & =\operatorname{Sinh}^{-1}\left(\frac{3}{4}\right)=\ln \left(\frac{3}{4}+\sqrt{\left(\frac{3}{4}\right)^{2}+1}\right) \\ & =\ln \left(\frac{3+\sqrt{25}}{4}\right)=\ln (2) \end{aligned}$ or $x=\operatorname{Sinh}^{-1}(1)=\ln \left(1+\sqrt{1^{2}+1}\right)=\ln (1+\sqrt{2})$	Apart from a few candidates who factorised the quadratic in $\sinh x$ incorrectly, most candidates worked part (a) correctly. However, many candidates spent more time on part (b) than was necessary. They expressed $\sinh x$ in exponential form and solved the ensuing quadratic equations rather than quote the formula for $\sinh ^{-1} x$ given in the formulae booklet which they were entitled to do. This method also led to superfluous incorrect solutions which candidates needed to reject

Question 2:	Exam report
a)i) Let $z_{A}=4-2 i$ and $A(4,-2)$	
The point M represents z in the Argand diagram.	
$\|z-4+2 i\|=2$	
$\left\|z-z_{A}\right\|=2$ is equivalent to $A M=2$	

The locus of M is the circle centre $A(4,-2)$ radius $r=2$
ii) Let $z_{B}=3+2 i$ and $B(3,2)$
$|z|=|z-3-2 i|$
$\left|z-z_{o}\right|=\left|z-z_{B}\right|$ is equivalent to

$\mathrm{OM}=\mathrm{BM}$

The locus of M is the prependicular bisector of OB.
b) $|z-4+2 i| \leq 2$ is "inside" the circle
$|z| \leq|z-3-2 i|$ is the "half-plane" containing O .

A few candidates misplotted the centre of the circle, usually at (.4, 2). Apart from this most drew the circle correctly. Not all recognised the line as the perpendicular bisector of the line joining the origin to the point $(3,2)$ in part (b), but rather thought that this equation represented another circle. This in turn had an effect on the shading in part (c) although the interior of the circle was usually shaded. It should be said that the diagrams were neat and in the main well labelled and in proportion; a great improvement on sketches submitted in previous years.
a) $z^{3}+2(1-i) z^{2}+32(1+i)=0$ has roots α, β, γ $\alpha=k i$ so
$(k i)^{3}+2(1-i)(k i)^{2}+32+32 i=0$
$-i k^{3}-2 k^{2}+2 i k^{2}+32+32 i=0$
$\left(-2 k^{2}+32\right)+i\left(-k^{3}+2 k^{2}+32\right)=0$
This gives

$$
-2 k^{2}+32=0
$$

and $-k^{3}+2 k^{2}+32=0$
The first equation gives $k=4$ or $k=-4$
$-(-4)^{3}+2 \times(-4)^{2}+32=64+32+32=128 \quad k \neq-4$
$-(4)^{3}+2 \times(4)^{2}+32=-64+32+32=0 \quad k=4$
b) $\alpha=4 i, \beta=-4$ and we know that

$$
\begin{gathered}
\alpha+\beta+\gamma=-2(1-i) \\
4 i-4+\gamma=-2+2 i \\
\gamma=2-2 i
\end{gathered}
$$

Although this question was attempted by almost every candidate, there were few whose solutions presented the rigour required. Most substituted $k i$ for z in the cubic equation, equated real parts and subsequently wrote $z^{2}=16$ so $z=4$, not realising that $z=-4$ was also a root of $z^{2}=16$ and that imaginary parts had to be equated in order to reject the solution $z=4$.

Part (b) was not particularly well answered either. The most common errors were errors of sign in the use of $\alpha+\beta+\gamma$ or $\alpha \beta \gamma$, and those candidates using the product of the roots made extra work for themselves as they obtained a rational expression for γ which needed to be simplified.
Some candidates thought that γ equalled $-4 \mathbf{i}$, the complex conjugate of α.

Question 4:	Exam report
a) $y=\operatorname{Sech} t=\frac{1}{\operatorname{Cosh} t}$ i) $\frac{d y}{d x}=-\frac{\operatorname{Sech} t}{\operatorname{Cosh}^{2} t}$ (if $y=\frac{1}{f}$ then $\frac{d y}{d x}=-\frac{f^{\prime}}{f^{2}}$) $\frac{d y}{d x}=-\frac{\operatorname{Sech} t}{\operatorname{Cosh} t} \times \frac{1}{\operatorname{Cosh} t}=-\operatorname{Sech} t \times \operatorname{Tanh} t$ ii) $\left(\frac{d y}{d x}\right)^{2}=\left(-\operatorname{Sech} t \times \operatorname{Tanh}^{2}\right)^{2}=\operatorname{Sech}^{2} t \times \operatorname{Tanh}^{2} t$ Using $\operatorname{Tanh}^{2} t=1-\operatorname{Sech}^{2} t$ $\left(\frac{d y}{d x}\right)^{2}=\operatorname{Sech}^{2} t\left(1-\operatorname{Sech}^{2} t\right)=\operatorname{Sech}^{2} t-\operatorname{Sech}^{4} t$ b) $x=t-$ Tanht and $y=\operatorname{Sech} t$ $\begin{aligned} & \text { i) } \frac{d x}{d t}=1-\operatorname{Sech}^{2} t \text { and }\left(\frac{d x}{d t}\right)^{2}=1-2 \operatorname{Sech}^{2} t+\operatorname{Sech}^{4} t \\ & \begin{aligned} \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =1-2 \operatorname{Sech}^{2} t+\operatorname{Sech}^{4} t+\operatorname{Sech}^{2} t-\operatorname{Sech}^{4} t \\ & =1-\operatorname{Sech}^{2} t=\operatorname{Tanh}^{2} t \end{aligned} \end{aligned}$ ii) $s=\int_{0}^{t} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{t} \operatorname{Tanh}(t) d t=[\ln (\operatorname{Cosh} t)]_{0}^{t}=\ln (\operatorname{Cosh} t)$ iii) $e^{s}=\operatorname{Cosh} t \quad$ so $e^{-s}=\frac{1}{\operatorname{Cosh} t}=\operatorname{Sech} t=y$	Generally, candidates scored quite well on this question. Some candidates struggled with part (a)(i) by not realising that sech t was (cosh t$)^{-1}$, instead expressing sech t in exponential form. This latter method rarely led to a correct solution. However, apart from some sign fudging in part (a)(ii), most candidates were able to recover to answer parts (a)(ii) and (b)(i) correctly. Very few candidates were able to score the three available marks in part (b)(ii), by either ignoring the limits of integration completely or by writing s $=\ln \cosh t+c$ with no effort to show that the value of c was zero. In spite of some inelegant methods, part (b)(iii) was usually answered correctly.

Question 4: continues	Exam report
c) $S_{x}=2 \pi \int_{0}^{t} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=2 \pi \int_{0}^{t} \operatorname{Sech} t \times \operatorname{Tanh} t d t$	Part(c) caused problems, often by candidates attempting to integrate e ${ }^{-s}$ tanh t with respect to t by regarding e ${ }^{-s}$ either as
$S_{x}=2 \pi \int_{0}^{t} \frac{\operatorname{Sinh} t}{\operatorname{Cosh}^{2} t} d t=2 \pi \int_{0}^{t} \operatorname{Sinh} t \times \operatorname{Cosh}^{-2} t d t=2 \pi\left[-\operatorname{Cosh}^{-t} t\right]_{0}^{t}$	constant or else as e ${ }^{-t}$ Of those who correctly integrated to arrive at secht, again very few candidates recognised the need for limits and so were unable to arrive at the printed result.
$S_{x}=2 \pi(-\operatorname{Sech} t+1)=2 \pi\left(1+e^{-s}\right) \quad$ because Secht $\left.\left.\left.=e^{-s}(Q b) i i i\right)\right)\right)$	

Question 5:	Exam report

a) Proposition, P_{n} :
for all n positive integer, $(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{n}=\operatorname{Cos}(n \theta)+i \operatorname{Sin}(n \theta)$
is to be proven by induction
Base case: $n=1,(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{1}=\operatorname{Cos}(\theta)+i \operatorname{Sin}(\theta)$

$$
\operatorname{Cos}(1 \theta)+i \sin (1 \theta)=\operatorname{Cos}(\theta)+i \sin (\theta)
$$

P_{1} is true

We suppose that for $\mathrm{n}=\mathrm{k}$, the proposition is true

$$
(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{k}=\operatorname{Cos}(k \theta)+i \operatorname{Sin}(k \theta)
$$

Let' s show that P_{k+1} is true,
let's show that $(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{k+1}=\operatorname{Cos}((k+1) \theta)+i \operatorname{Sin}((k+1) \theta)$
$(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{k+1}=(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{k} \times(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)$

$$
=(\operatorname{Cos}(k \theta)+i \operatorname{Sin}(k \theta))(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)
$$

$$
=[\operatorname{Cos}(k \theta) \operatorname{Cos} \theta-\operatorname{Sin}(k \theta) \operatorname{Sin} \theta]+i[\operatorname{Cos}(k \theta) \operatorname{Sin} \theta+\operatorname{Sin}(k \theta) \operatorname{Cos} \theta]
$$

using the trig identities: $\quad \operatorname{Cos}(a+b)=\operatorname{Cos}(a) \operatorname{Cos}(b)-\operatorname{Sin}(a) \operatorname{Sin}(b)$

$$
\text { and } \operatorname{Sin}(a+b)=\operatorname{Sin}(a) \operatorname{Cos}(b)+\operatorname{Sin}(b) \operatorname{Cos}(a)
$$

we have:
$(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{k+1}=\operatorname{Cos}(k \theta+\theta)+i \operatorname{Sin}(k \theta+\theta)=\operatorname{Cos}((k+1) \theta)+i \operatorname{Sin}((k+1) \theta)$

Conclusion:

If P_{k} is true then P_{k+1} is true, because P_{1} is true we can conclude, according to the induction principle, that P_{n} is true for all n positive integer

Exam report

It was clear that a good number of candidates had not met the proof of de Moivre's Theorem by induction before and there were not many solutions gaining full marks. It was also not uncommon to see expressions such as
$\cos k \theta+i \sin k \theta+\cos \theta+i \sin \theta=$ $\cos (k+1) \theta+i \sin (k+1) \theta$

Question 5:continues	Exam report
b) $\left(\operatorname{Cos} \frac{\pi}{6}+i \operatorname{Sin} \frac{\pi}{6}\right)^{6}=\operatorname{Cos} \frac{6 \pi}{6}+i \operatorname{Sin} \frac{6 \pi}{6}=\operatorname{Cos} \pi+i \operatorname{Sin} \pi=-1$ $\begin{aligned} & \text { c) }(\operatorname{Cos} \theta+i \sin \theta)(1+\operatorname{Cos} \theta-i \sin \theta)= \\ & \quad(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)+(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)(\operatorname{Cos} \theta-i \sin \theta)= \\ & (\operatorname{Cos} \theta+i \operatorname{Sin} \theta)+\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta=\operatorname{Cos} \theta+i \operatorname{Sin} \theta+1 \end{aligned}$ $\begin{aligned} & \text { d) }\left(1+\operatorname{Cos} \frac{\pi}{6}+i \operatorname{Sin} \frac{\pi}{6}\right)^{6}+\left(1+\operatorname{Cos} \frac{\pi}{6}-i \operatorname{Sin} \frac{\pi}{6}\right)^{6}= \\ & \left(\left(\operatorname{Cos} \frac{\pi}{6}+i \operatorname{Sin} \frac{\pi}{6}\right)\left(1+\operatorname{Cos} \frac{\pi}{6}-i \operatorname{Sin} \frac{\pi}{6}\right)\right)^{6}+\left(1+\operatorname{Cos} \frac{\pi}{6}-i \operatorname{Sin} \frac{\pi}{6}\right)^{6}= \\ & \left(\operatorname{Cos} \frac{\pi}{6}+i \operatorname{Sin} \frac{\pi}{6}\right)^{6}\left(1+\operatorname{Cos} \frac{\pi}{6}-i \operatorname{Sin} \frac{\pi}{6}\right)^{6}+\left(1+\operatorname{Cos} \frac{\pi}{6}-i \operatorname{Sin} \frac{\pi}{6}\right)^{6}= \\ & \quad-1 \times\left(1+\operatorname{Cos} \frac{\pi}{6}-i \operatorname{Sin} \frac{\pi}{6}\right)^{6}+\left(1+\operatorname{Cos} \frac{\pi}{6}-i \operatorname{Sin} \frac{\pi}{6}\right)^{6}=0 \end{aligned}$	Parts (b) and (c) were generally well done, although in part (c) a number of candidates, when multiplying i $\sin \theta$ by.$i \sin \theta$, wrote. . $\sin ^{2} \theta$ and thus were unable to complete this part satisfactorily. Those candidates who spotted the connection between parts (c) and (d) usually went on to write out a correct solution to part (d), but it was disappointing to see $\begin{aligned} & \left(1+\operatorname{Cos} \frac{\pi}{6}+i \operatorname{Sin} \frac{\pi}{6}\right)^{6} \text { written as } \\ & 1^{6}+\operatorname{Cos} \frac{6 \pi}{6}+i \operatorname{Sin} \frac{6 \pi}{6} \end{aligned}$ with alarming regularity.

Question 6:	
$a) z^{3}=1$	

we write $z=r e^{i \theta}$ and $1=1 e^{i 0}$

$$
\begin{aligned}
& z^{3}=1 \text { becomes } \\
& r^{3} e^{i 3 \theta}=1 e^{i 0}
\end{aligned}
$$

$r=1$ and $3 \theta=0+k 2 \pi$
$r=1$ and $\quad \theta=k \frac{2 \pi}{3} \quad k=-1,0,1$
$z=e^{-i \frac{2 \pi}{3}}$ or $z=1=e^{i 0}$ or $z=e^{i \frac{2 \pi}{3}}$
b) we can note $e^{i \frac{2 \pi}{3}}=\omega$
$1+\omega+\omega^{2}$ is the sum of a geometric series with common ratio $\omega(\omega \neq 1)$
$1+\omega+\omega^{2}=\frac{1-\omega^{3}}{1-\omega}=\frac{1-1}{1-\omega}=0$
c) $i) 1+\omega+\omega^{2}=0 \quad \omega^{2}=-(1+\omega)$

$$
\frac{\omega^{2}}{1+\omega}=-1 \quad \frac{\omega}{1+\omega}=-\frac{1}{\omega}
$$

ii) $\frac{\omega}{1+\omega}=-\frac{1}{\omega} \quad \frac{-1-\omega^{2}}{-\omega^{2}}=-\frac{1}{\omega}$
$\frac{1+\omega^{2}}{\omega^{2}}=-\frac{1}{\omega} \quad \frac{\omega^{2}}{1+\omega^{2}}=-\omega$

It was disappointing to find many candidates unsure of the cube roots of unity and even more unsure of how to obtain them. It was also disappointing to note that few candidates were able to establish the result $1+\omega+\omega^{2}=0$ in part (b), in spite of the variety of ways in which this result could be established. On the whole, parts (c)(i) and (c)(ii) were correctly done in spite of using roundabout methods to obtain the printed results.

Question 6:continues	Exam report
$\text { iii) } \begin{aligned} \left(\frac{\omega}{1+\omega}\right)^{k}+\left(\frac{\omega^{2}}{\omega^{2}+1}\right)^{k} & =\left(-\frac{1}{\omega}\right)^{k}+(-\omega)^{k} \\ & =\left(-e^{-i \frac{2 \pi}{3}}\right)^{k}+\left(-e^{i \frac{2 \pi}{3}}\right)^{k} \\ & =(-1)^{k} e^{-i \frac{2 k \pi}{3}}+(-1)^{k} e^{i \frac{2 k \pi}{3}} \\ & =(-1)^{k}\left(e^{i \frac{2 k \pi}{3}}+e^{-i \frac{2 k \pi}{3}}\right) \\ & =(-1)^{k} \operatorname{Cos}\left(\frac{2 k \pi}{3}\right) \end{aligned}$	In part (c)(iii), however, most solutions ended at $\left(-\frac{1}{\omega}\right)^{k}+(-\omega)^{k}$, but of those candidates who attempted this part further, sign errors hindered completely correct solutions.

Question 7:	Exam report
$\begin{aligned} & \text { a) } \operatorname{Tan}(A-B)=\operatorname{Tan}((r+1) x-r x)=\operatorname{Tan}(x) \\ & \text { and } \operatorname{Tan}((r+1) x-r x)=\frac{\operatorname{Tan}((r+1) x)-\operatorname{Tan}(r x)}{1+\operatorname{Tan}((r+1) x) \operatorname{Tan}(r x)} \end{aligned}$ So $\operatorname{Tan} x=\frac{\operatorname{Tan}((r+1) x)-\operatorname{Tan}(r x)}{1-\operatorname{Tan}((r+1) x) \operatorname{Tan}(r x)}$ $\begin{aligned} 1+\operatorname{Tan}((r+1) x) \operatorname{Tan}(r x) & =\frac{\operatorname{Tan}((r+1) x)-\operatorname{Tan}(r x)}{\operatorname{Tan} x} \\ \operatorname{Tan}((r+1) x) \operatorname{Tan}(r x) & =\frac{\operatorname{Tan}((r+1) x)}{\operatorname{Tan} x}-\frac{\operatorname{Tan}(r x)}{\operatorname{Tan} x}-1 \end{aligned}$ b) $\operatorname{Tan} \frac{\pi}{50} \operatorname{Tan} \frac{2 \pi}{50}+\operatorname{Tan} \frac{2 \pi}{50} \operatorname{Tan} \frac{3 \pi}{50}+\ldots+\operatorname{Tan} \frac{19 \pi}{50} \operatorname{Tan} \frac{20 \pi}{50}$ $=\sum_{r=1}^{19} \operatorname{Tan}\left(r \frac{\pi}{50}\right) \operatorname{Tan}\left((r+1) \frac{\pi}{50}\right)=\sum_{r=1}^{19} \frac{\operatorname{Tan}\left((r+1) \frac{\pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-\frac{\operatorname{Tan}\left(r \frac{\pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-1$ $=\frac{\operatorname{Tan}\left(\frac{2 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-\frac{\operatorname{Tan}\left(\frac{\pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-1+\frac{\operatorname{Tan}\left(\frac{3 \pi /}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-\frac{\operatorname{Tan}\left(\frac{2 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-1+\frac{\operatorname{Tan}\left(\frac{4 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-\frac{\operatorname{Tan}\left(\frac{3 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-1$ $+\ldots+\frac{\operatorname{Tan}\left(\frac{19 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-\frac{\operatorname{Tan}\left(\frac{18 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-1+\frac{\operatorname{Tan}\left(\frac{20 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-\frac{\operatorname{Tan}\left(\frac{19 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-1$ all the terms cancel except $-\frac{\operatorname{Tan}\left(\frac{\pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}+\frac{\operatorname{Tan}\left(\frac{20 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-1-1-1-1 . .-1$ $=-1+\frac{\operatorname{Tan}\left(\frac{20 \pi}{50}\right)}{\operatorname{Tan} \frac{\pi}{50}}-19=\frac{\operatorname{Tan}\left(\frac{2 \pi}{5}\right)}{\operatorname{Tan} \frac{\pi}{50}}-20$	This question was surprisingly well done and attracted many completely correct solutions. When errors occurred, it was usually in the summation of terms in part (b). Candidates summed 20 terms instead of 19 which in turn led to some faking in arriving at the printed answer, especially the .20 . For instance it was not uncommon to see the summation written as $\frac{\operatorname{Tan}\left(\frac{21 \pi}{50}\right)-\operatorname{Tan}\left(\frac{\pi}{50}\right)}{\operatorname{Tan}\left(\frac{\pi}{50}\right)}-20$ followed by the correct answer.
Component Code Component Title Maximum Scaled Mark A Bcaled Mark G B	$\begin{gathered} \text { Boundaries } \\ D \end{gathered}$
$\begin{array}{lllll}\text { MFP2 } & \text { MATHEMATICS UNIT MFP2 } & 75 & 61 & 53\end{array}$	$\begin{array}{lll}45 & 37\end{array}$

4 (a) Differentiate $x \tan ^{-1} x$ with respect to x.
(b) Show that
5 The sketch shows an Argand diagram. The points A and B represent the complex numbers z_{1}
and z_{2} respectively. The angle $A O B=90^{\circ}$ and $O A=O B$. $\int_{0}^{1} \tan ^{-1} x \mathrm{~d} x=\frac{\pi}{4}-\ln \sqrt{2}$
(a) Explain why $z_{2}=\mathbf{i} z_{1}$.
(b) On a single copy of the diagram, draw:
(i) the locus L_{1} of points satisfying $\left|z-z_{2}\right|=\left|z-z_{1}\right|$;
(ii) the locus L_{2} of points satisfying $\arg \left(z-z_{2}\right)=\arg z_{1}$.
(c) Find, in terms of z_{1}, the complex number representing the point of intersection of L_{1} (2 marks)
and L_{2}.
and L_{2}.
6 (a) Show that
$\left(1-\frac{1}{(k+1)^{2}}\right) \times \frac{k+1}{2 k}=\frac{k+2}{2(k+1)}$
(3 marks)
(4 marks)
$\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{2^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n}{2 n}$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \&

\hline Q \& Solution \& Marks \& Total \& Comments

\hline (b) \& $$
\begin{aligned}
& \frac{x}{1+x^{2}}+\tan ^{-1} x \\
& \int_{0}^{1} \tan ^{-1} x \mathrm{~d} x=\left[x \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{x \mathrm{~d} x}{1+x^{2}} \\
& \int \frac{x \mathrm{~d} x}{1+x^{2}}=\frac{1}{2} \ln \left(1+x^{2}\right) \\
& \mathrm{I}=1 \tan ^{-1} 1-\frac{1}{2} \ln 2 \\
& =\frac{\pi}{4}-\ln \sqrt{2}
\end{aligned}
$$ \& B1B1
M1
M1A1F
M1
A1 \& 2

5 \& | either use of part (a) or integration by parts. Allow if sign error |
| :--- |
| ft on $\int \frac{x}{1-x^{2}} \mathrm{~d} x$ |
| AG |

\hline \& Total \& \& 7 \&

\hline 5(a) \& Explanation \& E2,1,0 \& 2 \& E1 for $\mathbf{i}=e^{\frac{\pi i}{2}}$ or $z_{z_{1}}=-y_{1}+i x_{1}$

\hline (b)(i) \& Perpendicular bisector of $A B$ through O \& $$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \& 2 \&

\hline \multirow[t]{2}{*}{(ii)} \& half-line \& B1 \& \& If L_{2} is taken to be the line $A B$ give B0

\hline \& from B parallel to $O A$ \& $$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \& 3 \&

\hline \multirow[t]{2}{*}{(c)} \& $(1+\mathrm{i})_{1}$ \& M1A1 \& 2 \& ft if L_{2} taken as line $A B$

\hline \& Total \& \& 9 \&

\hline 6(a) \& $$
\left(1-\frac{1}{(k+1)^{2}}\right) \times \frac{k+1}{2 k}=\frac{(k+1)^{2}-1}{(k+1)^{2}} \times \frac{k+1}{2 k}
$$ \& M1 \& \&

\hline \multirow[t]{3}{*}{(b)} \& \[
$$
\begin{aligned}
& =\frac{k^{2}+2 k}{(k+1)^{2}} \times \frac{k+1}{2 k} \\
& =\frac{k+2}{2(k+1)}
\end{aligned}
$$

\] \& | A1 |
| :--- |
| A1 | \& 3 \& AG

\hline \& Assume true for $n=k$, then

\[
$$
\begin{array}{r}
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) . .\left(1-\frac{1}{(k+1)^{2}}\right) \\
=\frac{k+2}{2(k+1)}
\end{array}
$$

\] \& | M1 |
| :--- |
| A1 | \& \&

\hline \& True for $n=2$ shown $1-\frac{1}{2^{2}}=\frac{3}{4}$

$$
P_{n} \Rightarrow P_{n+1} \text { and } P_{2} \text { true }
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { E1 }
\end{aligned}
$$
\] \& 4 \& only if the other 3 marks earned

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

MFP2

0				
1(a)	Solution	Marks	Total	Comments
	$\mathbf{f}(r+1)-\mathbf{f}(r)=r(r+1)^{2}-(r-1) r^{2}$	M1		
	$=r\left(r^{2}+2 r+1-r^{2}+r\right)$	A1		any expanded form
	$=r(3 r+1)$	A1	3	AG
(b)	$r=50 \quad \mathrm{f}(51)-\mathrm{f}(50)$			OE
	$\left.\begin{array}{rr} r=51 & \begin{array}{c} \mathrm{f}(52)-\mathrm{f}(51) \\ r=99 \end{array} \\ \mathrm{f}(100)-\mathrm{f}(99) \end{array}\right\} \text { PI }$	M1A1		clearly shown. Accept $\sum_{1}^{99}-\sum_{1}^{49}$
	$\sum_{r=50}^{99} r(3 r+1)=\mathrm{f}(100)-\mathrm{f}(50)$	m1		clear cancellation
	$=867500$	A1F	4	cao
	Total		7	
2(a)	$\sum \alpha \beta=6$	B1	1	
(b)(i)	Sum of squares $<0 \therefore$ not all real Coefficients real \therefore conjugate pair	E1	2	
(ii)	$\left(\sum \alpha\right)^{2}=\sum \alpha^{2}+2 \sum \alpha \beta$	M1A1		A1 for numerical values inserted
	$\left(\sum \alpha\right)^{2}=0$	A1F		
	$p=0$	A1F	4	cao
(c)(i)	$-1-3 i$ is a root	B1		
	Use of appropriate relationship			
	eg $\sum \alpha=0$	M1		M0 if $\sum \alpha^{2}$ used unless the root 2 is
				checked
	Third root 2	A1F	3	incorrect $p \checkmark$
(ii)	$q=-(-1-3 i)(-1+3 i) 2$	M1		allow even if sign error
	$=-20$	A1F	2	ft incorrect $3^{\text {rd }}$ root
	Total		12	
3	$(\cos \theta+\mathrm{i} \sin \theta)^{15}=\cos 15 \theta+\mathrm{i} \sin 15 \theta$	M1		or $=\mathrm{e}^{15 \mathrm{iji}}$
	$\cos 15 \theta=0$			
	$\sin 15 \theta=-1$			$\text { or }-i=e^{\frac{3 \pi i}{2}}$
	$150=3 \pi$			m1 for both R\&I parts written down
	$15 \theta=\frac{3 \pi}{2}$ or 270	A1F		ml for both R\&1 parts written down
	$\theta=\frac{\pi}{10} \text { or } 18^{\circ}$	A1F	5	ft provided the value of 15θ is a correct value
	SC			
	$\begin{aligned} & \cos 15 \theta+\mathrm{i} \sin 15 \theta=\mathrm{i} \\ & \sin 15 \theta=-1 \end{aligned}$	(M1) (B1)		or for $\cos 15 \theta=0$
	$\theta=\frac{\pi}{10}$	(B1)	(3)	
	Total		5	

MFP2 (cont)				
Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{x}}$	B1		$\text { accept } 2 x^{-\frac{1}{2}} \text { etc }$
	$\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\frac{4}{x}}$	M1A1F		$\mathrm{ft} \text { sign error in } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	$=\sqrt{\frac{x+4}{x}}$	A1	4	AG
(b)(i)	$x=4 \sinh ^{2} \theta, \mathrm{~d} x=8 \sinh \theta \cosh \theta \mathrm{~d} \theta$	M1A1		M1 for any attempt at $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$
	$\begin{aligned} \mathrm{I} & =\int \sqrt{\frac{\sinh ^{2} \theta+4}{4 \sinh ^{2} \theta}} 8 \sinh \theta \cosh \theta \mathrm{~d} \theta \\ & =\int \frac{2 \cosh \theta}{2 \sinh \theta} 8 \sinh \theta \cosh \theta \mathrm{~d} \theta \end{aligned}$	M1 m1		ie use of $\cosh ^{2} \theta-\sinh ^{2} \theta=1$
	$=\int 8 \cosh ^{2} \theta \mathrm{~d} \theta$	A1	5	AG
(ii)	Use of $2 \cosh ^{2} \theta=1+\cosh 2 \theta$	M1		allow if sign error
	$\mathrm{I}=\int 4(1+\cosh 2 \theta) \mathrm{d} \theta$	A1		oe
	$=4 \theta+2 \sinh 2 \theta$	AIF		oe
	Use of $\sinh 2 \theta=2 \sinh \theta \cosh \theta$	m1		
	$=4 \sinh ^{-1} \frac{1}{2}+4 \times \frac{1}{2} \sqrt{1+\frac{1}{4}}$	AlF		
	$=4 \sinh ^{-1} \frac{1}{2}+\sqrt{5}$	A1	6	AG
	Total		15	

Question 1:	Exam report
a) $f(r)=(r-1) r^{2}$ $\begin{aligned} f(r+1)-f(r) & =r(r+1)^{2}-(r-1) r^{2} \\ & =r\left[(r+1)^{2}-r(r-1)\right] \\ & =r\left[r^{2}+2 r+1-r^{2}+r\right] \\ & =r(3 r+1) \end{aligned}$ b) $\sum_{r=50}^{99} r(3 r+1)=\sum_{r=50}^{99} f(r+1)-f(r)=f(51)-f(50)$ $+f(52)-f(51)$ $3-f(52)$ $+f(100)-f(99)$ All the terms cancel except $f(100)-f(50)=99 \times 100^{2}-49 \times 50^{2}$ $\sum_{r=50}^{99} r(3 r+1)=867500$	Almost all candidates were successful with part (a) However, in part (b) a number of candidates used $\sum r^{2} \text { and } \sum r \text { to evaluate } \sum_{r=1}^{99} r(3 r+1) \text { contrary }$ to the requirement of the question and so, even with a correct answer, scored no marks. The most successful candidates for this part of the question were those who carefully wrote out a number of rows including the first and last row, to illustrate the cancellations. Some candidates went awry when writing down the first or last terms of the series.

Question 2:

a) $\alpha \beta+\beta \gamma+\alpha \gamma=6$
b)i) $\alpha^{2}+\beta^{2}+\gamma^{2}=-12<0$

This can only happens if one of the root is not a real number so if α is a complex number, then $\beta=\alpha^{*}$ because p and q are real numbers and γ is real
(because otherwise γ^{*} would be a root too, making 4 roots instead of the expected 3)
ii) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma)$

$$
\begin{array}{rlr}
-12 & =(\alpha+\beta+\gamma)^{2}-2 \times 6 & \\
-12 & =(\alpha+\beta+\gamma)^{2}-12 & \alpha+\beta+\gamma=0
\end{array}
$$

So $p=-(\alpha+\beta+\gamma)=0$

$$
p=0
$$

c) $\alpha=-1+3 i \quad \beta=\alpha^{*}=-1-3 i$

$$
\begin{aligned}
& \alpha+\beta+\gamma=0 \\
& -1+3 i-1-3 i+\gamma=0 \quad \gamma=2
\end{aligned}
$$

ii) $q=-\alpha \beta \gamma=-(-1+3 i)(-1-3 i)(2)=-2(1+9)=-20$

Exam report

Whilst part (a) was usually correctly done, part (b)(i) was poorly answered. Some candidates were able to comment on the condition that as the sum of the squares of the roots was less than zero there would have to be complex roots, but few stated the conditions that the coefficients of the cubic equation were all real. The value of p in part (b)(ii) was very often correct but in part (c)(i) a very common error as to use $\sum \alpha^{2}=-12$ in order to find the third root. This method led to $\alpha^{2}=4$ from which almost all candidates using this method wrote $\alpha=2$ without even considering the possibility that α could equal -2 . Part (c)(ii) was usually worked correctly although $\alpha \beta \gamma=+q$ appeared from time to time.

Question 3:	Exam report
$(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{15}=\operatorname{Cos}(15 \theta)+i \operatorname{Sin}(15 \theta)=0-i$	There were many incomplete solutions to this question. Whilst most candidates used the de Moivre's Theorem correctly, many candidates either equated real parts only to arrive at an incorrect answer, or equated imaginary parts. In this latter case, the solution $\theta=-\frac{\pi}{30}$ appeared frequently in spite of the
$\operatorname{So~} 15 \theta=\frac{3 \pi}{2} \quad \theta=\frac{3 \pi}{30}=\frac{\pi}{10} \quad$request in the question that θ should be positive, or the correct answer appeared but from an incomplete solution. Some candidates solved $\cos \theta=0$ and $\sin \theta=-1$ but gave two different values of θ as their answer, one from each equation.	

Question 4 :	Exam report
a) $y=x \operatorname{Tan}^{-1} x$ $\begin{aligned} & \frac{d y}{d x}=1 \times \operatorname{Tan}^{-1} x+x \times \frac{1}{1+x^{2}} \\ & \frac{d y}{d x}=\operatorname{Tan}^{-1} x+\frac{x}{1+x^{2}} \end{aligned}$ b) $\begin{aligned} \int_{0}^{1} \operatorname{Tan}^{-1} x d x & =\int_{0}^{1}\left(\operatorname{Tan}^{-1} x+\frac{x}{1+x^{2}}\right)-\frac{x}{1+x^{2}} d x \\ & =\left[x \operatorname{Tan}^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{x}{1+x^{2}} d x \\ & =\operatorname{Tan}^{-1} 1-\left[\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1} \\ & =\frac{\pi}{4}-\frac{1}{2} \ln 2=\frac{\pi}{4}-\ln \sqrt{2} \end{aligned}$	This is the first time that a question has been set on inverse trigonometrical functions since this topic was included in the MFP2 specification. It was clear that many candidates did not know what tan. $1 x$ was. They were able to complete part (a) with the help of the formulae booklet although even then there was confusion between the derivatives of $\tan ^{-1}$ and $\tanh ^{-1} x$ as the derivative of $\tan ^{-1}$ was given as $\frac{1}{1-x^{2}}$. However it was part (b) that revealed the true lack of understanding of inverse trigonometrical functions. Part (b) was either abandoned altogether or when attempted $\tan ^{-1} x$ was frequently written as $\frac{1}{\tan x}$.

Question 5:
a) Angle $A O B=90^{\circ}$ and $O A=O B$

In complex terms this means that $\left|z_{1}\right|=\left|z_{2}\right|$

and $\operatorname{Arg}\left(\frac{z_{2}}{z_{1}}\right)=\frac{\pi}{2}$
This gives $\frac{z_{2}}{z_{1}}=1 e^{i \frac{\pi}{2}}=i \quad z_{2}=i z_{1}$
b) i) $A\left(z_{1}\right), B\left(z_{2}\right)$ and $M(z)$
$\left|z-z_{1}\right|=\left|z-z_{2}\right|$ is equivalent to

$$
A M=B M
$$

L_{1} is the perpendicular bisector of AB .
ii) $\arg \left(z-z_{2}\right)=\arg \left(z_{1}\right)$
L_{2} is the half line from B, parallel to OA.
c) Let's call I the point of intersection and $\mathrm{I}\left(\mathrm{z}_{I}\right)$

OBIAis a square :

BecauseOAbeing perpendicular to $O B$ we knowthat IB is also perpendicular to $O B$

 and by symmetry about the line L_{1}, IA is perpendicular toAO.$O B I A$ is a quadrilateral with 4 right angles and $\mathrm{OA}=\mathrm{OB}$ so OBIA is a square
In complex term, $\mathrm{z}_{I}=z_{1}+z_{2}=z_{1}+i z_{1}=(1+i) z_{1}$

Exam report

Explanations in part (a) were very unclear and generally far from convincing. Candidates generally referred to what had happened to the coordinates of the points represented by z_{1} and z_{2}, but few made allusion to the significance of i in the $i z$. The neatest solutions came from candidates who considered multiplication of a complex number by i as a rotation anticlockwise of $\pi / 2$

Inaccurate copying of the diagram in part (b) caused loss of marks. For instance, although candidates knew that the locus L_{1} was the perpendicular bisector of $A B$, poor diagrams meant that their line did not pass through the origin. Again, for the locus L_{2}, although the majority of candidates drew a half line through B, their line was not always parallel to $O A$.

Part (c) proved to be beyond most candidates probably because few realised that the point of intersection of L_{1} and L_{2} was, in fact, the fourth vertex of the square whose three other vertices were A, O and B

Question 6:	Exam report
$\left(1-\frac{1}{(k+1)^{2}}\right) \times \frac{k+1}{2 k}=\left(\frac{(k+1)^{2}-1}{(k+1)^{2}}\right) \times \frac{k+1}{2 k}$	Part (a) was usually answered correctly although there were many very long-winded algebraic methods employed including the multiplication out of just about every bracket followed immediately by their re-factorisation.
$=\frac{k^{2}+2 k}{(k+1)^{2}} \times \frac{k+1}{2 k}=\frac{k(k+2)}{2 k(k+1)}=\frac{(k+2)}{2(k+1)}$	

Pr oposition $P_{n}:$ For $n \geq 2,\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$
is to be proven by induction.

Base case: $\mathrm{n}=2 \quad\left(1-\frac{1}{2^{2}}\right)=\frac{2^{2}-1}{2^{2}}=\frac{3}{4}$ and $\frac{n+1}{2 n}=\frac{2+1}{2 \times 2}=\frac{3}{4}$
The proposition is true for $\mathrm{n}=2$
Let's suppose that the propostion is true for $\mathrm{n}=\mathrm{k}$,

$$
\text { meaning }\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{k^{2}}\right)=\frac{k+1}{2 k}
$$

Let's show that the proposition is true for $\mathrm{n}=\mathrm{k}+1$,

$$
\text { Let's show that }\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+2}{2(k+1)}
$$

$$
\begin{aligned}
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{(k+1)^{2}}\right) & =\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{k^{2}}\right)\left(1-\frac{1}{(k+1)^{2}}\right) \\
& \left.=\frac{k+1}{2 k} \times\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+2}{2(k+1)} \text { from parta }\right)
\end{aligned}
$$

There was however much muddled thinking in part (b). Whilst most candidates had some outline of the method of induction many candidates attempted this part with no reference whatever to the series product in question, whilst others tried to add the $(k+1)^{\text {th }}$ term to the sum of k products.
Candidates who did consider the series usually used \sum rather than Π but this was not penalised.

Conclusion :If the proposition is true for $\mathrm{n}=\mathrm{k}$, then it is true for $\mathrm{n}=\mathrm{k}+1$ because the proposition is true for $\mathrm{n}=2$, according to te induction principle I can conclude that the proposition is true for all $\mathrm{n} \geq 2$:
for all $\mathrm{n} \geq 2,\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$

Question 7:	Exam report
$y=4 \sqrt{x}$	This question was generally answered well and many candidates were able to score 12 out of the available 15 marks. Part (a) was well answered apart from a few candidates who
$\frac{d y}{d x}=\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ from the formulae booklet $\frac{1}{2 \sqrt{x}}=\frac{2}{\sqrt{x}} \quad\left(\frac{d y}{d x}\right)^{2}=\left(\frac{2}{\sqrt{x}}\right)^{2}=\frac{4}{x}$	wrote $\frac{d y}{d x}=2 x^{-\frac{1}{2}}$ followed by $\frac{1}{2 x^{\frac{1}{2}}}$
$s=\int_{0}^{1} \sqrt{1+\frac{4}{x}} d x=\int_{0}^{1} \sqrt{\frac{x+4}{x}} d x$	

b) i) $x=4 \operatorname{Sinh}^{2} \theta \quad \frac{d x}{d \theta}=4 \times 2 \times \operatorname{Cosh} \theta \times \operatorname{Sinh} \theta$

$$
d x=8 \operatorname{Cosh} \theta \operatorname{Sinh} \theta d \theta
$$

when $x=1, \operatorname{Sinh} \theta=\frac{1}{2} \operatorname{so} \theta=\operatorname{Sinh}^{-1} 0.5$ and when $x=0, \operatorname{Sinh} \theta=0$
$s=\int_{0}^{1} \sqrt{\frac{x+4}{x}} d x=\int_{o}^{\operatorname{Sinh}^{-1} 0.5} \sqrt{\frac{4 \operatorname{Sinh}^{2} \theta+4}{4 \operatorname{Sinh}^{2} \theta}} \times 8 \operatorname{Cosh} \theta \operatorname{Sinh} \theta d \theta$
$s=\int_{0}^{\operatorname{Sinh}^{-1} 0.5} \sqrt{\frac{4 \operatorname{Cosh}^{2} \theta}{4 \operatorname{Sinh}^{2} \theta}} \times 8 \operatorname{Cosh} \theta \operatorname{Sinh} \theta d \theta=\int_{0}^{\operatorname{Sinh}^{-1} 0.5} \frac{\operatorname{Cos} \theta}{\operatorname{Sinh} \theta} \times 8 \operatorname{Cosh} \theta \operatorname{Sinh} \theta d \theta$ $s=\int_{0}^{\operatorname{Sinh}^{-1} 0.5} 8 \operatorname{Cosh}^{2} \theta d \theta$
b) ii) $\operatorname{Cosh} 2 \theta=2 \operatorname{Cosh}^{2} \theta-1$ so $\operatorname{Cosh}^{2} \theta=\frac{1}{2}+\frac{1}{2} \operatorname{Cosh} 2 \theta$
so $s=\int_{0}^{\operatorname{Sinh}}{ }^{-1} 0.58\left(\frac{1}{2}+\frac{1}{2} \operatorname{Cosh} 2 \theta\right) d \theta=\int_{0}^{\operatorname{Sinh}}{ }^{-1} 0.54+4 \operatorname{Cosh} 2 \theta d \theta$

$$
s=[4 \theta+2 \operatorname{Sinh} 2 \theta]_{0}^{\operatorname{Sinh}^{-1} 0.5}=4 \operatorname{Sinh}^{-1} 0.5+2 \operatorname{Sinh}\left(2 \operatorname{Sinh}^{-1} 0.5\right)
$$

$\operatorname{Sinh} 2 \theta=2 \operatorname{Sinh} \theta \operatorname{Cos} \theta=2 \times \operatorname{Sinh} \theta \times \sqrt{1+\operatorname{Sinh}^{2} \theta}$
with $\theta=\operatorname{Sinh}^{-1} 0.5$ we have $\operatorname{Sinh}\left(2 \operatorname{Sinh}^{-1} 0.5\right)=2 \times \frac{1}{2} \sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$
$s=4 \operatorname{Sinh}^{-1} 0.5+2 \operatorname{Sinh}\left(2 \operatorname{Sinh}^{-1} 0.5\right)=4 \operatorname{Sinh}^{-1} 0.5+2 \frac{\sqrt{5}}{2}=4 \operatorname{Sinh}^{-1} 0.5+\sqrt{5}$

In part (b) there were two main sources of error. The first was to interchange $\mathrm{d} x$ with $\mathrm{d} \theta$ without any consideration of $\frac{d x}{d \theta}$; and the second was to write
$\sqrt{\frac{4 \operatorname{Sinh}^{2} \theta+4}{4 \operatorname{Sinh}^{2} \theta}}$ as $\frac{2 \operatorname{Sinh} \theta+2}{2 \operatorname{Sinh} \theta}$.
There were also a few candidates who were unable to differentiate $4 \operatorname{Sinh}^{2} \theta$.

In part (b)(i), most candidates were able to integrate $8 \cosh ^{2} \theta$ correctly but few were able to arrive at the printed result in part (b)(ii). Two factors contributed to this. Candidates either failed to change the limits for x to the corresponding limits for θ or else wrote the answer with no evident method. This was unacceptable as the answer for the arc lengths was given.

Question 8:

a)i) $z^{6}-4 z^{3}+8=0$

Let z^{3} bet, the equation becomes $t^{2}-4 t+8=0$

$$
\text { discriminant: }(-4)-4 \times 1 \times 8=-16=(4 i)^{2}
$$

So $t=z^{3}=\frac{4 \pm 4 i}{2}=z^{3}=2 \pm 2 i$
ii) Let's write $z^{3}=\left(r e^{i \theta}\right)^{3}=r^{3} e^{i 3 \theta}$

$$
2 \pm 2 i=2 \sqrt{2}\left(\frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}}\right)=2 \sqrt{2} e^{ \pm i \frac{\pi}{4}}
$$

These complex numbers are equal when

$$
\begin{aligned}
& r^{3}=2 \sqrt{2} \text { and } 3 \theta= \pm \frac{\pi}{4}+2 k \pi \\
& r=\sqrt{2} \text { and } \theta= \pm \frac{\pi}{12}+k \frac{2 \pi}{3} \quad k=-1,0,1
\end{aligned}
$$

This gives 6 solutions:
$\sqrt{2} e^{ \pm i \frac{\pi}{12}}$ or $\sqrt{2} e^{ \pm i \frac{3 \pi}{12}}$ or $\sqrt{2} e^{ \pm i \frac{7 \pi}{12}}$
b) $\left(z-k e^{i \theta}\right)\left(z-k e^{-i \theta}\right)=z^{2}-z k\left(e^{i \theta}+e^{-i \theta}\right)+k^{2} e^{0}$

$$
=z^{2}-2 z k \operatorname{Cos} \theta+k^{2}
$$

c) $z^{6}-4 z^{3}+8=$
$\left(z-\sqrt{2} e^{i \frac{\pi}{12}}\right)\left(z-\sqrt{2} e^{-i \frac{\pi}{12}}\right)\left(z-\sqrt{2} e^{i \frac{7 \pi}{12}}\right)\left(z-\sqrt{2} e^{-i \frac{7 \pi}{12}}\right)\left(z-\sqrt{2} e^{i \frac{3 \pi}{12}}\right)\left(z-\sqrt{2} e^{-i \frac{3 \pi}{12}}\right)$
$=\left(z^{2}-2 \sqrt{2} \operatorname{Cos} \frac{\pi}{12}-2\right)\left(z^{2}-2 \sqrt{2} \operatorname{Cos} \frac{7 \pi}{12}-2\right)\left(z^{2}-2 \sqrt{2} \operatorname{Cos} \frac{3 \pi}{12}-2\right)$

Component Code	Component Title	Maximum Scaled Mark	A
MFP2	GCE MATHEMATICS UNIT FP2	75	56

Exam report

Candidates were usually able to establish the result in part (a) although the methods used were sometimes somewhat inelegant. Part (a)(ii) was reasonably well done although some carelessness was in evidence in this part. For instance, some candidates although showing that the argument of z^{3} was $\pm \frac{\pi}{4}$ continued their solution with only $+\frac{\pi}{4}$ and so arrived at a total of three roots. Others having reached $\left|z^{3}\right|=\sqrt{8}$ then thought that $|z|=\sqrt{8}$ also. A few candidates used a method which, although possible, was not really suitable. They replaced the z^{3} in $z^{6}+4 z^{3}+8=0$ with $2 \pm 2 i$ and so arrived at $z^{6}= \pm 8 i$.
This latter equation gave the twelve roots of $z^{12}=-.64$ and the method was incomplete unless 6 of the roots were rejected. Part (b) was generally well done, but part (c) was really only completed by candidates who had correctly answered part (a)(ii).

END OF QUESTIONS

$$
\begin{aligned}
& \text { (7 marks) }
\end{aligned}
$$

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{MFP2}

\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a) \& Any method for finding r or θ
$$
\begin{aligned}
& r=4 \sqrt{2}, \theta=\frac{\pi}{4} \\
& z^{5}=4 \sqrt{2} \mathrm{e}^{\frac{\pi i}{4}} \\
& z=\sqrt{2} \mathrm{e}^{\frac{\pi i}{20}, 2 \pi i} 5 \\
& 5= \\
& z=\sqrt{2} \mathrm{e}^{\frac{\pi i}{20}}, \sqrt{2} \mathrm{e}^{\frac{9 \pi}{20}}, \sqrt{2} \mathrm{e}^{\frac{17 \pi i}{20}}, \\
& \quad \sqrt{2} \mathrm{e}^{\frac{-7 \pi \mathrm{i}}{20}}, \sqrt{2} \mathrm{e}^{\frac{-15 \pi i}{20}}
\end{aligned}
$$ \& $$
\begin{gathered}
\text { M1 } \\
\text { A1A1 } \\
\\
\\
\text { M1 } \\
\text { A1F } \\
\text { A1F } \\
\\
\substack{\text { A2,1,0 } \\
\mathrm{F}}
\end{gathered}
$$ \& 3

5 \& | M1 needs some reference to $a+2 k \pi \mathrm{i}$ $\left.\begin{array}{l} \text { A1 for } r \\ \text { A1 for } \theta \end{array}\right] \text { incorrect } r, \theta \text { part (a) }$ |
| :--- |
| Accept r in any form eg $32^{\frac{1}{0}}$ |
| Correct but some answers outside range |
| allow A1 |
| ft incorrect r, θ in part (a) |

\hline \& Total \& \& 8 \&

\hline 2(a) \& Attempt to expand $(2 r+1)^{3}-(2 r-1)^{3}$ $(2 r+1)^{3}$ or $(2 r-1)^{3}$ expanded $24 r^{2}+2$

$$
\begin{array}{ll}
r=1 & 3^{3}-1^{3}=24 \times 1^{2}+2 \\
r=2 & 5^{3}-3^{3}=24 \times 2^{2}+2
\end{array}
$$

$$
\begin{aligned}
& r=n \quad(2 n+1)^{3}-(2 n-1)^{3}=24 \times n^{2}+2 \\
& (2 n+1)^{3}-1=24 \sum_{r=1}^{n} r^{2}+2 n \\
& 8 n^{3}+12 n^{2}+6 n+1-1-2 n=24 \sum_{r=1}^{n} r^{2} \\
& 8 n^{3}+12 n^{2}+4 n=24 \sum_{r=1}^{n} r^{2} \\
& \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& \hline
\end{aligned}
$$ \& M1

A1
A1
M1A1
A1
M1
A1

A1 \& 38 \& | AG |
| :--- |
| 3 rows seen |
| Do not allow M1 for $(2 n+1)^{3}-1$ not equal to anything |
| M1 for multiplication of bracket or taking $(2 n+1)$ out as a factor |
| CAO |
| AG |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

\section*{| Question 1: |
| :--- |
| a) $4+4 i=4 \sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=4 \sqrt{2} e^{i \frac{\pi}{4}}$ |}

b) Let's write $z^{5}=\left(r e^{i \theta}\right)^{5}=r^{5} e^{i 5 \theta}$

$$
z^{5}=4+4 i \text { becomes }
$$

$$
r^{5} e^{i s \theta}=4 \sqrt{2} e^{i \frac{\pi}{4}}
$$

so $r^{5}=4 \sqrt{2}$ and $5 \theta=\frac{\pi}{4}+k \times 2 \pi$

$$
\begin{aligned}
& r=\sqrt{2} \text { and } \theta=\frac{\pi}{20}+k \times \frac{2 \pi}{5} k=-2,-1,0,1,2 \\
& r=\sqrt{2} \text { and } \theta=-\frac{15 \pi}{20},-\frac{7 \pi}{20}, \frac{\pi}{20}, \frac{9 \pi}{20}, \frac{17 \pi}{20}
\end{aligned}
$$

The $5^{\text {th }}$ roots of $4+4 i$ are:
$\sqrt{2} e^{-i \frac{3 \pi}{4}}, \sqrt{2} e^{-i \frac{7 \pi}{20}}, \sqrt{2} e^{i \frac{\pi}{20}}, \sqrt{2} e^{i \frac{9 \pi}{20}}, \sqrt{2} e^{i \frac{17 \pi}{20}}$

Exam report

Part (a) was done well by the majority of candidates. However, responses to part (b) were less successful. A number of candidates gave the roots of $z^{5}=1$ as their answer to part (b), whilst others left the modulus of the roots as $4 \sqrt{2}$ instead of $\sqrt{2}$, and others again gave solutions outside the range of θ as specified in the question. Some candidates yet again were either unable to handle
$\frac{1}{5}\left(\frac{\pi}{4}+k \times 2 \pi\right)$ or, when taking the fifth root of $e^{\left(\frac{\pi}{4}+k \times 2 \pi\right) i}$, wrote $e^{\left(\frac{\pi}{4}+k \times \frac{2 \pi}{5}\right) i}$

Question 2:	Exam report
$\begin{aligned} & \begin{aligned} (2 r+1)^{3}-(2 r-1)^{3}= & \left(8 r^{3}+12 r^{2}+6 r+1\right)-\left(8 r^{3}-12 r^{2}+6 r-1\right) \\ & 24 r^{2}+2 \end{aligned} \\ & \text { b) } 24 \sum_{r=1}^{n} r^{2}=\sum_{r=1}^{n}\left((2 r+1)^{3}-(2 r-1)^{3}-2\right)=\sum_{r=1}^{n}\left((2 r+1)^{3}-(2 r-1)^{3}\right)-\sum_{r=1}^{n} 2 \\ &= 3^{3}-1+5^{3}-3^{3}+7^{3}-5^{3}+\ldots+ \\ &(2 n-1)^{3}-(2 n-3)^{3}+(2 n+1)^{3}-(2 n-1)^{3}-2 n \\ &=-1+(2 n+1)^{3}-2 n=-1+8 n^{3}+12 n^{2}+6 n+1-2 n \\ &= 8 n^{3}+12 n^{2}+4 n \\ & 24 \sum_{r=1}^{n} r^{2}= 4 n\left(2 n^{2}+3 n+1\right)=4 n(2 n+1)(n+1) \\ & \sum_{r=1}^{n} r^{2}= \frac{1}{6} n(n+1)(2 n+1) \end{aligned}$	Again part (a) was answered well, but solutions to part (b) were mixed. Generally speaking, the best solutions came from candidates who rewrote part (a) as $r^{2}=\frac{1}{24}\left((2 r+1)^{3}-(2 r-1)^{3}-2\right)$ before making their summation. Those candidates who preferred to use part (a) in the form in which it was printed either forgot to sum the 2's to make $2 n$ or only partially divided by 24 . A small number of candidates used the method of induction either through confusing the two methods of summation or by deliberately choosing an alternative method. Either way, no credit could be given.

a) $i)|-i-2 \sqrt{3}-i|=|-2 \sqrt{3}-2 i|=\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}}=\sqrt{12+4}=\sqrt{16}=4$

The circle C passes through the point where $z=-i$
ii) The centre of C is the point where $z=2 \sqrt{3}+i$

$$
\begin{aligned}
& \arg (z+i)= \arg (2 \sqrt{3}+i+i)=\arg (2 \sqrt{3}+2 i) \\
& \operatorname{Tan}^{-1}\left(\frac{2}{2 \sqrt{3}}\right)=\frac{\pi}{6}
\end{aligned}
$$

The half-line L passes through the centre of C .
b)
c)

Lack of clear evidence that candidates understood what they were doing in part (a) caused a loss of marks for this part of the question. Methods varied. Those candidates who turned this part of the question into a coordinate geometry exercise probably provided the clearest solutions.
Those candidates who evaluated $|-2 i-2 \sqrt{3}|$ and $\arg (2 \sqrt{3}+2 i)$
provided less convincing solutions and in some cases evident error. For instance it was not uncommon to see $|-2 i-2 \sqrt{3}|$ written as $\sqrt{(2 \sqrt{3})^{2}-(2 i)^{2}}$ Part (b) on the whole was done well except that in some instances not all the results of part (a) were incorporated in the candidate's Argand diagram. Part (c) was done well but, if a mistake did occur, it was almost always that the shaded area would be bounded by the real axis rather than by a line parallel to the real axis through the point represented by the complex number $z=-i$.

Question 4:	Exam report
$z^{3}+i z^{2}+3 z-(1+i)=0$ has roots α, β, γ. a) i) $\alpha+\beta+\gamma=-i$ ii) $\alpha \beta+\alpha \gamma+\beta \gamma=3$ iii) $\alpha \beta \gamma=1+i$ b) i) $\begin{aligned} \alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & =(-i)^{2}-2 \times 3 \\ \alpha^{2}+\beta^{2}+\gamma^{2} & =-7 \end{aligned}$ ii) $\text { i) } \begin{aligned} \alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2} & =(\alpha \beta+\alpha \gamma+\beta \gamma)^{2}-2\left(\alpha^{2} \beta \gamma+\beta^{2} \alpha \gamma+\gamma^{2} \alpha \beta\right) \\ & =(\alpha \beta+\alpha \gamma+\beta \gamma)^{2}-2 \alpha \beta \gamma(\alpha+\beta+\gamma) \\ & =(3)^{2}-2 \times(1+i)(-i)=9+2 i+2 i^{2} \\ \alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2} & =7+2 i \end{aligned}$ iii) $\alpha^{2} \beta^{2} \gamma^{2}=(\alpha \beta \gamma)^{2}=(1+i)^{2}=\quad \alpha^{2} \beta^{2} \gamma^{2}=2 i$ c) $\begin{aligned} & z^{3}-(-7) z^{2}+(7+2 i) z-2 i=0 \\ & z^{3}+7 z^{3}+(7+2 i) z-2 i=0 \end{aligned}$	This question was probably the most popular question on this paper and certainly showed candidates well prepared to answer questions on this part of the specification. There were many fully correct solutions or correct apart from the odd sign error, the most common of which was to write down $(-i)^{2}$ as +1 instead of -1 . If there was a major loss of marks, it was usually in the inability of a candidate to evaluate $\Sigma \alpha^{2} \beta^{2}$ and in this case the candidate started by considering $\left(\sum \alpha^{2}\right)^{2}$ only to find that the evaluation of $\sum \alpha^{4}$ posed a serious problem.

Question 5:
The proposition P_{n}, for all $n \geq 1, \sum_{r=1}^{n}\left(r^{2}+1\right)(r!)=n(n+1)$!

is to be proven by induction
Base case: $n=1, \quad \sum_{r=1}^{1}\left(r^{2}+1\right)(r!)=\left(1^{2}+1\right)(1!)=2$

$$
\text { and } 1(1+1)!=2!=2
$$

the proposition P_{1} is true
Let's supppose that P_{k} is true, ie $\sum_{r=1}^{k}\left(r^{2}+1\right)(r!)=k(k+1)$!
Let's show that P_{k+1} is true, Let's show that $\sum_{r=1}^{k+1}\left(r^{2}+1\right)(r!)=(k+1)(k+2)$!
Responses to this question varied considerably. It was not, in general, that candidates did not understand the method of induction but rather that the algebraic
$\sum_{r=1}^{k+1}\left(r^{2}+1\right)(r!)=\sum_{r=1}^{k}\left(r^{2}+1\right)(r!)+\left((k+1)^{2}+1\right)(k+1)!$

$$
=k(k+1)!+\left(k^{2}+2 k+2\right)(k+1)!
$$

$$
=(k+1)!\left(k+k^{2}+2 k+2\right)
$$

$$
=(k+1)!\left(k^{2}+3 k+2\right)
$$

$$
=\underbrace{(k+1)!(k+2)}(k+1)
$$

$$
=\quad(k+2)!(k+1)
$$

Conclusion:

If the proposition is true for $n=k$, then it is true for $n=k+1$ and because it true for $n=1$, we can conclude according to the induction principal that the proposition is true for all n.

$$
\text { For all } n \geq 1, \sum_{r=1}^{n}\left(r^{2}+1\right)(r!)=n(n+1)!
$$ having managed to reach $(k+1)(k+2)(k+1)$!, abandoned their solutions not realising that the result was, in fact, $(k+1)(k+2)$!

Question 6:

a) $i)(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{3}=\operatorname{Cos} 3 \theta+i \operatorname{Sin} 3 \theta$
and also

$$
\begin{aligned}
(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)^{3} & =\operatorname{Cos}^{3} \theta+3 i \operatorname{Cos}^{2} \theta \operatorname{Sin} \theta-3 \operatorname{Cos} \theta \operatorname{Sin}^{2} \theta-i \operatorname{Sin}^{3} \theta \\
& =\left(\operatorname{Cos}^{3} \theta-3 \operatorname{Cos} \theta \operatorname{Sin}^{2} \theta\right)+i\left(3 \operatorname{Cos}^{2} \theta \operatorname{Sin} \theta-\operatorname{Sin}^{3} \theta\right)
\end{aligned}
$$

By identifying the real and imaginary parts, we have

$$
\operatorname{Cos} 3 \theta=\operatorname{Cos}^{3} \theta-3 \operatorname{Cos} \theta \operatorname{Sin}^{2} \theta
$$

ii) $\quad \operatorname{Sin} 3 \theta=3 \operatorname{Cos}^{2} \theta \operatorname{Sin} \theta-\operatorname{Sin}^{3} \theta$
iii) $\operatorname{Tan} 3 \theta=\frac{\operatorname{Sin} 3 \theta}{\operatorname{Cos} 3 \theta}=\frac{3 \operatorname{Cos}^{2} \theta \operatorname{Sin} \theta-\operatorname{Sin}^{3} \theta}{\operatorname{Cos}^{3} \theta-3 \operatorname{Cos} \theta \operatorname{Sin}^{2} \theta}$

Now divide the numerator and the denominator by $\operatorname{Cos}^{3} \theta$
$\operatorname{Tan} 3 \theta=\frac{3 \frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}-\frac{\operatorname{Sin}^{3} \theta}{\operatorname{Cos}^{3} \theta}}{1-3 \frac{\operatorname{Sin}^{2} \theta}{\operatorname{Cos}^{2} \theta}}=\frac{3 \operatorname{Tan} \theta-\operatorname{Tan}^{3} \theta}{1-3 \operatorname{Tan}^{2} \theta}=\frac{\operatorname{Tan}^{3} \theta-3 \operatorname{Tan} \theta}{3 \operatorname{Tan}^{2} \theta-1}$

Exam report

Responses to this question were rather disappointing. In part (a)(i), although most candidates correctly quoted $\cos 3 \theta+i \sin 3 \theta=(\cos \theta$ $+i \sin \theta)^{3}$, some immediately went on to use the multiple angle formulae instead of expanding ($\cos \theta+$ i $\sin \theta)^{3}$. Some of those candidates who expanded $(\cos \theta+i \sin \theta)^{3}$ did not seem to realise that the answers to parts (a)(i) and (a)(ii) were obtained by simply equating real and imaginary parts. Other candidates wrote i^{3} as $+i$ and so were unable to reach the correct result of part (a)(ii) and the printed result in part (a)(iii). Even those candidates who worked parts (a)(i) and (a)(ii) correctly in terms of $\sin \theta$ and $\cos \theta$, having written $\frac{\operatorname{Sin} 3 \theta}{\operatorname{Cos} 3 \theta}$, did not realise that the division of numerator and denominator by $\cos 3 \theta$ would give the printed result, but rather chose to use $\sin ^{2} \theta+\cos ^{2} \theta=1$ to express numerator and denominator in a different form, with no hope of reaching the printed result.
b) i) For $\theta=\frac{\pi}{12}$, we have

$$
\operatorname{Tan} \frac{3 \pi}{12}=\frac{\operatorname{Tan}^{3} \frac{\pi}{12}-3 \operatorname{Tan} \frac{\pi}{12}}{3 \operatorname{Tan}^{2} \frac{\pi}{12}-1} \text {. Let } x \text { be } \tan \frac{\pi}{12}
$$

then $\quad 1=\frac{x^{3}-3 x}{3 x^{2}-1}$

$$
\begin{aligned}
& x^{3}-3 x=3 x^{2}-1 \\
& x^{3}-3 x^{2}-3 x+1=0
\end{aligned}
$$

ii) the other values of θ can be obtained by solving

$$
\begin{aligned}
& \quad \operatorname{Tan} 3 \theta=1: \\
& 3 \theta=\frac{\pi}{4}+k \pi \\
& \theta=\frac{\pi}{12}+k \times \frac{\pi}{3} \quad \text { for } k=0, \theta=\frac{\pi}{12} \\
& k=1, \theta=\frac{5 \pi}{12} \\
& k=2, \theta=\frac{9 \pi}{12}=\frac{3 \pi}{4}
\end{aligned}
$$

c) The three roots of the equation $x^{3}-3 x^{2}-3 x+1=0$

$$
\begin{gathered}
\text { are } \alpha=\operatorname{Tan} \frac{\pi}{12}, \beta=\operatorname{Tan} \frac{5 \pi}{12}, \gamma=\operatorname{Tan} \frac{3 \pi}{4}=-1 \\
\alpha+\beta+\gamma=3 \quad\left(x^{3}-3 x^{2}-3 x+1=0\right) \\
\operatorname{Tan} \frac{\pi}{12}+\operatorname{Tan} \frac{5 \pi}{12}-1=3 \\
\operatorname{Tan} \frac{\pi}{12}+\operatorname{Tan} \frac{5 \pi}{12}=4
\end{gathered}
$$

Although the question in part (b)(i) started with the word 'hence' few candidates took up the hint and replaced θ by $\frac{\pi}{12}$ in part (a)(iii).
If this part was attempted it was often done by solving the cubic equation in x to find its three roots and then by quoting that $\operatorname{Tan} \frac{\pi}{12}=2-\sqrt{3}$ and a corresponding result for $\operatorname{Tan} \frac{5 \pi}{12}$ and consequently using these results in part (c), a method not indicated by the question.

Question 7:	Exam report
a) $y=\ln \left(\operatorname{Tanh} \frac{x}{2}\right) x>0$	Although many candidates were able to write down $\frac{1}{\tanh \frac{x}{2}}$
$\frac{d y}{d x}=\frac{\frac{1}{2}\left(\sec h^{2} \frac{x}{2}\right)}{\operatorname{Tanh} \frac{x}{2}}=\frac{1}{2} \times \frac{1}{\operatorname{Cosh}^{2} \frac{x}{2}} \times \frac{\operatorname{Cosh} \frac{x}{2}}{\operatorname{Sinh} \frac{x}{2}}$	multiplied by $\frac{1}{2} \operatorname{sech}^{2} \frac{x}{2}$, fewer were able to combine these
$\frac{d y}{d x}=\frac{1}{2 \operatorname{Cosh} \frac{x}{2} \operatorname{Sinh} \frac{x}{2}}=\frac{1}{\operatorname{Sinh}\left(2 \times \frac{x}{2}\right)}=\frac{1}{\operatorname{Sinhx}}$	expressed $\frac{d y}{d x}$ entirely in terms of $\cosh \frac{x}{2}$ and $\sinh \frac{x}{2}$ $\frac{d y}{d x}=\operatorname{Cosech} x$
seed to baulk at the algebra which led to $\frac{1}{2 \operatorname{Sinh} \frac{x}{2} \cosh \frac{x}{2}}$.	

Question 7:continues	Exam report
	Part (b)(i) was done well and many candidates were able to arrive at $s=\ln \sinh 2-\ln \sinh 1$ in part (b)(ii) but were unable to reach the printed answer. If the integral of coth x was performed incorrectly, it was often by coth x being replaced by $\frac{1}{}$ followed by $\ln \tanh x$ or $\ln \cosh x$ as the $\overline{\tanh x}$ integral.

$\substack{\text { Component } \\ \text { Code } \\ \text { Component Title } \\ \text { MFP2 } \\ \text { CCE MATHEMATICS UNIT FP2 }}$	Maximum				Scaled Mark Grade Boundaries		
Scaled Mark	A	B	C	D	E		

END OF QUESTIONS

Question 1:

Exam report
a) $5 \sinh x+\cosh x=\frac{5}{2}\left(e^{x}-e^{-x}\right)+\frac{1}{2}\left(e^{x}+e^{-x}\right)$

$$
=\frac{5}{2} e^{x}+\frac{1}{2} e^{x}-\frac{5}{2} e^{-x}+\frac{1}{2} e^{-x}
$$

$5 \sinh x+\cosh x=3 e^{x}-2 e^{-x}$
b) $5 \sinh x+\cosh x+5=0$ becomes

$$
\begin{aligned}
& 3 e^{x}-2 e^{-x}+5=0 \quad\left(\times e^{x}\right) \\
& 3 e^{2 x}-2+5 e^{x}=0 \\
& 3 e^{2 x}+5 e^{x}-2=0 \\
&\left(3 e^{x}-1\right)\left(e^{x}+2\right)=0 \\
& e^{x}=\frac{1}{3} \text { or } e^{x}=-2 \text { (no solution) } \\
& x=\ln \left(\frac{1}{3}\right)
\end{aligned}
$$

Question 2:

$\frac{A}{r(r+1)}+\frac{B}{(r+1)(r+2)}=\frac{A(r+2)+B r}{r(r+1)(r+2)}=\frac{(A+B) r+2 A}{r(r+1)(r+2)}$
This expression is equal to $\frac{1}{r(r+1)(r+2)}$ for
$A+B=0 \quad$ and $\quad 2 A=1$
$A=\frac{1}{2}$ and $B=-\frac{1}{2}$
b) $\sum_{r=10}^{98} \frac{1}{r(r+1)(r+2)}=\sum_{r=10}^{98} \frac{1}{2 r(r+1)}-\frac{1}{2(r+1)(r+2)}$

$$
\begin{aligned}
= & \frac{1}{220}-\frac{1}{264}+\frac{1}{264}-\frac{1}{312}+\frac{1}{312}-\frac{1}{364}+ \\
& \ldots+\frac{1}{19012}-\frac{1}{19404}+\frac{1}{19404}-\frac{1}{19800}
\end{aligned}
$$

All the terms cancel except $\frac{1}{220}-\frac{1}{19800}=\frac{89}{19800}$
$z^{3}+q z+18-12 i=0$ has roots α, β, γ
a) $i) \alpha \beta \gamma=-18+12 i$
ii) $\alpha+\beta+\gamma=0$
b) $\beta+\gamma=2$

$$
\begin{gathered}
\text { i) } \alpha+\beta+\gamma=0 \\
\alpha+2=0 \\
\alpha=-2
\end{gathered}
$$

ii) $\alpha \beta \gamma=-18+12 i$

$$
-2 \beta \gamma=-18+12 i
$$

$$
\beta \gamma=9-6 i
$$

$$
\begin{aligned}
&i i i) \\
& q=\alpha \beta+\alpha \gamma+\beta \gamma=\alpha(\beta+\gamma)+\beta \gamma \\
& q=-2 \times(2)+9-6 i=5-6 i
\end{aligned}
$$

c) $\beta=k i$ and it is a root of $z^{3}+q z+18-12 i=0$

$$
\begin{aligned}
& \text { so }(k i)^{3}+(5-6 i) \times(k i)+18-12 i=0 \\
& -i k^{3}+5 k i+6 k+18-12 i=0 \\
& \quad(6 k+18)+i\left(-k^{3}+5 k-12\right)=0 \\
& \quad 6 k+18=0 \text { and }-k^{3}+5 k-12=0 \\
& \quad k=-3 \text { and }-(-3)^{3}+5 \times-3-12=27-15-12=27-27=0
\end{aligned}
$$

so $\alpha=-2, \beta=-3 i, \gamma=2-\beta=2+3 i$

Question 4:

Exam report

a) $|z+5-i|=\sqrt{2}$

Let $z_{A}=-5+i$ and $A\left(z_{A}\right)$
C is the circle centre A, radius $r=\sqrt{2}$
b) $\arg (z+2 i)=\arg (-4+2 i+2 i)=\arg (-4+4 i)$

$$
\operatorname{Tan}^{-1}\left(\frac{4}{-4}\right)=\operatorname{Tan}^{-1}(-1)=\frac{3 \pi}{4}
$$

$z_{1}=-4+2 i$ lies on L
c) $i)|-4+2 i+5-i|=|1+i|=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2}$
z_{1} lies on C
ii) L touches (is tangent to) C
if L is perpendicular to the radius

$$
\begin{aligned}
& \arg \left(z_{1}-z_{A}\right)=\arg (1+i)=\frac{\pi}{4} \\
& \arg \left(z_{1}+2 i\right)=\frac{3 \pi}{4} \\
& \arg \left(z_{1}+2 i\right)-\arg \left(z_{1}-z_{A}\right)=\frac{3 \pi}{4}-\frac{\pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

L is perpendicular to the radius,
L is tangent to the circle C .

Question 5:

a) $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
$\cosh ^{2} x=\frac{1}{4}\left(e^{x}+e^{-x}\right)^{2}=\frac{1}{4}\left(e^{2 x}+e^{-2 x}+2\right)$
$\cosh ^{2} x=\frac{1}{2} \times \frac{1}{2}\left(e^{2 x}+e^{-2 x}\right)+\frac{1}{2}$
$\cosh ^{2} x=\frac{1}{2} \cosh 2 x+\frac{1}{2}$
$\cosh 2 x=2 \cosh ^{2} x-1$
b)i) $S=2 \pi \int_{0}^{\ln a} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \pi \int_{0}^{\ln a} \cosh x \times \sqrt{1+\operatorname{sech}^{2} x} d x$

$$
S=2 \pi \int_{0}^{\ln a} \cosh x \times \cosh x d x=2 \pi \int_{0}^{\ln a} \cosh ^{2} x d x
$$

ii) $S=2 \pi \int_{0}^{\ln a} \frac{1}{2} \cosh 2 x+\frac{1}{2} d x=2 \pi\left[\frac{1}{4} \sinh 2 x+\frac{1}{2} x\right]_{0}^{\ln a}$

$$
=2 \pi\left(\frac{1}{4} \sinh (2 \ln a)+\frac{1}{2} \ln a-0\right)
$$

$S=\pi\left(\frac{1}{2} \sinh \left(\ln a^{2}\right)+\ln a\right)=\pi\left(\frac{1}{2} \times \frac{1}{2}\left(e^{\ln a^{2}}-e^{-\ln a^{2}}\right)+\ln a\right)$
$S=\pi\left(\frac{1}{4}\left(a^{2}-\frac{1}{a^{2}}\right)+\ln a\right)=\pi\left(\frac{a^{4}-1}{4 a^{2}}+\ln a\right)$

Question 6:

$$
\begin{aligned}
& I=\int_{-1}^{5} \frac{d x}{\sqrt{32+4 x-x^{2}}} \\
& 32+4 x-x^{2}=-(x-2)^{2}+4+32 \\
&=36-(x-2)^{2}
\end{aligned}
$$

$I=\int_{-1}^{5} \frac{d x}{\sqrt{32+4 x-x^{2}}}=\int_{-1}^{5} \frac{d x}{\sqrt{36-(x-2)^{2}}} \quad u=x-2$ and $d x=d u$
when $x=-1, u=-3$
when $x=5, u=3$
$I=\int_{-3}^{3} \frac{d u}{\sqrt{36-u^{2}}}=\left[\operatorname{Sin}^{-1}\left(\frac{u}{6}\right)\right]_{-3}^{3}=\operatorname{Sin}^{-1}\left(\frac{1}{2}\right)-\operatorname{Sin}^{-1}\left(-\frac{1}{2}\right)=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}$
a) n and $n+1$ are CONSECUTIVE numbers so one of them is EVEN
therefore $n(n+1)$ is a multiple of 2
b) i) $f(n)=n\left(n^{2}+5\right)$

$$
\begin{aligned}
f(k+1)-f(k) & =(k+1)\left((k+1)^{2}+5\right)-k\left(k^{2}+5\right) \\
& =(k+1)\left(k^{2}+2 k+1+5\right)-k\left(k^{2}+5\right) \\
& =(k+1)\left(k^{2}+2 k+6\right)-k\left(k^{2}+5\right) \\
& =k^{3}+2 k^{2}+6 k+k^{2}+2 k+6-k^{3}-5 k \\
& =3 k^{2}+3 k+6=3(k+1)(k+2)
\end{aligned}
$$

$(k+1)(k+2)$ is a multiple of 2 as the product of two consecutive numbers so $f(k+1)-f(k)$ is a multiple of 6
ii) Proposition P_{n}, for all $n \geq 1, f(n)$ is a multiple of 6 is to be proven by induction
base case: $n=1$

$$
f(1)=1 \times\left(1^{2}+5\right)=6 \text { which is a multiple of } 6 \text {. }
$$

P_{1} is true.
Let's suppose that for $n=k, f(k)$ is a multiple of 6
Let's sahow that $f(k+1)$ is then a multiple of 6 .
$f(k+1)=3(k+1)(k+2)-f(k)$
$3(k+1)(k+2)$ is a multiple of 6
$f(k)$ is a multiple of 6 (by hypothesis)
so $f(k+1)$ is a multiple of 6 (as the difference of two multiples of 6)

Conclusion:
If P_{k} is true then P_{k+1} is true. because P_{1} is true,
we can conclude according to the induction principle
that the proposition is true for all $n \geq 1$.

Question 8:	Exam report
a)i) $\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)=z^{2}-1+1-\frac{1}{z^{2}}=z^{2}-\frac{1}{z^{2}}$	
ii) $\left(z+\frac{1}{z}\right)^{4}\left(z-\frac{1}{z}\right)^{2}=\left(z+\frac{1}{z}\right)^{2} \times\left[\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)\right]^{2}$	
$=\left(z^{2}+\frac{1}{z^{2}}+2\right)\left(z^{2}-\frac{1}{z^{2}}\right)^{2}$	
$=\left(z^{2}+\frac{1}{z^{2}}+2\right)\left(z^{4}+\frac{1}{z^{4}}-2\right)$	
$=z^{6}+\frac{1}{z^{2}}-2 z^{2}+z^{2}+\frac{1}{z^{6}}-\frac{2}{z^{2}}+2 z^{4}+\frac{2}{z^{4}}-4$	
$=\left(z^{6}-\frac{1}{z^{6}}\right)-\left(z^{2}+\frac{1}{z^{2}}\right)+2\left(z^{4}+\frac{1}{z^{4}}\right)-4$	

Question 8:continues	Exam report
b)i) $z^{n}+\frac{1}{z^{n}}=(\cos n \theta+i \sin n \theta)+(\cos n \theta-i \sin n \theta)=2 \cos n \theta$ ii) $z^{n}-\frac{1}{z^{n}}=(\cos n \theta+i \sin n \theta)-(\cos n \theta-i \sin n \theta)=2 i \sin n \theta$ c) $\cos ^{4} \theta \sin ^{2} \theta=\left(\frac{1}{2^{4}}\left(z+\frac{1}{z}\right)^{4}\right)\left(\frac{1}{(2 i)^{2}}\left(z-\frac{1}{z}\right)^{2}\right)$ $=-\frac{1}{64}\left(z+\frac{1}{z}\right)^{4}\left(z-\frac{1}{z}\right)^{2}$ $=-\frac{1}{64}\left[\left(z^{6}-\frac{1}{z^{6}}\right)-\left(z^{2}+\frac{1}{z^{2}}\right)+2\left(z^{4}+\frac{1}{z^{4}}\right)-4\right]$ $=-\frac{1}{64}(2 \cos 6 \theta-2 \cos 2 \theta+4 \cos 4 \theta-4)$ $=-\frac{1}{32} \cos 6 \theta-\frac{1}{16} \cos 4 \theta+\frac{1}{32} \cos 2 \theta+\frac{1}{16}$ $\begin{gathered} \text { d) } \int \cos ^{4} \theta \sin ^{2} \theta d \theta=\int-\frac{1}{32} \cos 6 \theta-\frac{1}{16} \cos 4 \theta+\frac{1}{32} \cos 2 \theta+\frac{1}{16} d \theta \\ =-\frac{1}{192} \sin 6 \theta-\frac{1}{64} \sin 4 \theta+\frac{1}{64} \sin 2 \theta+\frac{1}{16} \theta+c \end{gathered}$	

7 (a)	Show that	
	$\frac{\mathrm{d}}{\mathrm{dx} x}\left(\cosh ^{-1} \frac{1}{x}\right)=\frac{-1}{x \sqrt{1-x^{2}}}$	(3 marks)
(b)	A curve has equation	
	$y=\sqrt{1-x^{2}}-\operatorname{coshh}^{-1} \frac{1}{x} \quad(0<x<1)$	
	Show that:	
	(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{1-x^{2}}}{x}$;	(4 marks)
	(ii) the length of the arc of the curve from the point wher $x=\frac{3}{4} \text { is } \ln 3 .$	nt where (5 marks)
8 (a)	Show that	
	$\left(z^{4}-\mathrm{e}^{\mathrm{i} \theta}\right)\left(z^{4}-\mathrm{e}^{-i \theta}\right)=z^{8}-2 z^{4} \cos \theta+1$	(2 marks)
(b)	Hence solve the equation	
	$z^{8}-z^{4}+1=0$	
	giving your answers in the form $\mathrm{e}^{\mathrm{i} \phi}$, where $-\pi<\phi \leqslant \pi$.	(6 mark.s)
(c)	Indicate the roots on an Argand diagram.	(3 marks)

end of questions

AQA - Further pure 2 - Jan 2009 - Answers

Question 1:	Exam report
$\begin{aligned} a) 1+2 \sinh ^{2} \theta & =1+2 \times \frac{1}{4}\left(e^{\theta}-e^{-\theta}\right)^{2}=1+\frac{1}{2}\left(e^{2 \theta}+e^{-2 \theta}-2\right) \\ 1+2 \sinh ^{2} \theta & =\frac{1}{2}\left(e^{2 \theta}+e^{-2 \theta}\right)=\cosh 2 \theta \end{aligned}$ b) $3 \cosh 2 \theta=2 \sinh \theta+11$ $\begin{aligned} & 3\left(1+2 \sinh ^{2} \theta\right)=2 \sinh \theta+11 \\ & 3+6 \sinh ^{2} \theta-2 \sinh \theta-11=0 \\ & 6 \sinh ^{2} \theta-2 \sinh \theta-8=0 \\ & 3 \sinh ^{2} \theta-\sinh \theta-4=0 \\ & (3 \sinh \theta-4)(\sinh \theta+1)=0 \\ & \sinh \theta=\frac{4}{3} \text { or } \sinh \theta=-1 \\ & \theta=\sinh ^{-1}\left(\frac{4}{3}\right)=\ln \left(\frac{4}{3}+\sqrt{1+\left(\frac{4}{3}\right)^{2}}\right)=\ln 3 \\ & \text { or } \theta=\sinh ^{-1}(-1)=\ln \left(-1+\sqrt{1+(-1)^{2}}\right)=\ln (-1+\sqrt{2}) \end{aligned}$	Part (a) was reasonably well done, although in a number of cases candidates quoted other relationships between $\cosh \theta$ and $\sinh \theta$ and so were unable to gain credit. In part (b), two points are worthy of note: firstly some candidates thought that $\sinh \theta=-1$ had no solutions as a negative sign occurred, and secondly a substantial number of candidates solved $\sinh \theta=\frac{4}{3}$ and $\sinh \theta=-1$ by using the exponential form for $\sinh \theta$ followed by the solving of a quadratic equation in e^{θ} instead of merely quoting the formula for $\sinh ^{-1}(x)$ given on page 5 of the formulae booklet.

Question 2:
$a)\|z-4 i\| \leq 2$ is the region inside the circle
centre $\mathrm{A}(0,4)$ and radius $r=2$.
b) Draw the two tangents to the circle from the
origin O. We call the points of contact $\mathrm{P}_{1}\left(z_{1}\right)$ and $P_{2}\left(z_{2}\right)$.

Use trig.properties to work out the argument of z_{1} and z_{2} : In the right-angle triangle $\mathrm{OAP}_{1}, \sin \alpha=\frac{o p p}{h y p}=\frac{2}{4}=\frac{1}{2}$

$$
\text { so } \alpha=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

$\arg \left(z_{1}\right)=\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$ and $\quad \arg \left(z_{2}\right)=\arg \left(z_{1}\right)+2 \alpha=\frac{2 \pi}{3}$

$$
\frac{\pi}{3} \leq \arg (z) \leq \frac{2 \pi}{3}
$$

Exam report

Part (a) was well done apart from a few candidates who drew their circle at the mirror image of its correct position in the x-axis. In part (b), although candidates realised that the tangents needed to be drawn from the origin to the circle in order to find the possible value of $\arg z$, few were able to manage the trigonometry involved to reach the correct range, and it was not uncommon to see $\tan ^{-1}\left(\frac{4}{2}\right)$ appearing, suggesting that candidates thought that these points were in fact the points of intersection of the circle with the line through its centre parallel to the x-axis.
a) $f(r)-f(r-1)=\frac{1}{4} r^{2}(r+1)^{2}-\frac{1}{4}(r-1)^{2} r^{2}$

$$
\begin{aligned}
& =\frac{1}{4} r^{2}\left[(r+1)^{2}-(r-1)^{2}\right] \\
& =\frac{1}{4} r^{2}\left(r^{2}+2 r+1-r^{2}+2 r-1\right) \\
& =\frac{1}{4} r^{2}(4 r)
\end{aligned}
$$

$$
f(r)-f(r-1)=r^{3}
$$

b) $\sum_{r=n}^{2 n} r^{3}=\sum_{r=n}^{2 n} f(r)-f(r-1)=f(n)-f(n-1)+$

$$
\begin{aligned}
& f(n+1)-f(n)+ \\
& f(n+2)-f(n+1)+ \\
& \ldots .+ \\
& f(2 n-1)-f(2 n-2)+ \\
& f(2 n)-f(2 n-1)
\end{aligned}
$$

all the terms cancel except $f(2 n)-f(n-1)$
$\sum_{r=n}^{2 n} r^{3}=f(2 n)-f(n-1)$
$=\frac{1}{4}(2 n)^{2}(2 n+1)^{2}-\frac{1}{4}(n-1)^{2} n^{2}$
$=\frac{1}{4} n^{2}\left[4(2 n+1)^{2}-(n-1)^{2}\right]$
$=\frac{1}{4} n^{2}\left(16 n^{2}+4+16 n-n^{2}+2 n-1\right)$
$=\frac{1}{4} n^{2}\left(15 n^{2}+18 n+3\right)=\frac{3}{4} n^{2}\left(5 n^{2}+6 n+1\right)$
$\sum_{r=n}^{2 n} r^{3}=\frac{3}{4} n^{2}(5 n+1)(n+1)$

There were many good and completely correct solutions to this question. Virtually all candidates completed part (a) correctly, and in part (b), if an error occurred, it was usually in the selection of an incorrect value for r at one end. For instance, $\sum_{r=n}^{2 n} r^{3}$ was taken to be $\mathrm{f}(2 n)-\mathrm{f}(n)$ rather than $\mathrm{f}(2 n)-\mathrm{f}(n-1)$.

Question 4:
a) $(\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\alpha \gamma+\gamma \beta)$

$$
1^{2}=-5+2(\alpha \beta+\alpha \gamma+\gamma \beta)
$$

so $\alpha \beta+\alpha \gamma+\gamma \beta=3$
b) $(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\alpha \gamma-\gamma \beta\right)=\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \gamma \beta$

$$
1 \times(-5-3)=-23-3 \alpha \beta \gamma
$$

so $\alpha \beta \gamma=-5$
c) $z^{3}-(\alpha+\beta+\gamma) z^{2}+(\alpha \beta+\alpha \gamma+\gamma \beta) z-\alpha \beta \gamma=0$

$$
z^{3}-z^{2}+3 z+5=0
$$

d) $\alpha^{2}+\beta^{2}+\gamma^{2}=-5<0$ so at least one of the root is complex;

And because the coefficients of the equation are REAL,
its conjugate is also a root.
e) $z^{3}-z^{2}+3 z+5=0$ has an "obvious"root : $\alpha=-1$
indeed: $(-1)^{3}-(-1)^{2}+3 \times(-1)+5=-1-1-3+5=0$
Factorise the polynomial $(z+1)\left(z^{2}-2 z+5\right)=0$
Discriminant of $z^{2}-2 z+5: \quad(-2)^{2}-4 \times 1 \times 5=-16=(4 i)^{2}$
$\beta=\frac{2+4 i}{2}$ and $\gamma=\frac{2-4 i}{2}$
$\alpha=-1, \beta=1+2 i, \gamma=1-2 i$

Parts (a), (b) and (c) of this question were well done apart from odd sign errors here and there. However, there was much woolly thinking in part (d). For instance, it was not uncommon to see statements such as 'the cubic equation has real coefficients so it must have one real root and a conjugate pair of non-real roots' or 'since $\alpha^{2}+\beta^{2}+\gamma^{2}=-5$, two of α, β and γ must be nonreal'.

Part (e) was poorly answered: it just did not seem to occur to candidates to use the factor theorem to find the real root. Instead they tried to use the symmetric relations between the roots in order to find them. This in turn led to heavy algebra with final abandonment.

Question 5:	Exam report
$\begin{aligned} & \text { a) } u=\cosh ^{2} x, \quad \frac{d u}{d x}=2 \sinh x \cosh x=\sinh 2 x \\ & d u=\sinh 2 x d x \\ & \text { when } x=0, u=1 \\ & \quad x=1, u=\cosh ^{2} 1 \\ & I=\int_{0}^{1} \frac{\sinh 2 x}{1+\cosh ^{4} x} d x=\int_{1}^{\cosh ^{2} 1} \frac{d u}{1+u^{2}}=\left[\tan ^{-1} u\right]_{1}^{\cosh ^{2} 1} \\ & I=\tan ^{-1}\left(\cosh ^{2} 1\right)-\tan ^{-1}(1) \\ & I=\tan ^{-1}\left(\cosh ^{2} 1\right)-\frac{\pi}{4} \end{aligned}$	Part (a) was usually correctly done. However, responses to part (b) were mixed. It was clear that not all candidates were familiar with $\int \frac{d u}{1+u^{2}}$, even though it is given on page 8 of the formulae booklet. A significant number of candidates gave this integral as $\ln \left(1+\cosh ^{4} x\right)$.

Question 6:
The proposition P_{n} :
for $n \geq 1, \frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\frac{2^{3} \times 3}{4 \times 5}+\ldots+\frac{2^{n} \times n}{(n+1) \times(n+2)}=\frac{2^{n+1}}{n+2}-1$
is to be proven by induction
Base case: $n=1$
LHS : $\frac{2 \times 1}{2 \times 3}=\frac{2}{6}=\frac{1}{3}$ and RHS: $\frac{2^{1+1}}{1+2}-1=\frac{4}{3}-1=\frac{1}{3}$
P_{1} is true

Suppose that for $n=k$ the propsotion P_{k} is true.
Let's show that the proposition P_{k+1} is true
ie let's show that $\frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\frac{2^{3} \times 3}{4 \times 5}+\ldots+\frac{2^{k+1} \times(k+1)}{(k+2) \times(k+3)}=\frac{2^{k+2}}{k+3}-1$
$\frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\frac{2^{3} \times 3}{4 \times 5}+\ldots+\frac{2^{k+1} \times(k+1)}{(k+2) \times(k+3)}$
$=\underbrace{\frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\frac{2^{3} \times 3}{4 \times 5}+\ldots+\frac{2^{k} \times k}{(k+1) \times(k+2)}}+\frac{2^{k+1} \times(k+1)}{(k+2) \times(k+3)}$
$=\quad \frac{2^{k+1}}{k+2}-1 \quad+\quad \frac{2^{k+1} \times(k+1)}{(k+2) \times(k+3)}$
$=\frac{2^{k+1}(k+3)+2^{k+1}(k+1)}{(k+2)(k+3)}-1=\frac{2^{k+1}(k+3+k+1)}{(k+2)(k+3)}-1$
$=\frac{2^{k+1}(2 k+4)}{(k+2)(k+3)}-1=\frac{2^{k+2}(k+2)}{(k+2)(k+3)}-1=\frac{2^{k+2}}{(k+3)}-1 \quad$ Q.E.D

Conclusion:

If the proposition is true for $n=k$, then it is true for $n=k+1$.
Because it is true for $n=1$, according to the induction principal we can conclude that is true true for all $\mathrm{n} \geq 1$.

One thing which became evident in the marking of this question was that although candidates were able to perform the mechanics of proof by induction they did not really understand the theory behind it. In a significant number of solutions not one reference to a series or the use of the Σ symbol occurred. Solutions started 'assume result true for $n=k$ ' followed by $\frac{2^{k+1}}{n+2}+1+\frac{2^{k+1}(k+1)}{(k+2)(k+3)}$ which was duly shown to be $\frac{2^{k+2}}{k+3}-1$

$$
\begin{aligned}
\text { a) } \begin{aligned}
\frac{d}{d x}\left(\cosh ^{-1} \frac{1}{x}\right) & =-\frac{1}{x^{2}} \times \frac{1}{\sqrt{\left(\frac{1}{x}\right)^{2}-1}}=-\frac{1}{x^{2} \sqrt{\frac{1-x^{2}}{x^{2}}}} \times \frac{\sqrt{x^{2}}}{\sqrt{x^{2}}} \\
& =-\frac{x}{x^{2} \sqrt{1-x^{2}}} \\
\frac{d}{d x}\left(\cosh ^{-1} \frac{1}{x}\right) & =-\frac{1}{x \sqrt{1-x^{2}}}
\end{aligned} .
\end{aligned}
$$

b) $y=\sqrt{1-x^{2}}-\cosh ^{-1} \frac{1}{x} \quad(0<x<1)$
i) $\frac{d y}{d x}=\frac{1}{2} \times-2 x \times \frac{1}{\sqrt{1-x^{2}}}+\frac{1}{x \sqrt{1-x^{2}}}=\frac{-x}{\sqrt{1-x^{2}}}+\frac{1}{x \sqrt{1-x^{2}}}$
$\frac{d y}{d x}=\frac{1-x^{2}}{x \sqrt{1-x^{2}}}=\frac{\sqrt{1-x^{2}}}{x}$
ii) $s=\int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{1+\frac{1-x^{2}}{x^{2}}} d x=\int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{\frac{1}{x^{2}}}$
$s=\int_{\frac{1}{4}}^{\frac{3}{4}} \frac{1}{x} d x=[\ln x]_{\frac{1}{4}}^{\frac{3}{4}}=\ln \left(\frac{3}{4}\right)-\ln \left(\frac{1}{4}\right)=\ln (3)$

Few candidates were able to supply a correct proof of part (a). The derivative of $\cosh ^{-1}\left(\frac{1}{x}\right)$ was almost invariably given as

followed by the correct answer after a small amount of spurious algebra.
Candidates fared better in part (b)(i), although it was a little surprising how many candidates were unable to differentiate $\sqrt{1-x^{2}}$ correctly. Those candidates who continued and attempted part (b)(ii) frequently produced a correct solution. Solutions to this part which went awry were those in which candidates wrote $\sqrt{1+\left(\frac{\sqrt{1-x^{2}}}{x}\right)^{2}}$ followed by $\sqrt{1+\frac{1-x}{x}}$ (which incidentally gave the correct answer!), or in some cases where candidates
arrived at $\sqrt{\frac{1}{x^{2}}}$ or $\sqrt{x^{-2}}$ but were unable to take the square root correctly.

\mid Question 8:
a) $\left(z^{4}-e^{i \theta}\right)\left(z^{4}-e^{-i \theta}\right)$ $=z^{8}-z^{4} e^{-i \theta}-z^{4} e^{i \theta}+1=z^{8}-z^{4}\left(e^{i \theta}+e^{-i \theta}\right)+1$ $=z^{8}-z^{4} \times 2 \cos \theta+1$
$\left(z^{4}-e^{i \theta}\right)\left(z^{4}-e^{-i \theta}\right)$ $=z^{8}-2 z^{4} \cos \theta+1$
b) for $\cos \theta=\frac{1}{2}\left(\theta=\frac{\pi}{3}\right), z^{8}-2 z^{4} \cos \theta+1$ becomes $z^{8}-z^{4}+1=0$

We can factorise as $\left(z^{4}-e^{i \frac{\pi}{3}}\right)\left(z^{4}-e^{-i \frac{\pi}{3}}\right)=0$
We need to solve $z^{4}=e^{ \pm i \frac{\pi}{3}}$

$$
\begin{gathered}
\left(r e^{i \phi}\right)^{4}=e^{ \pm i \frac{\pi}{3}} \\
r^{4} e^{4 i \phi}=e^{ \pm i \frac{\pi}{3}} \\
r=1 \text { or } 4 \phi= \pm \frac{\pi}{3}+k \times 2 \pi \\
\phi= \pm \frac{\pi}{12}+\frac{k \pi}{2}
\end{gathered}
$$

This gives $z=e^{ \pm i \frac{11 \pi}{12}}, e^{ \pm i \frac{5 \pi}{12}}, e^{ \pm i \frac{\pi}{12}}, e^{ \pm i \frac{9 \pi}{12}}$

Exam report

Part (a) was quite well done, although for some reason the multiplication of the brackets sometimes resulted in $z^{8}-2\left(\mathrm{e}^{\mathrm{i} \mathrm{\theta}}+\mathrm{e}^{-i \theta}\right) z^{4}+1$ followed by the printed result. In part (b), a number of candidates lost some marks through attempting to use an 'otherwise' method instead of the 'hence' method as directed. Those candidates arriving at $z^{4}=e^{i \frac{\pi}{3}}$ usually went on to solve the given equation correctly.
The Argand diagram, however, was poorly drawn. Frequently no circle was indicated and roots appeared at different distances from the origin, and in many cases candidates seemed to think that the eight roots were equally spaced round the origin
c)

Component Code	Component Title	Maximum	Scaled Mark Grade Boundaries			
MFP2	GCE MATHEMATICS UNIT FP2	Scaled Mark	A	B	C	D
M	75	60	52	44	36	29

6 (a) Two points, A and B, on an Argand diagram are represented by the complex numbers
6 (a) Two points, A and B, on an Argand diagram are represented by the complex numbers $\quad \begin{aligned} & 2+3 \mathrm{i} \text { and }-4-5 \mathrm{i} \text { respectively. Given that the points } A \text { and } B \text { are at the ends of a } \\ & \text { diameter of a circle } C_{1} \text {, express the equation of } C_{1} \text { in the form }\left|z-z_{0}\right|=k \text {. }\end{aligned}$ (4 marks) (b) A second circle, C_{2}, is represented on the Argand diagram by the equation $|z-5+4 i|=4$. Sketch on one Argand diagram both C_{1} and C_{2}.
(c) The points representing the complex numbers z_{1} and z_{2} lie on C_{1} and C_{2} respectively
 your answer in the form $a+b \sqrt{5}$. (5 marks)
 is such that, at every point P on the curve,
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} s$

(a) (i) Show that
(iii) Hence find the cartesian equation of the curve
(ii) Hence show that
$\begin{aligned} \frac{\mathrm{d} s}{\mathrm{~d} x} & =\frac{1}{2} \sqrt{4+s^{2}} \\ s & =2 \sinh \frac{x}{2}\end{aligned}$
$s=2 \sinh \frac{x}{2}$
Z
+
+
Z
Z
END OF QUESTIONS
(3 marks)
(sy.tou t)
s.
$=$
0
合

$\begin{array}{ll}4 & \text { (a) } \\ & \text { (b) } \\ \\ \\ & \text { (c) }\end{array}$	Sketch the graph of $y=\tanh x$.	(2 marks)
	Given that $u=\tanh x$, use the definitions of $\sinh x$ and $\cosh x$ in terms of e^{x} and e^{-x} to show that	
	$x=\frac{1}{2} \ln \left(\frac{1+u}{1-u}\right)$	(6 marks)
	(c) (i) Show that the equation	
	$3 \operatorname{sech}^{2} x+7 \tanh x=5$	
	can be written as	
	$3 \tanh ^{2} x-7 \tanh x+2=0$	(2 marks)
	(ii) Show that the equation	
	$3 \tanh ^{2} x-7 \tanh x+2=0$	
	has only one solution for x.	
	Find this solution in the form $\frac{1}{2} \ln a$, where a is an integer.	(5 marks)
5 (a)	Prove by induction that, if n is a positive integer, $(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta$	(5 marks)
(b)	Hence, given that	
	$z=\cos \theta+\mathrm{i} \sin \theta$	
show that		
	$z^{n}+\frac{1}{z^{n}}=2 \cos n 0$	(3 marks)
(c) Given further that $z+\frac{1}{z}=\sqrt{2}$, find the value of		
	$z^{10}+\frac{1}{z^{10}}$	(4 marks)

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method mark is dependent on M or m marks and is for accuracy		
A			
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
Vor ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, provided on the mark scheme.
Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidate
showing no working is that incorrect answers, however close, earn no marks. showing no working is that incorrect answers, however close, earn no marks.
Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct
answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.
Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
\[
4(c)(i)
\] \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \text { Use of } \tanh ^{2} x=1-\operatorname{sech}^{2} x \\
\& \text { Printed answer } \\
\& (3 \tanh x-1)(\tanh x-2)=0 \\
\& \tanh x \neq 2 \\
\& \tanh x=\frac{1}{3} \\
\& x=\frac{1}{2} \ln 2
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { E1 } \\
\text { A1 } \\
\text { M1 }
\end{gathered}
\] \& 2

5 \& | Attempt to factorise |
| :--- |
| Accept tanh $x \neq 2$ written down but not ignored or just crossed out |
| ft |

\hline \& Total \& \& 15 \&

\hline 5(a)

(b)

(c) \& | $\begin{aligned} & (\cos \theta+\mathrm{i} \sin \theta)^{k+1}= \\ & (\cos k \theta+\mathrm{i} \sin k \theta)(\cos \theta+\mathrm{i} \sin \theta) \end{aligned}$ |
| :--- |
| Multiply out $=\cos (k+1) \theta+\mathbf{i} \sin (k+1) \theta$ |
| True for $n=1$ shown $P(k) \Rightarrow P(k+1)$ and $P(1)$ true $\begin{aligned} & \frac{1}{z^{n}}=\frac{1}{\cos n \theta+\mathrm{i} \sin n \theta}=\cos n \theta-\mathrm{i} \sin n \theta \\ & z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \\ & z+\frac{1}{z}=\sqrt{2} \\ & 2 \cos \theta=\sqrt{2} \\ & \theta=\frac{\pi}{4} \\ & z^{10}+\frac{1}{z^{10}}=2 \cos \left(\frac{10 \pi}{4}\right) \\ & \quad=0 \end{aligned}$ | \& M1

A1
A1
B1
E1
M1A1
A1
M1
A1
M1
A1F \& 5

3

4 \& | Any form Clearly shown |
| :--- |
| provided previous 4 marks earned |
| or $z^{-n}=\cos (-n \theta)+\mathrm{i} \sin (-n \theta)$ |
| SC $(\cos \theta+i \sin \theta)^{-n}$ |
| AG |
| quoted as $\cos n \theta-i \sin n \theta$ |
| earns M1A1 only |
| M0 for merely writing $z^{10}+\frac{1}{z^{10}}=2 \cos 10 \theta$ |

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

$\begin{gathered} \text { MFP2 (cont) } \\ \hline \mathbf{Q} \\ \hline \end{gathered}$	Solution			
		Marks	Total	Comments
7(a)(i)	$\frac{\mathrm{d} s}{\mathrm{~d} x}=\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}=\sqrt{1+\left(\frac{s}{2}\right)^{2}}$	M1A1		Allow M1 for $s=\left\lceil\sqrt{1+\left(\frac{s}{2}\right)^{2}} \mathrm{~d} x\right.$ then A1 for $\frac{d y}{d x}$
	$=\frac{1}{2} \sqrt{4+s^{2}}$	A1	3	AG
(ii)	$\int \frac{\mathrm{d} s}{\sqrt{4+s^{2}}}=\int \frac{1}{2} \mathrm{~d} x$	M1		For separation of variables; allow without integral sign
	$\sinh ^{-1} \frac{s}{2}=\frac{1}{2} x+C$	A1		Allow if C is missing
	$C=0$	A1		
	$s=2 \sinh \frac{1}{2} x$			AG if C not mentioned allow $\frac{3}{4}$
		A1	4	SC incomplete proof of (a)(ii), differentiating $s=2 \sinh \frac{x}{2} \text { to arrive at } \frac{\mathrm{d} s}{\mathrm{~d} x}=\frac{1}{2} \sqrt{4+s^{2}}$ allow M1A1 only (2/4)
(iii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sinh \frac{1}{2} x$	M1		
	$y=2 \cosh \frac{1}{2} x+C$	A1		Allow if C is missing
	$C=0$	A1	3	Must be shown to be zero and CAO
(b)	$\begin{aligned} y^{2} & =4\left(1+\sinh ^{2} \frac{x}{2}\right) \\ & =4+s^{2} \end{aligned}$	M1 A1	2	$\begin{aligned} & \text { Use of } \cosh ^{2}=1+\sinh ^{2} \\ & \text { AG } \end{aligned}$
	Total		12	
	TOTAL		75	

Question 1:	Exam report
a) $z=2 e^{i \frac{\pi}{12}}$ so $z^{4}=\left(2 e^{i \frac{\pi}{12}}\right)^{4}=16 e^{i \frac{\pi}{3}}$	
$z^{4}=16\left(\cos \frac{\pi}{3}+i \operatorname{Sin} \frac{\pi}{3}\right)=16\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$	
$z^{4}=8(1+i \sqrt{3}) \quad a=8$	
$b)$ let's write $z=r e^{i \theta}, z^{4}=r^{4} e^{i 4 \theta}$	
z is a solution of this equation when	This question proved to be slightly more demanding for candidates than had been anticipated. The main difficulty in part (a) was that, having written down $r^{4}=16$ and $4 \theta=\frac{\pi}{3}+k 2 \pi$ unsure about how to proceed, and they either abandoned this part of the question at that point or then tried to manipulate $a(1+i \sqrt{3})$ with little success.
$r=2$ and $\theta=\frac{\pi}{12}+k \frac{\pi}{2} \quad k=-2,-1,0,1$	
Solutions are $: 2 e^{i \frac{\pi}{12}}, 2 e^{-i \frac{5 \pi}{12}}, 2 e^{-i \frac{11 \pi}{12}}, 2 e^{i \frac{7 \pi}{12}}$	

\mid Question 2:
a) $\frac{A}{2 r-1}+\frac{B}{2 r+1}$ $=\frac{A(2 r-1)+B(2 r+1)}{(2 r+1)(2 r-1)}$ $=\frac{(2 A+2 B) r+A-B}{4 r^{2}-1}$
this is equal to $\frac{1}{4 r^{2}-1}$ when $A-B=1$ and $2 A+2 B=0$

$$
A=\frac{1}{2} \text { and } B=-\frac{1}{2}
$$

b) $\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}=\sum_{r=1}^{n} \frac{1}{2(2 r-1)}-\frac{1}{2(2 r+1)}=\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+$

$$
\begin{aligned}
& \frac{1}{10}-\frac{1}{14}+\ldots+ \\
& \frac{1}{4 n-6}-\frac{1}{4 n-2}+ \\
& \frac{1}{4 n-2}-\frac{1}{4 n+2}
\end{aligned}
$$

All the terms cancel except $\frac{1}{2}-\frac{1}{4 n+2}$
$\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}=\frac{1}{2}-\frac{1}{4 n+2}=\frac{4 n+2-2}{2(4 n+2)}=\frac{4 n}{4(2 n+1)}=\frac{n}{2 n+1}$
c) $\frac{1}{2}-\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}<0.001$

$$
\begin{aligned}
& \frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4 n+2}\right)<0.001 \quad \frac{1}{4 n+2}<0.001 \\
& 4 n+2>\frac{1}{0.001} \quad \begin{aligned}
4 n & >998 \\
n & >249.5 \quad n=250
\end{aligned}
\end{aligned}
$$

Almost all candidates produced correct solutions to parts (a) and (b), apart from the odd arithmetical slip.

There was, however, less success with part (c). Few candidates worked with inequalities (although the use of the equals sign was condoned) and the lack of ability to solve an equation in n with decimals involved led to the solutions for n which common sense should have told candidates was impossible. It was not infrequent to see n as a decimal less than unity and, even when candidates, using equalities, arrived at 249.5, they left it as their final answer, not considering that n had to be integral.

Question 3:	Exam report
$z^{3}+p z^{2}+25 z+q=0 \text { has roots } \alpha, \beta, \gamma$ p and q are real numbers.	Responses to this question were good, and the vast majority of candidates produced a completely correct solution. If errors did occur they were usually arithmetic, although occasionally p and q were given as $\Sigma \alpha$ and $\alpha \beta \gamma$ respectively with no consideration being given to their sign.
a) $\alpha=2-3 i$.	
Because the coefficients of the equation are REAL numbers, $\alpha *$ is also a root : $\beta=2+3 i$	
b)i) $\alpha \beta=(2-3 i)(2+3 i)=4+9=13$	
ii) $\alpha \beta+\alpha \gamma+\beta \gamma=25$	
$\alpha \beta+\gamma(\alpha+\beta)=25$	
$13+\gamma \times 4=25 \quad \gamma=3$	
iii) $\alpha \beta \gamma=-q=13 \times 3=39 \quad q=-39$	
$\alpha+\beta+\gamma=-p=4+3=7 \quad p=-7$	

Question 4:
a) $y=\tanh x$
b) $u=\tanh x=\frac{\sinh x}{\cosh x}=\frac{\frac{1}{2}\left(e^{x}-e^{-x}\right)}{\frac{1}{2}\left(e^{x}+e^{-x}\right)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$

Factorise num. and den. by e^{-x}

$$
u=\tanh x=\frac{e^{-x}\left(e^{2 x}-1\right)}{e^{-x}\left(e^{2 x}+1\right)}=\frac{e^{2 x}-1}{e^{2 x}+1}=u
$$

Now make $\mathrm{e}^{2 x}$ the subject of the expression

$$
\left.\begin{array}{l}
\mathrm{e}^{2 x}-1=u\left(e^{2 x}+1\right) \\
e^{2 x}-u e^{2 x}=u+1 \\
e^{2 x}(1-u)=1+u \\
e^{2 x}=\frac{1+u}{1-u} \quad \text { so } 2 x
\end{array}\right)=\ln \left(\frac{1+u}{1-u}\right) 8 .
$$

c) i) $3 \operatorname{sech}^{2} x+7 \tanh x=5$ $\operatorname{sech}^{2} x=\frac{1}{\cosh ^{2} x}=1-\tanh ^{2} x$
$3\left(1-\tanh ^{2} x\right)+7 \tanh x=5$
$3-3 \tanh ^{2} x+7 \tanh x-5=0$
$3 \tanh ^{2} x-7 \tanh x+2=0$
ii) $3 \tanh ^{2} x-7 \tanh x+2=0$
$(3 \tanh x-1)(\tanh x-2)=0$
$\tanh x=\frac{1}{3}$ or $\tanh x=2($ no solution for all $x,-1 \leq \tanh x \leq 1)$

$$
x=\frac{1}{2} \ln \left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right)=x=\frac{1}{2} \ln (2)
$$

Exam report

Sketches were poor in part (a). Sometimes asymptotes were not drawn and even when they were sketches crossed or mingled with their asymptotes. It was not uncommon to see $\frac{\pi}{2}$ or π on candidates' diagrams showing some confusion with the graph of $y=\tan x$.

In part (b), provided that candidates knew what to do when they reached $u=\frac{e^{2 x}-1}{e^{2 x}+1}$
, they almost always went on to complete this part correctly, but a substantial number of solutions petered out at this point.

Part (c) was well done apart from the rejection of $\tanh x=2$ where lack of adequate reasoning for its rejection was often apparent.
a) The proposition P_{n} :for $\mathrm{n} \geq 0,(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ is to be proven by induction
base case: $n=0$
LHS : $(\cos \theta+i \sin \theta)^{0}=1$
$R H S: \cos 0+i \sin 0=1$

$$
P_{1} \text { is true }
$$

Let's suppose that for $n=k$ the proposition is true
Let's show that the proposition is true for $n=k+1$

$$
\text { i.e, Let's show that }(\cos \theta+i \sin \theta)^{k+1}=\cos (k+1) \theta+i \sin (k+1) \theta
$$

$(\cos \theta+i \sin \theta)^{k+1}=(\cos \theta+i \sin \theta)^{k} \times(\cos \theta+i \sin \theta)$

$$
\begin{aligned}
& =(\cos k \theta+i \sin k \theta) \times(\cos \theta+i \sin \theta) \\
& =(\cos k \theta \cos \theta-\sin k \theta \sin \theta)+i(\sin k \theta \cos \theta+\cos k \theta \sin \theta)
\end{aligned}
$$

Using the formulae $\cos (\mathrm{A}+\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}$

$$
\text { and } \sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{~B}+\cos \mathrm{A} \sin \mathrm{~B}
$$

$(\cos \theta+i \sin \theta)^{k+1}=\cos (k \theta+\theta)+i \sin (k \theta+\theta)$

$$
=\operatorname{Cos}(k+1) \theta+i \sin (k+1) \theta \text { Q.E.D }
$$

Conclusion:
If the proposition is true for $\mathrm{n}=\mathrm{k}$, then it is true for $\mathrm{n}=\mathrm{k}+1$.
Because it is true for $\mathrm{n}=0$, we can conclude, according to the induction principal that it is true for all $\mathrm{n} \geq 0$.

$$
\text { for all } \mathrm{n} \geq 0,(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

b) $z=\cos \theta+i \sin \theta \quad$ so $z^{n}=\cos n \theta+i \sin n \theta$

$$
\begin{aligned}
\frac{1}{z}=\cos (-\theta)+i \sin (-\theta) \quad \text { so } \frac{1}{z^{n}} & =\frac{1}{\cos (n \theta)+i \sin (n \theta)}=\frac{\cos (n \theta)-i \sin (n \theta)}{\cos ^{2}(n \theta)+\sin ^{2}(n \theta)} \\
& =\cos (n \theta)-i \sin (n \theta)
\end{aligned}
$$

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

c) $z+\frac{1}{z}=\sqrt{2}=2 \times \frac{\sqrt{2}}{2}=2 \cos \theta$ with $\theta=\frac{\pi}{4}$
so $z^{n}+\frac{1}{z^{n}}=2 \cos 10 \times \frac{\pi}{4}=2 \cos \frac{5 \pi}{2}=2 \cos \frac{\pi}{2}=0$
Question 6: \quad Exam report
a) $A\left(z_{A}\right)$ with $z_{A}=2+3 i$
$B\left(z_{B}\right)$ with $z_{B}=-4-5 i$

- The mid point of $\mathrm{AB}, \mathrm{I}\left(\mathrm{z}_{I}\right)$
with $z_{I}=\frac{1}{2}\left(z_{A}+z_{B}\right)=-1-i$
- the radius of the circle is $\left|z_{I}-z_{A}\right|$
$r_{1}=|-1-i-2-3 i|=|-3-4 i|=\sqrt{9+16}=5$
$C_{1}:\left|z-z_{I}\right|=r_{1} \quad|z+1+i|=5$
b) $C_{2}:|z-5+4 i|=4$
is the circle centre $\mathrm{J}\left(\mathrm{z}_{J}\right)$ with $z_{J}=5-4 i$
and radius $r_{2}=4$
c) Draw the line IJ, joining the centres.

This line crosses the circles at M_{1} and M_{2}
$M_{1} M_{2}=I J+r_{1}+r_{2}$
$=\left|z_{I}-z_{J}\right|+4+5=|-1-i-5+4 i|+9$
$=|-6+3 i|+9=\sqrt{36+9}+9$
$M_{1} M_{2}=9+3 \sqrt{5}$

The coordinates of the centre of the circle in part (a) were usually obtained, but the notation was often poor and it was not uncommon to see the centre of the circle C_{1} written as ($-1,-\mathrm{i}$) and, on the diagram, the scale on the y axis written as $i, 2 i, 3 i$ and so on. Also, radius and diameter were commonly confused.

Sketches in part (b) varied considerably, the best being those who used compasses for their circles. These were generally readable with centre and radius indicated. However, some candidates chose to draw their circles by plotting points and joining up by freehand. These sketches turned out to be very poor. The circle C_{2} was sometimes mistakenly drawn in the incorrect quadrant through choice of centre as $(-5,4)$ whilst others either failed to realise that the circle C_{2} touched the x-axis or drew a circle touching both axes.

In part (c), although many candidates placed z_{1} and z_{2} on their diagram in the approximately correct positions, not all realised that these points were at the intersections of C_{1} and C_{2} and the line $\mathrm{O}_{1} \mathrm{O}_{2}$, and even when they did, the finding of the length $\mathrm{O}_{1} \mathrm{O}_{2}$ proved to be beyond many.
a) $i) \frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\left(\frac{s}{2}\right)^{2}}=\sqrt{\frac{4+s^{2}}{4}}$

$$
\frac{d s}{d x}=\frac{1}{2} \sqrt{4+s^{2}}
$$

ii) $\frac{1}{\sqrt{4+s^{2}}} \frac{d s}{d x}=\frac{1}{2}$
$\int \frac{1}{\sqrt{4+s^{2}}} d s=\int \frac{1}{2} d x$
$\sinh ^{-1}\left(\frac{s}{2}\right)=\frac{1}{2} x+c$
When $x=0, s=0$ so $c=0$

$$
\frac{s}{2}=\sinh \frac{x}{2}
$$

$$
s=2 \sinh \frac{x}{2}
$$

iii) $\frac{d y}{d x}=\frac{1}{2} s=\sinh \frac{x}{2}$
$y=2 \cosh \frac{x}{2}+k$
$A(0,2)$ belongs to the curve so

$$
\begin{aligned}
& 2=2 \cosh 0+k \quad k=0 \\
& y=2 \cosh \frac{x}{2}
\end{aligned}
$$

b) $y^{2}=4 \cosh ^{2} \frac{x}{2}=4\left(1+\sinh ^{2} \frac{x}{2}\right)$
from a)ii) we know that $\sinh \frac{x}{2}=\frac{s}{2}$

$$
\begin{aligned}
& y^{2}=4\left(1+\frac{s^{2}}{4}\right) \\
& y^{2}=4+s^{2}
\end{aligned}
$$

Responses to part (a)(i) of this question were reasonable, although candidates starting with
$s=\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ tended to flounder.

Part (a)(ii) was very poorly attempted with the majority of candidates failing to realise that the way forward was to separate the variables in order to integrate. It was very common to see attempts at $\int \sqrt{4+s^{2}} d x$ treated as if it were $\int \sqrt{4+s^{2}} d s$.
Of the few that did manage to separate the variables, virtually no one considered the boundary conditions but merely assumed that the constant of integration was zero. Candidates were more successful with part (a)(iii) and, although the constant of integration was omitted in many cases, more candidates considered the boundary conditions than in part (a)(ii).

Those candidates who managed part (a)(iii) usually went on to work part (b) correctly.

Component Code	Component Title
MFP2	MATHEMATICS UNIT MFP2

3	The cubic equation	
	$2 z^{3}+p z^{2}+q z+16=0$	
	where p and q are real, has roots α, β and γ.	
	It is given that $\alpha=2+2 \sqrt{3} \mathrm{i}$.	
	(a) (i) Write down another root, β, of the equation.	(I mark)
	(ii) Find the third root, γ.	(3 marks)
	(iii) Find the values of p and q.	(3 marks)
	(b) (i) Express α in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<0 \leqslant \pi$.	(2 marks)
	(ii) Show that	
	$(2+2 \sqrt{3} \mathrm{i})^{n}=4^{n}\left(\cos \frac{n \pi}{3}+\mathrm{i} \sin \frac{n \pi}{3}\right)$	(2 marks)
	(iii) Show that	
	$\alpha^{n}+\beta^{n}+\gamma^{n}=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}$	
	where n is an integer.	(3 marks)
4 A curve C is given parametrically by the equations		
	$x=\frac{1}{2} \cosh 2 t, \quad y=2 \sinh t$	
(a) Express		
	$\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}$	
	in terms of cosht.	(6 marks)
(b) The arc of C from $t=0$ to $t=1$ is rotated through 2π radians about the x-axis.		
(i) Show that S, the area of the curved surface generated, is given by		
	$S=8 \pi \int_{0}^{1} \sinh t \cosh ^{2} t \mathrm{~d} t$	(2 marks)
	(ii) Find the exact value of S.	(2 marks)

 (I mark)
 (2 marks)
(2 marks)
(3 marks)
(4 marks)
8 (a) (i) Show that $\omega=\mathrm{e}^{\frac{2 \pi i}{7}}$ is a root of the equation $z^{7}=1$.
(ii) Write down the five other non-real roots in terms of ω.
(b) Show that
(c) Show that:
(i) $\omega^{2}+\omega^{5}=2 \cos \frac{4 \pi}{7}$;
(ii) $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$.
END OF QUESTIONS

$\begin{array}{ll}\text { 合 } & \text { है } \\ \text { ह } & \text { है } \\ n & n\end{array}$

(5 marks)
(3 marks)

Key to mark scheme and abbreviations used in marking
mark is for method
$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & & \\ m \text { or } \mathrm{dM} & \text { mark is dependent on one or more } \mathrm{M} \text { marks and is for method } \\ \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } \mathrm{m} \text { marks and is for accuracy }\end{array}\right]$
No Method Shown
Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these
and details will be provided on the mark scheme.
Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.
Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted
in the mark scheme, when it gains no marks.
Otherwise we require evidence of a correct method for any marks to be awarded.

(cont				
Q	Solution	Marks	Total	Comments
3(a)(i)	$\beta=2-2 \sqrt{3} \mathrm{i}$	B1	1	
(ii)	$\alpha \beta \gamma=-8$	M1		Allow for +8 but not ± 16
	$\alpha \beta=16$	B1		
	$\gamma=-\frac{1}{2}$	A1	3	
(iii)	$\begin{aligned} & \text { Either } \frac{-p}{2}=\alpha+\beta+\gamma \\ & \text { or } \frac{q}{2}=\alpha \beta+\beta \gamma+\gamma \alpha \end{aligned}$	M1		SC if failure to divide by 2 throughout, allow M1A1 for either p or q correct ft
	$p=-7, q=28$	$\begin{aligned} & \mathrm{A1F}, \\ & \mathrm{A1F} \end{aligned}$	3	ft incorrect γ
	Alternative to (a)(ii) and (a)(iii): $\left(z^{2}-4 z+16\right)(a z+b)$	(M1)		
	$\alpha \beta=16$	(B1)		
	$a=2, b=+1, \gamma=-\frac{1}{2}$	(A1)		
	Equating coefficients $p=-7$	$\begin{aligned} & \text { (M1) } \\ & \text { (A1F) } \end{aligned}$		
	$q=28$	(A1F)		
(b)(i)	$r=4, \theta=\frac{\pi}{3}$	B1,B1	2	
(ii)	$(2+2 \sqrt{3} i)^{n}=\left(4 \mathrm{e}^{\frac{\pi i}{3}}\right)^{n}$	M1		
	$=4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)$	A1	2	AG
(iii)	$(2-2 \sqrt{3} i)^{n}=4^{n}\left(\cos \frac{n \pi}{3}-i \sin \frac{n \pi}{3}\right)$	B1		
	$\begin{aligned} \alpha^{n} & +\beta^{n}+\gamma^{n}=4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right) \\ & +4^{n}\left(\cos \frac{n \pi}{3}-i \sin \frac{n \pi}{3}\right)+\left(-\frac{1}{2}\right)^{n} \end{aligned}$	M1		
	$=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}$	A1	3	AG
	Total		14	

Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(e^{\frac{2 \pi}{7}}\right)^{7}=e^{2 \pi i}=1$	B1	1	$\text { Or } z^{7}=\mathrm{e}^{2 \kappa \pi i} \quad z=\mathrm{e}^{\frac{2 \mathrm{ej}}{7}} k=1$
(ii)	Roots are $\omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, \omega^{6}$	M1A1	2	OE; M1A0 for incomplete set SC B1 for a set of correct roots in terms of $\mathrm{e}^{\mathrm{i} \theta}$
(b)	Sum of roots considered $=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\left\{\text { or } \sum_{r=0}^{6} \omega^{6}=\frac{\omega^{7}-1}{\omega-1}=0\right.$
(c)(i)	$\begin{aligned} \omega^{2}+\omega^{5} & =\mathrm{e}^{\frac{4 i i}{7}}+\mathrm{e}^{\frac{10 \pi i}{7}} \\ & =\mathrm{e}^{\frac{4 i}{7}}+\mathrm{e}^{\frac{-4 i \pi}{7}} \\ & =2 \cos \frac{4 \pi}{7} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	$\begin{aligned} & \text { Or } \cos \frac{4 \pi}{7}+i \sin \frac{4 \pi}{7}+\cos \frac{4 \pi}{7}-i \sin \frac{4 \pi}{7} \\ & \text { AG } \end{aligned}$
(ii)	$\omega+\omega^{6}=2 \cos \frac{2 \pi}{7} ; \omega^{3}+\omega^{4}=2 \cos \frac{6 \pi}{7}$ Using part (b) Result	$\begin{array}{\|c} \hline \mathrm{B} 1, \mathrm{B1} \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	4	Allow these marks if seen earlier in the solution AG
	Total		12	
	TOTAL		75	

Question 1:	Exam report
a) $\begin{aligned} \cosh ^{2} x-\sinh ^{2} x & =\frac{1}{4}\left(e^{x}+e^{-x}\right)^{2}-\frac{1}{4}\left(e^{x}-e^{-x}\right)^{2} \\ & =\frac{1}{4}\left(e^{2 x}+e^{-2 x}+2\right)-\frac{1}{4}\left(e^{2 x}+e^{-2 x}-2\right) \\ & =\frac{2}{4}+\frac{2}{4}=1 \end{aligned}$ b) i) $\begin{aligned} 5 \cosh ^{2} x+3 \sinh ^{2} x & =5 \cosh ^{2} x+3\left(\cosh ^{2} x-1\right) \\ & =8 \cosh ^{2} x-3 \end{aligned}$ ii) $y=\cosh x$ graph iii) 5 $\begin{aligned} & 5 \cosh ^{2} x+3 \sinh ^{2} x=9.5 \\ & 8 \cosh ^{2} x-3=9.5 \\ & \quad \cosh ^{2} x=1.5625 \\ & \quad \cosh x=1.25 \text { or } \cosh x=-1.25 \text { (no solution) } \\ & x=\cosh ^{-1}(1.25) \text { or } x=-\cosh ^{-1}(1.25) \\ & x=\ln \left(1.25+\sqrt{1.25^{2}-1}\right)=\ln 2 \text { or }-\ln 2 \end{aligned}$	Part (a) was generally well done apart from a few candidates who were unable to square $\frac{1}{2}\left(e^{x}+e^{-x}\right)$ successfully. Parts (b)(i) and (b)(ii) likewise were well done although $\pm \frac{1}{2}$ did appear on the x-axis of some sketches in part (b)(i). However in part (b)(iii), those candidates using the logarithmic formula for $\cosh ^{-1} x$ from the formulae booklet arrived at a single value of x, namely $\ln 2$, but failed to realise that the sketch in part (b)(ii) was intended to give them a hint that - $\ln 2$ was also a solution of the equation. On the other hand, candidates who used the exponential form of either $\cosh x$ or cosh2 x automatically produced both answers provided their working was correct, but some of these candidates were unable to handle the algebra leading to a quadratic equation in either e^{x} or $\mathrm{e}^{2 x}$.

Question 2:	Exam report
a) $i)\|z-4+2 i\|=4$ this is the circle centre $\mathrm{A}\left(\mathrm{z}_{A}\right)$ with $z_{A}=4-2 i$ and radius $r=4$ ii) $\|z\|=\|z-2 i\|$ This is the perpendicular bisector of the line OB with $\mathrm{z}_{B}=2 i$ and $z_{O}=0$ b) The region is the intersection of the inside of the circle and the half-plane containing B.	This question was well done overall and many candidates scored all of the eight available marks. Those candidates using mathematical instruments, i.e. ruler and compasses, produced superior solutions. Errors, when they did occur, were either the misplotting of the centre of the circle, or more commonly, the misplotting of the line. The commonest mistakes were either to draw the line through the point $(0,2)$ or more frequently through $(0,-1)$. If serious errors were made in the plotting of the line, loss of marks in the shading were almost inevitable.

Question 3:
$2 z^{3}+p z^{2}+q z+16=$ $\alpha=2+2 i \sqrt{3} \quad \quad$ has roots α, β, γ a) $i)$ Since the coefficients of the equation are real numbers,
a are REAL numbers

$$
\alpha^{*} \text { is also a root so } \beta=2-2 i \sqrt{3}
$$

ii) $\alpha \beta \gamma=-\frac{16}{2}=-8$

$$
\begin{gathered}
\alpha \beta \gamma=(2+2 i \sqrt{3})(2-2 i \sqrt{3}) \gamma=(4+12) \gamma=16 \gamma \\
\text { so } \gamma=-\frac{1}{2}
\end{gathered}
$$

$$
\text { iii) }-\frac{p}{2}=\alpha+\beta+\gamma=2+2 i \sqrt{3}+2-2 i \sqrt{3}-\frac{1}{2}
$$

$$
p=-2\left(4-\frac{1}{2}\right)=p=-7
$$

$$
\frac{q}{2}=\alpha \beta+\alpha \gamma+\beta \gamma=\alpha \beta+\gamma(\alpha+\beta)=16-\frac{1}{2} \times 4
$$

$$
q=28
$$

b)i) $\alpha=2+2 i \sqrt{3}=4\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$

$$
\alpha=4 e^{i \frac{\pi}{3}}
$$

ii) $\alpha^{n}=\left(4 e^{i \frac{\pi}{3}}\right)^{n}=4^{n} e^{i \frac{n \pi}{3}}=4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)$
iii) $\alpha^{n}+\beta^{n}+\gamma^{n}=$

$$
\begin{aligned}
& =4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)+4^{n}\left(\cos \frac{n \pi}{3}-i \sin \frac{n \pi}{3}\right)+\left(-\frac{1}{2}\right)^{n} \\
& =4^{n}\left(2 \cos \frac{n \pi}{3}\right)+\left(-\frac{1}{2}\right)^{n} \\
& =2^{2 n} \times 2 \times \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}
\end{aligned}
$$

This question provided a good source of marks for many candidates. The commonest error in part(a) was to write $\alpha \beta \gamma$ as -16 , overlooking the fact that the coefficient of x^{3} was not unity and, of course, leading to an incorrect value for γ. This error perpetuated in part (a)(ii) with $\alpha+\beta+\gamma$ written as p or $-p$ and the same for q.

Parts (b)(i) and (b)(ii) were generally well done, although it should be stated that when answers are printed, candidates are expected to provide sufficient detail to show clearly how their answers are arrived at. Part (b)(iii) was also quite well done and it was pleasing to note that in some cases where candidates had not arrived at $\gamma=-\frac{1}{2}$, they went back to part (a)(ii) to identify their error. Just occasionally in part (b)(iii), some candidates made blatant errors in their attempt to convert $4^{n} \cos \frac{n \pi}{3}+4^{n} \cos \frac{n \pi}{3}$ into $2^{2 n+1} \cos \frac{n \pi}{3}$
Question 4:
$x=\frac{1}{2} \cosh 2 t$ and $y=2 \sinh t$
a) $\frac{d x}{d t}=\sinh 2 t$ and $\frac{d y}{d t}=2 \cosh t$
$\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(\sinh ^{2} 2 t+4 \cosh ^{2} t\right)$

Using the identity $\cosh t=2 \cosh ^{2} t-1$, we have

$$
\begin{aligned}
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =\left(2 \cosh ^{2} t-1\right)^{2}-1+4 \cosh ^{2} t \\
& =4 \cosh ^{4} t-4 \cosh ^{2} t+1-1+4 \cosh ^{2} t \\
& =4 \cosh ^{4} t
\end{aligned}
$$

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=4 \cosh ^{4} t
$$

b) i) $S=2 \pi \int_{0}^{1} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

$$
S=2 \pi \int_{0}^{1} 2 \sinh t \times\left(2 \cosh ^{2} t\right) d t
$$

$$
S=8 \pi \int_{0}^{1} \sinh t \times \cosh ^{2} t d t
$$

ii) $S=8 \pi\left[\frac{1}{3} \cosh ^{3} t\right]_{0}^{1}=\frac{8 \pi}{3}\left(\cosh ^{3} 1-1\right)$

Although a good number of candidates answered part (a) correctly, quite a few stalled at the handling of $\sinh ^{2} 2 t$ either by misquoting a formula for the double angle or by using long winded algebraic methods in which they lost direction. Consequently these candidates were unable to score full marks in part (b)(i).

Part (b)(ii) proved to be beyond the abilities of the majority of candidates. The usual attempts were either to express replace $\cosh ^{2} t$ by $1+\sinh ^{2} t$ or to express $\cosh ^{2} t$ in terms of cosh $2 t$, thereby making no progress. Few thought of using a simple substitution.

Question 5:	Exam report
$\begin{aligned} & S_{r}=r^{2}(r+1)(r+2) \\ & \text { a) } \text { i) } S_{r}=u_{1}+u_{2}+u_{3}+\ldots+u_{r-1}+u_{r} \\ & \text { so for } r=1, S_{1}=u_{1} \\ & u_{1}=1^{2} \times(2) \times(3)=u_{1}=6 \\ & \text { ii) } S_{2}=u_{1}+u_{2}=6+u_{2} \\ & \text { and } S_{2}=2^{2} \times(3) \times(4)=48 \\ & \quad u_{2}=48-6= \\ & \quad u_{2}=42 \end{aligned} \begin{aligned} \text { iii) } u_{n}= & S_{n}-S_{n-1} \\ = & n^{2}(n+1)(n+2)-(n-1)^{2}(n)(n+1) \\ = & n(n+1)\left[n(n+2)-(n-1)^{2}\right] \\ = & n(n+1)\left(n^{2}+2 n-n^{2}-1+2 n\right) \\ u_{n}= & n(n+1)(4 n-1) \end{aligned}$	This question proved to be quite discriminating. Either candidates realised what they were asked to do and scored full marks, or the notation puzzled them and they were unable to proceed beyond part (a)(ii), thinking that the answer to this part should be 48 rather than 42 . Some of the weaker candidates, whilst realising what to do, failed to take out common factors in their algebraic manipulation in parts (a)(iii) and (b) with the result that correct answers were written down after incorrect algebra.

b) $\sum_{r=n+1}^{2 n} u_{r}=\sum_{r=n+1}^{2 n} S_{r}-S_{r-1}=S_{n+1}-S_{n}+$

$$
\begin{aligned}
& S_{n+2}-S_{n+1}+ \\
& S_{n+3}-S_{n+2}+\ldots \\
&+ S_{2 n}-S_{2 n-1}
\end{aligned}
$$

$$
\sum_{r=n+1}^{2 n} u_{r}=S_{2 n}-S_{n}=(2 n)^{2}(2 n+1)(2 n+2)-n^{2}(n+1)(n+2)
$$

$$
=8 n^{2}(2 n+1)(n+1)-n^{2}(n+1)(n+2)
$$

$$
=n^{2}(n+1)[8(2 n+1)-(n+2)]
$$

$$
=n^{2}(n+1)(15 n+6)=3 n^{2}(n+1)(5 n+2)
$$

Question 6:	Exam report
$\begin{aligned} & \text { a) } t=\tan \theta \quad \text { so } \frac{d t}{d \theta}=1+\tan ^{2} \theta=1+t^{2} \\ & \frac{d t}{1+t^{2}}=d \theta \\ & \bullet \cos ^{2} \theta=\frac{1}{1+\tan ^{2} \theta}=\frac{1}{1+t^{2}} \\ & \bullet \sin ^{2} \theta=1-\cos ^{2} \theta=1-\frac{1}{1+t^{2}}=\frac{t^{2}}{1+t^{2}} \\ & \int \frac{d \theta}{9 \cos ^{2} \theta+\sin ^{2} \theta}=\int \frac{1}{\frac{9}{1+t^{2}}+\frac{t^{2}}{1+t^{2}}} \times \frac{d t}{1+t^{2}}=\int \frac{d t}{9+t^{2}} \end{aligned}$ b) when $\theta=0, t=\tan 0=0$ $\begin{gathered} \theta=\frac{\pi}{3}, t=\tan \frac{\pi}{3}=\sqrt{3} \\ I=\int_{0}^{\frac{\pi}{3}} \frac{d \theta}{9 \cos ^{2} \theta+\sin ^{2} \theta}=\int_{0}^{\sqrt{3}} \frac{d t}{9+t^{2}}=\left[\frac{1}{3} \tan ^{-1}\left(\frac{t}{3}\right)\right]_{0}^{\sqrt{3}} \\ I=\frac{1}{3} \times \tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)-\frac{1}{3} \tan ^{-1}(0)=\frac{1}{3} \times \frac{\pi}{6}=\frac{\pi}{18} \end{gathered}$	In part (a), whilst $\frac{d t}{d \theta}$ was expressed correctly, the manipulation required to obtain the integral in terms of t was frequently faulty. Also in part (b), whilst many candidates were able to write down the correct definite integral $\frac{1}{3} \tan ^{-1} \frac{t}{3}$, full marks were not awarded unless it was clear how the answer $\frac{\pi}{18}$ was arrived at, as this answer was given in the question.

$u_{1}=2, u_{k+1}=2 u_{k}+1$
a) the proposition P_{n} :for all $\mathrm{n} \geq 1, u_{n}=3 \times 2^{n-1}-1$ is to be proven by induction

Base case: $n=1$
LHS : $u_{1}=2$
RHS : $3 \times 2^{1-1}-1=3 \times 2^{0}-1=3-1=2$
P_{1} is true.
Let's suppose that for $n=k$, the propostion is true.
Let's show that it is true for $n=k+1$.
i.e. Let's show that $u_{k+1}=3 \times 2^{k}-1$
$u_{k+1}=2 u_{k}+1=2\left(3 \times 2^{k-1}-1\right)+1=3 \times 2^{k}-2+1$
$u_{k+1}=3 \times 2^{k}-1 \quad$ Q.E.D

Conclusion:

If the proposition is true for $n=k$, then it is true for $n=k+1$.
Because it is true for $n=1$, we can conclude,
according to the induction principle that it is true for all $\mathrm{n} \geq 1$.
b) $\sum_{r=1}^{n} u_{r}=\sum_{r=1}^{n} 3 \times 2^{r-1}-1=3 \sum_{r=1}^{n} 2^{r-1}-n=3 \times \frac{2^{n}-1}{2-1}-n$
remember core $2 ?: \sum_{r=1}^{n} 2^{r-1}=1+2+4+8+\ldots+2^{n-1}=1 \frac{2^{n}-1}{2-1}$ $\sum_{r=1}^{n} u_{r}=3 \times 2^{n}-3-n=\left(3 \times 2^{n}-1\right)-(n+2)=u_{n+1}-(n+2)$

Candidates generally had difficulty in using the recurrence relationship in their proof by induction, so that responses to this question were rather poor. Proper detail is essential in the proof by induction using a sequence and a sequence relationship so that relatively few candidates scored full marks for part (a).

Very few candidates indeed were successful in part (b). Only a handful of candidates recognised that a Geometric Progression was involved. If they did, they usually went on to obtain a correct solution. It should perhaps be added that one method of providing an excellent solution was to rewrite $u_{k+1}=2 u_{k}+1$ as $u_{k+1}-u_{k}=u_{k}+1$ and then to use the method of differences to sum the series; but this method of solution was extremely rare.

Question 8:	Exam report
$\text { a) } i) \omega=e^{i \frac{2 \pi}{7}}$	
$\text { so } \omega^{7}=\left(e^{i \frac{i \pi}{7}}\right)^{7}=e^{2 i \pi}=\cos 2 \pi+i \sin 2 \pi=1$ ω is a solution of $z^{7}=1$	
ii) $7 \theta=k \times 2 \pi \quad \theta=k \times \frac{2 \pi}{7}$	Whilst part (a) was generally well done, relatively few candidates expressed the other roots in terms of ω, but rather gave them in the form $r e^{i \theta}$
the other non-real solutions are for $k=2, e^{i \frac{4 \pi}{7}}=\omega^{2} \quad$ for $k=3, e^{i \frac{6 \pi}{7}}=\omega^{3}$	
$\begin{aligned} & \text { for } k=4, e^{i \frac{8 \pi}{7}}=\omega^{4} \quad \text { for } k=5, e^{i \frac{10 \pi}{7}}=\omega^{5} \\ & \text { for } k=6, e^{i \frac{12 \pi}{7}}=\omega^{6} \end{aligned}$	

Question 8:continues	Exam report
b) $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}$ is a geometric series with common ration ω $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=\frac{1-\omega^{7}}{1-\omega}=\frac{1-1}{1-\omega}=0$ c) i) $\omega^{2}+\omega^{5}=\omega^{2}+\omega^{-2}=e^{i \frac{4 \pi}{7}}+e^{-\frac{4 \pi}{7}}=2 \cos \frac{4 \pi}{7}$ $\begin{aligned} \text { ii) } 1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0 \\ \omega+\omega^{2}+\omega^{3}+\omega^{-3}+\omega^{-2}+\omega^{-1}=-1 \\ \omega+\omega^{-1}+\omega^{2}+\omega^{-2}+\omega^{3}+\omega^{-3}=-1 \\ 2 \cos \frac{2 \pi}{7}+2 \cos \frac{4 \pi}{7}+2 \cos \frac{6 \pi}{7}=-1 \\ \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2} \end{aligned}$	Few, also, were able to complete part (b). The relation $1+\omega+\omega^{2}=0$ appeared with regularity. Part (c) was poorly answered. Although correct answers were written down as they were given in the question, few responses were convincing and as has already been stated earlier, if answers are given, it is the responsibility of the candidates to supply sufficient working to convince the examiner that they understand the methods involved

Grade boundaries

$\substack{\text { Component } \\ \text { Code } \\ \text { Component Title }}$	Maximum			Scaled Mark Grade Boundaries		
MFP2	GCE MATHEMATICS UNIT FP2	Scaled Mark	A	B	C	D

1 (a)	Show that	
	$9 \sinh x-\cosh x=4 \mathrm{e}^{x}-5 \mathrm{e}^{-x}$	(2 marks)
(b)	Given that	
	$9 \sinh x-\cosh x=8$	
	find the exact value of $\tanh x$.	(7 marks)
2 (a)	Express $\frac{1}{r(r+2)}$ in partial fractions.	(3 marks)
(b)	Use the method of differences to find	
	$\sum_{r=1}^{48} \frac{1}{r(r+2)}$	
	giving your answer as a rational number.	(5 marks)
3	Two loci, L_{1} and L_{2}, in an Argand diagram are given by	
	$L_{1}:\|z+1+3 \mathrm{i}\|=\|z-5-7 \mathrm{i}\|$	
	$L_{2}: \arg z=\frac{\pi}{4}$	
(a)	Verify that the point represented by the complex number $2+2 \mathrm{i}$ is a point intersection of L_{1} and L_{2}.	$\begin{aligned} & \text { of } \\ & \text { (2 marks) } \end{aligned}$
(b)	Sketch L_{1} and L_{2} on one Argand diagram.	(5 marks)
	Shade on your Argand diagram the region satisfying	
	both $\quad\|z+1+3 \mathrm{i}\| \leqslant\|z-5-7 \mathrm{i}\|$	
	and $\frac{\pi}{4} \leqslant \arg z \leqslant \frac{\pi}{2}$	(2 marks)

END OF QUESTIONS

> END OF Questions

											Y						
$\left\|\begin{array}{l} \frac{\pi}{6} \\ \hline 6 \end{array}\right\|$			\sim			n	\sim	a	－	－	ナ		\sim	\sim		m	\cdots
		$\bar{\sim}$	$\bar{\infty}$	$\bar{\sim}$	$\stackrel{\sim}{\infty}$	¢ $\bar{\sim}$				可	あ		¢		\bar{z}	$\bar{\exists}$	
					$\begin{aligned} & (-1,-5) \text { to }(0,1) \\ & \text { through }(2,2) \end{aligned}$				$\begin{aligned} & N \\ & \pi \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$								$\stackrel{\text { a }}{6}$
	m	®		ลิ			（2）			骨	Θ				\bigcirc		

Question 1:
a) $9 \sinh x-\cosh x=\frac{9}{2}\left(e^{x}-e^{-x}\right)-\frac{1}{2}\left(e^{x}+e^{-x}\right)$

$$
\begin{aligned}
& =\frac{8}{2} e^{x}-\frac{10}{2} e^{-x} \\
& =4 e^{x}-5 e^{-x}
\end{aligned}
$$

b) $9 \sinh x-\cosh x=8$ is equivalent to

$$
\begin{aligned}
& 4 e^{x}-5 e^{-x}=8 \quad\left(\times e^{x}\right) \\
& 4 e^{2 x}-5-8 e^{x}=0 \\
& 4\left(e^{x}\right)^{2}-8 e^{x}-5=0 \\
& \left(2 e^{x}-5\right)\left(2 e^{x}+1\right)=0 \\
& \quad e^{x}=\frac{5}{2} \text { or } e^{x}=-\frac{1}{2}(\text { no solution }) \\
& \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{\frac{5}{2}-\frac{2}{5}}{\frac{5}{2}+\frac{2}{5}}=\frac{25-4}{25+4}=\frac{21}{29}
\end{aligned}
$$

$$
\tanh x=\frac{21}{29}
$$

Exam report

Almost all candidates scored the two available marks in part (a). However in part (b) a number of candidates did not draw on the hint of part (a) but instead tried to manipulate the equation given in part (b). A few of these candidates expressed the given equation in $\tanh x$ and $\operatorname{sech} x$ and then squared, obtaining a quadratic in $\tanh x$. When factorised these candidates obtained two values for tanh x, only one of which was the correct one. However, virtually no one rejected the incorrect solution so that it was almost impossible to award full marks when this method was used.

Question 2:	Exam report
	This question was generally well done, with many candidates scoring full marks. When errors did occur they were usually in the omission of one of the four fractions that made up the sum, notably $\frac{1}{98}$

$z=2+2 i$ and $M(z)$
Does M belong to L_{1} ?
$|z+1+3 i|=|2+2 i+1+3 i|=|3+5 i|=\sqrt{9+25}=\sqrt{34}$
$|z-5-7 i|=|2+2 i-5-7 i|=|-3-5 i|=\sqrt{9+25}=\sqrt{34}$

$$
M(z=2+2 i) \text { belongs to } \mathrm{L}_{1}
$$

Does M belong to L_{2} ?

$$
\begin{aligned}
\arg (z)=\arg (2+2 i) & =\tan ^{-1}\left(\frac{2}{2}\right)=\frac{\pi}{4} \\
M(z & =2+2 i) \text { belongs to } \mathrm{L}_{2}
\end{aligned}
$$

$M(z)$ is a point of the intersection between L_{1} and L_{2}
b) L_{1} is the perpendicular bisector of the line AB

$$
\text { with } \mathrm{A}\left(\mathrm{z}_{A}=-1-3 i\right) \text { and } B\left(z_{B}=5+7 i\right)
$$

L_{2} is the half line from O with gradient $\tan \frac{\pi}{4}=1$.
c)

The verifications in part (a) were not always convincing, especially the verification that the point representing the complex number $2+2 i$ lay on the line L_{1}. The sketches in part (b) varied considerably. Those candidates who made a reasonably careful drawing generally scored higher marks as they were able to clearly show that the point representing $2+2 i$ lay on both L_{1} and L_{2}.
Careful sketches also improved a candidate's chance of scoring full marks in part (c).
a) $z^{3}-2 z^{2}+p z+10=0$ has roots α, β, γ
$\alpha^{3}+\beta^{3}+\gamma^{3}=-4$
a) $\alpha+\beta+\gamma=2$
b) i) α is a root so it satifies the equation

$$
\alpha^{3}-2 \alpha^{2}+p \alpha+10=0
$$

ii) The same applies to β and γ

$$
\begin{gathered}
\alpha^{3}-2 \alpha^{2}+p \alpha+10=0 \\
\beta^{3}-2 \beta^{2}+p \beta+10=0 \\
\gamma^{3}-2 \gamma^{2}+p \gamma+10=0 \quad \text { by adding } \\
\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)-2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+p(\alpha+\beta+\gamma)+30=0 \\
-4-2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+2 p+30=0 \\
-2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)=-2 p-26 \\
\alpha^{2}+\beta^{2}+\gamma^{2}=p+13
\end{gathered}
$$

iii) $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\gamma \beta)$

$$
=2^{2}-2 p=4-2 p
$$

so

$$
\begin{gathered}
4-2 p=p+13 \\
-3 p=9 \\
p=-3
\end{gathered}
$$

Whilst parts (a) and (b)(i) were well done, few candidates were able to complete part (b)(ii) correctly through not taking note of the hint given in part (b)(i). Those candidates attempting to work out $(\alpha+b+\gamma)^{3}$ were inevitably doomed to failure.

Part (b)(iii) was usually attempted by assuming the result of part (b)(ii). There were many correct solutions to part(c) although slips of sign often led to a solution with three real roots, contrary to the statement of part (c)(i).

Question 5:	Exam report
$i) \tanh ^{2} t+\operatorname{sech}^{2} t$ $=\frac{\sinh ^{2} t}{\cosh ^{2} t}+\frac{1}{\cosh ^{2} t}=\frac{\sinh ^{2} t+1}{\cosh ^{2} t}=\frac{\cosh ^{2} t}{\cosh ^{2} t}=1$ ii) $\frac{d}{d t}(\tanh t)$ $=\frac{d}{d t}\left(\frac{\sinh t}{\cosh t}=\frac{u}{v}\right)=\left(\frac{u^{\prime} v-u v^{\prime}}{v^{2}}\right)=\frac{\cosh t \times \cosh t-\sinh t \times \sinh t}{\cosh ^{2} t}$ $=\frac{\cosh ^{2} t-\sinh ^{2} t}{\cosh ^{2} t}=\frac{1}{\cosh ^{2} t}=\operatorname{sech}^{2} t$	
iii)$\frac{d}{d t}(\operatorname{sech} \mathrm{t})$ $=\frac{d}{d t}\left(\frac{1}{\cosh t}=\frac{1}{u}\right)=\left(-\frac{u^{\prime}}{u^{2}}\right)=-\frac{\sinh t}{\cosh ^{2} t}$ $=-\frac{\sinh t}{\cosh t} \times \frac{1}{\cosh t}=-\operatorname{sech} t \tanh t$	

Question 5:continues	Exam report
b) $x=\operatorname{sech} t$ and $y=4-\tanh t$ $\begin{aligned} & \text { i) } \frac{d x}{d t}=-\operatorname{sech} t \times \tanh t \text { and } \frac{d y}{d x}=-\operatorname{sech}^{2} t \\ & \begin{aligned} \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d x}\right)^{2} & =\operatorname{sech}^{2} t \times \tanh ^{2} t+\operatorname{sech}^{4} t \\ & =\operatorname{sech}^{2} t\left(\tanh ^{2} t+\operatorname{sech}\right. \\ & t)=\operatorname{sech}^{2} t \end{aligned} \\ & s=\int_{0}^{\frac{1}{2} \ln 3} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d t=\int_{0}^{\frac{1}{2} \ln 3} \operatorname{sech} t d t \end{aligned}$ ii) $u=e^{t} \quad \frac{d u}{d t}=e^{t}=u \quad \frac{d u}{u}=d t$ when $t=0, u=1$ $\begin{aligned} & t=\frac{1}{2} \ln 3=\ln \sqrt{3}, \quad u=\sqrt{3} \\ & s=\int_{0}^{\frac{1}{2} \ln 3} \operatorname{sech} t d t=\int_{1}^{\sqrt{3}} \frac{2}{e^{x}+e^{-x}} d x=\int_{1}^{\sqrt{3}} \frac{2}{u+\frac{1}{u}} \times \frac{d u}{u} \\ & s=\int_{1}^{\sqrt{3}} \frac{2}{u^{2}+1} d u=\left[2 \tan ^{-1} u\right]_{1}^{\sqrt{3}}=2 \tan ^{-1} \sqrt{3}-2 \tan ^{-1} 1 \\ & s=2 \times \frac{\pi}{3}-2 \times \frac{\pi}{4}=\frac{2 \pi}{3}-\frac{\pi}{2}=\frac{\pi}{6} \end{aligned}$	Part (a) was a source of good marks for almost all candidates. If errors did occur they were usually errors of sign. Part (b) was also generally well done although it was disappointing to see the square root of $\operatorname{sech}^{2} t \tanh ^{2} t+\operatorname{sech}^{4} t$ written as sech $t \tanh t+$ $\operatorname{sech}^{2} t$ a significant number of times. Responses to part (b)(ii) were mixed. Poor algebraic manipulation in the handling of sech t when expressed in terms of u let many candidates down badly so that they ended up with a polynomial in u to integrate.

Question 6:
a) $\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}=\frac{k+3}{(k+3)!}-\frac{k+1}{(k+3)!}=\frac{2}{(k+3)!}$

$b)$ the proposition P_{n} :for all $\mathrm{n} \geq 1, \sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{n+1}}{(n+2)!}$ is to be proven by induction
Base case: $n=1$
LHS : $\sum_{r=1}^{1} \frac{r \times 2^{r}}{(r+2)!}=\frac{1 \times 2^{1}}{(1+2)!}=\frac{2}{3!}=\frac{1}{3}$
$R H S: 1-\frac{2^{1+1}}{(1+2)!}=1-\frac{4}{3!}=1-\frac{2}{3}=\frac{1}{3}$

$$
P_{1} \text { is true }
$$

Let's suppose that for $n=k$, the proposition is true.
Let's show that it is true for $n=k+1$

$$
i . e \text { Let's show that } \sum_{r=1}^{k+1} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{k+2}}{(k+3)!}
$$

$\sum_{r=1}^{k+1} \frac{r \times 2^{r}}{(r+2)!}=\sum_{r=1}^{k} \frac{r \times 2^{r}}{(r+2)!}+\frac{(k+1) 2^{k+1}}{(k+3)!}=1-\frac{2^{k+1}}{(k+2)!}+\frac{(k+1) 2^{k+1}}{(k+3)!}$ $=1-2^{k+1}\left(\frac{1}{(k+2)!}-\frac{(k+1)}{(k+3)!}\right)=1-2^{k+1} \times \frac{2}{(k+3)!} \quad$ from $\left.Q a\right)$ $=1-\frac{2^{k+2}}{(k+3)!} \quad$ Q.E.D

Conclusion:

If the proposition is true for $n=k$, then it is true for $n=k+1$.
Because it is true for $n=1$, we can conclude, according to the induction principal that it is true for all $\mathrm{n} \geq 1$.

Again responses to this question were mixed. It was evident that some candidates thought that $(k+2)$! started at k, and wrote it as $k(k+1)(k+2)$.
Others wrote down the result after some rather dubious algebra. Although there has been considerable improvement in the way that solutions by induction have been expressed, in this case what would otherwise have been acceptable solutions were spoilt by errors of sign. The same error occurred frequently. It occurred when a candidate tried to combine, in one bracket, a negative expression followed by a positive expression by placing a negative sign outside the combining bracket and then by forgetting to alter the sign before the positive term to compensate.
a) $i) 1+i \sqrt{3}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=2 e^{i \frac{\pi}{3}}$
$1-i=\sqrt{2}\left(\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=\sqrt{2} e^{-i \frac{\pi}{4}}$
ii) $(1+i \sqrt{3})^{8}(1-i)^{5}=\left(2 e^{i \frac{\pi}{3}}\right)^{8} \times\left(\sqrt{2} e^{-i \frac{\pi}{4}}\right)^{5}$
$=2^{8} e^{i \frac{8 \pi}{3}} \times \sqrt{2}^{5} e^{-i \frac{5 \pi}{4}}=2^{8} e^{i \frac{2 \pi}{3}} \times \sqrt{2}^{5} e^{i \frac{3 \pi}{4}}$
$=2^{8} \times 2^{\frac{5}{2}} \times e^{i\left(\frac{2 \pi}{3}+\frac{3 \pi}{4}\right)}=2^{\frac{21}{2}} e^{i \frac{17 \pi}{12}}=1024 \sqrt{2} e^{i \frac{17 \pi}{12}}$
b) $z^{3}=\left(r e^{i \theta}\right)^{3}=r^{3} e^{i 3 \theta}=2^{\frac{21}{2}} e^{i \frac{17 \pi}{12}}$

$$
\begin{aligned}
& \text { so } r^{3}=2^{\frac{21}{2}} \quad \text { and } 3 \theta=\frac{17 \pi}{12}+k \times 2 \pi \\
& \quad r=2^{\frac{7}{2}}=8 \sqrt{2} \text { and } \theta=\frac{17 \pi}{36}+k \times \frac{2 \pi}{3} \quad k=-2,-1,0
\end{aligned}
$$

solutions: $z=8 \sqrt{2} e^{i \frac{17 \pi}{36}}$ or $z=8 \sqrt{2} e^{-i \frac{7 \pi}{36}}$ or $z=8 \sqrt{2} e^{-i \frac{31 \pi}{36}}$

Part (a)(i) was generally well done. The less successful candidates usually wrote the argument of $1-i$ as $3 \pi / 4$ instead of $-\pi / 4$. In part (a)(ii) there was some poor handling of fractions in the argument of the product of the two complex numbers, and also some omission of raising the moduli of the two complex numbers to their respective powers. Many of the candidates who had been successful in part (a) often went on to complete part (b) correctly, although some candidates lost marks either through not giving z in the form asked for or by giving values for ϑ outside the specified range.

Grade boundaries

		Max.	Scaled Mark Grade Boundaries and A * Conversion Points				
Code	Title	Scaled Mark	A *	A	B	C	D
MFP2	GCE MATHEMATICS UNIT FP2	75	70	65	57	49	41

[^0]: จ $q=-\alpha \beta \gamma=-(-2+5 i)(-2-5 i) \times-5=145$

[^1]: end of questions

