AQA - Further pure maths 2

Key dates

Further pure 2 exam: 6th June 2013 am

Term dates:	
Term 1: Monday 3 September 2012 - Wednesday	Term 4: Monday 18 February 2013 - Friday 22
24 October 2012 (38 teaching days)	March 2013 (25 teaching days)
Term 2: Monday 5 November 2012 - Friday 21	Term 5: Monday 8 April 2013 - Friday 24 May
December 2012 (35 teaching days)	2013 (34 teaching days)
Term 3: Monday 7 January 2013 - Friday 8	Term 6: Monday 3 June 2013 - Wednesday 24
February 2013 (25 teaching days)	July 2013 (38 teaching days)

F.Y.I: Further pure 1 (re-sit): 18th January 2013 pm

Scheme of Ass essment Further Mathematics Advanced Subsidiary (AS) Advanced Level (AS + A2)

Candidates for AS and/or A Level Further Mathematics are expected to have already obtained (or to be obtaining concurrently) an AS and/or A Level award in Mathematics.

The Advanced Subsidiary (AS) award comprises three units chosen from the full suite of units in this specification, except that the Core units cannot be included. One unit must be chosen from MFP1, MFP2, MFP3 and MFP4. All three units can be at AS standard; for example, MFP1, MM1B and MS1A could be chosen. All three units can be in Pure Mathematics; for example, MFP1, MFP2 and MFP4 could be chosen.

The Advanced (A Level) award comprises six units chosen from the full suite of units in this specification, except that the Core units cannot be included. The six units must include at least two units from MFP1, MFP2, MFP3 and MFP4. All four of these units could be chosen. At least three of the six units counted towards A Level Further Mathematics must be at A2 standard.

All the units count for 331/3% of the total AS marks	
16 ₂ / ₃ % of the total A level marks	
	Written Paper
	1hour 30 minutes
	75 marks

Further Pure 1

All questions are compulsory. A graphics calculator may be used

Grading System

The AS qualifications will be graded on a five-point scale: A, B, C, D and E. The full A level qualifications will be graded on a six-point scale: A*, A, B, C, D and E.

To be awarded an A* in Further Mathematics, candidates will need to achieve grade A on the full A level qualification and 90% of the maximum uniform mark on the aggregate of the best three of the A2 units which contributed towards Further Mathematics. For all qualifications, candidates who fail to reach the minimum standard for grade E will be recorded as U (unclassified) and will not receive a qualification certificate.

Title	Туре	Unit	Award	Name	Max	Grade (UMS/Points) Boundaries								
Mathematics	GCE	MD01		Decision 1	100 UMS		A(80)	B(70)	C(60)	D(50)	E(40)			
		MD02		Decision 2	100 UMS		A(80)	B(70)	C(60)	D(50)	E(40)			
		MFP1		Further Pure Mathematics 1	100 UMS		A(80)	B(70)	C(60)	D(50)	E(40)			

Further pure 2 subject content

Roots of polynomials Complex numbers De Moivre's theorem Proof by induction Finite series The calculus of inverse trigonometric functions Hyperbolic functions Arc length and area of surface of revolution about the *x*-axis

Further pure 2 specifications

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1, Core 2, Core 3, Core 4 and Further Pure 1.

Candidates may use relevant formulae included in the formulae booklet without proof except where proof is required in this module and requested in a question.

Roots of Polynomials	
The relations between the	
roots and the coefficients of a	
polynomial equation; the	
occurrence of the non-real	
roots in conjugate pairs when	
the coefficients of the	
polynomial are real.	
Complex Numbers	
The Cartesian and polar	
coordinate forms of a complex	$x + iy \text{ and } r(\cos \theta + i \sin \theta)$
number, its modulus,	
argument and conjugate.	
The sum, difference, product	The parts of this topic also included in module Further Pure 1 will be
and quotient of two complex	examined only in the context of the content of this module.
numbers.	examined only in the context of the content of this module.
The representation of a	
complex number by a point on	
an Argand diagram;	
geometrical illustrations.	
Simple loci in the complex	Example $ z, 2\rangle = \frac{1}{2} \left(\frac{5}{2} \right) \frac{\pi}{2}$
plane.	For example, $ z-2-i \le 5$, $\arg(z-2) = \frac{\pi}{3}$
	Maximum level of difficulty $ z-a = z-b $ where <i>a</i> and <i>b</i> are complex
	numbers.
	numbers.
De Moivre's Theorem	
De Moivre's theorem for	
integral <i>n</i> .	Use of $z + \frac{1}{z} = 2\cos\theta$ and $z - \frac{1}{z} = 2i\sin\theta$ leading to, for example,
	expressing $\sin^5 \theta$ in terms of multiple angles and $\tan 5\theta$ in term of powers
	of $\tan \theta$.
	Applications in evaluating integrals, for example, $\int \sin^5 \theta d\theta$.
De Moivre.s theorem; the n th	
roots of unity, the exponential	The use, without justification, of the identity $e^{i\theta} = \cos\theta + i\sin\theta$.
form of a complex number.	The ase, whilout justification, of the identity c = coso + r sin o .
Solutions of equations of the	To include geometric interpretation and use, for example, in expressing
form $z^n = a + ib$.	
	$\cos\frac{5\pi}{12}$ in surd form.
	14

series, and other problems. $(\cos \theta + i \sin \theta)^{n} = \cos n\theta + i \sin n\theta \text{ where n is a positive integer.}$ Finite Series by any method such as induction, partial fractions or $E.g. \sum_{r=1}^{n} r \times r! = \sum_{r=1}^{n} ((r+1)!-r!)$ The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x$ as given in the formulae booklet. To include the use of the standard integrals. $\int \frac{1}{a^{2} + x^{2}} dx; \int \frac{1}{\sqrt{a^{2} - x^{2}}} dx$ given in the formulae booklet. Hyperbolic functions Hyperbolic functions and their derivatives; applications to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cos h y + \cosh x \sin h y$. The logarithmic forms of the inverse functions, given in the formulae booklet, are included. Knowledge, proof and use of: $\cosh^{2} x - \sin^{2} x = 1$ $1 - \tanh^{2} x = \sec^{2} x$ $\coth^{2} x - 1 = \csc^{2} x$ Galculation of the arc length of a curve and the area of a surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution surg Cartesian or parametric	series, and other problems. $(\cos \theta + i \sin \theta)^{\alpha} = \cos n\theta + i \sin n\theta$ where n is a positive integer. Finite Series Summation of a finite series by any method such as induction, partial fractions or differencing. The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x$ as given in the formulae booklet. To include the use of the standard integrals. $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx^2$ given in the formulae booklet. Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sin h(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse hyperbolic functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given the formulae booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sch}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arce length of $s = \int_{a}^{a} \sqrt{1+\left(\frac{dy}{dx}\right)^2} dx = \int_{a}^{a} \sqrt{\left(\frac{dx}{dx}\right)^2} + \left(\frac{dy}{dx}\right)^2 dt}$	Applications to sequences and	E.g. proving that $7^n + 4^n + 1$ is divisible by 6, or
Summation of a finite series by any method such as induction, partial fractions or differencing. The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$ as given in the formulae booklet. To include the use of the standard integrals. $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet. Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{soch}^2 x$ Hamiliarity with the graphs of $\sinh x$, $\cosh x$, $\tanh^2 x$, $\tanh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of $a curve and the area of a surface of revolution sufficulty and x = \int_a^a \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_a^a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Summation of a finite series by any method such as induction, partial fractions or differencing. The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x_{c} \cos^{-1} x_{c} \tan^{-1} x$ as given in the formula booklet. To include the use of the standard integrals $\int \frac{1}{a^{2} + x^{2}} dx$; $\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx^{2}$ given in the formulae booklet. Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of the seresults may also be required. Proofs of the results of differentiation of the hyperbolic functions, given the formula booklet, are included. Knowledge, proof and use of: $\cosh^{2} x - \sinh^{2} x = 1$ $1 - \tanh^{2} x = \operatorname{sech}^{2} x$ $\operatorname{Calculation of the arce of a}$ Surface of revolution about the x-axis Calculation of the arce of a surface of revolution about the x-axis $x = \int_{a}^{a} \sqrt{\left(\frac{1}{y}x\right)^{2}} dx = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2}} dt$	series, and other problems.	
Summation of a finite series by any method such as induction, partial fractions or differencing. The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$ as given in the formulae booklet. To include the use of the standard integrals. $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet. Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{soch}^2 x$ $\operatorname{Catclualton of the arc length of sinh x, \cosh x, \tanh x, \sinh^{-1} x, \cosh^{-1} x, \tanh^{-1} x.Arc length and Area of\sup_{a} \frac{1}{a^2 + a^2} dx = \int_{a_1}^{a_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Summation of a finite series by any method such as induction, partial fractions or differencing. The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x_{c} \cos^{-1} x_{c} \tan^{-1} x$ as given in the formula booklet. To include the use of the standard integrals $\int \frac{1}{a^{2} + x^{2}} dx$; $\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx^{2}$ given in the formulae booklet. Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration. Use of basic definitions in proving simple identities. Maximum level of difficulty: sinh $(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of the seresults may also be required. Proofs of the results of differentiation of the hyperbolic functions, given the formula booklet, are included. Knowledge, proof and use of: $\cosh^{2} x - \sinh^{2} x = 1$ $1 - \tanh^{2} x = \operatorname{sech}^{2} x$ $\operatorname{Calculation of the arc length of}$ Calculation of the arce lengt of surface of revolution about the x-axis Calculation of the arce lengt of surface of revolution about the x -axis $x = \int_{a}^{a} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{a}^{b} \sqrt{\left(\frac{dx}{dx}\right)^{2}} + \left(\frac{dy}{dx}\right)^{2} dt$		
by any method such as induction, partial fractions or differencing. The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x$ as given in the formulae booklet. To include the use of the standard integrals. $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet. Hyperbolic Functions Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, are included. Knowledge, proof and use of: $\cosh^2 x - 1 = \cosh^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution and the arc length of $surface of revolution gromulae will be expected:s = \int_a^{a_0} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_a^{a_0} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	by any method such as induction, partial fractions or differencing. The calculus of inverse trigonometrical functions Use of the derivatives of $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x$ as given in the formulae booklet. To include the use of the standard integrals $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet. Hyperbolic functions Hyperbolic and inverse hyperbolic functions to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \sec^2 x$ $\coth^2 x - 1 = \csc^2 x$ Familiarity with the graphs of $\sinh x , \cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the are length of a surface of revolution using $s = \int_{x_0}^{x_0} \sqrt{\left(\frac{b}{c_0}^2\right)^2} dx = \int_{x_0}^{x_0} \sqrt{\left(\frac{b}{c_0}^2\right)^2} dt$		
Use of the derivatives of $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x$ as given in the formulae booklet. To include the use of the standard integrals $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet. Hyperbolic Functions Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution gformulae will be expected: $s = \int_{x_0}^{x_0} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x_0}^{x_0} \sqrt{\frac{dx}{dt}}^2 + \left(\frac{dy}{dt}\right)^2} dt$	Use of the derivatives of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$ as given in the formula booklet.To include the use of the standard integrals $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx^2$ given in the formulae booklet.Hyperbolic FunctionsHyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions.To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.Arc length and Area of surface of revolution about the x-axis Calculation of the area of a surface of revolution usingUse of the following formulae will be expected: $s = \int_{a}^{a} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt}$	by any method such as induction, partial fractions or	E.g. $\sum_{r=1}^{n} r \times r! = \sum_{r=1}^{n} ((r+1)! - r!)$
booklet. To include the use of the standard integrals. $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet.Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution gromulae will be expected: $a = \int_{a_1}^{a_2} \sqrt{\left(\frac{dx}{dx}\right)^2 dx} = \int_{a_1}^{b_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Use of the derivatives of $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x$ as given in the formula booklet.To include the use of the standard integrals $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet.Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution $\operatorname{sind} x = \int_{t_0}^{t_0} \sqrt{\left(\frac{dx}{dt}\right)^2} + \left(\frac{dy}{dt}\right)^2 dt$		
booklet. To include the use of the standard integrals. $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet. Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution about $\sinh^2 x + \cosh^2 x + \cosh^2 x = \int_{a}^{a} \sqrt{\left \left(\frac{dy}{dt}\right ^2 + \left(\frac{dy}{dt}\right)^2 dt} \right ^2$	booklet. To include the use of the standard integrals. $\int \frac{1}{a^2 + x^2} dx$; $\int \frac{1}{\sqrt{a^2 - x^2}} dx$ given in the formulae booklet. Hyperbolic Functions Hyperbolic functions and their derivatives; applications to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: sinh $(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, giver the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using $x = \int_{a}^{a} \sqrt{\left(\frac{dx}{dt}\right)^2} + \left(\frac{dy}{dt}\right)^2 dt$	The calculus of inverse	trigonometrical functions
given in the formulae booklet.Hyperbolic FunctionsHyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions.To include solution of equations of the form $a \sinh x + b \cosh x = c$.Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = sech^2 x$ $coth^2 x - 1 = cosech^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $tanh x$, $\sinh^{-1} x$, $cosh^{-1} x$, $tanh^{-1} x$.Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametricUse of the following formulae will be expected: $s = \int_{s}^{s_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2 dx} = \int_{s}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	given in the formulae booklet.Hyperbolic FunctionsHyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: sinh $(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, giver the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using		booklet.
Hyperbolic FunctionsHyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions.To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: sinh $(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x , \cosh x , \tanh x , \sinh^{-1} x , \cosh^{-1} x , \tanh^{-1} x.$ Arc length and Area of a curve and the area of a surface of revolution about the x-axis $x = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2 dx} = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2 dx}$	Hyperbolic FunctionsHyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formula booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, giver the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution usingUse of the following formulae will be expected: $s = \int_{s}^{s_0} \sqrt{\left 1 + \left(\frac{dy}{dx}\right)^2 dx = \int_{s}^{t_0} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$		
Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.Arc length and Area of a curve and the area of a surface of revolution about the x-axis $x_x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.		given in the formulae booklet.
Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration. The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: sinh $(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the area of a surface of revolution using Cartesian or parametric	Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration. To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, giver the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using	Hyperbolic Eurotions	
To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\coth^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution gformulae will be expected: $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	To include solution of equations of the form $a \sinh x + b \cosh x = c$. Use of basic definitions in proving simple identities. Maximum level of difficulty: sinh $(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, giver the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using $s = \int_{x_0}^{x_0} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x_0}^{t_0} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Hyperbolic and inverse	
Maximum level of difficulty: sinh (x + y) \equiv sinh x cosh y + cosh x sinh y. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric	Maximum level of difficulty: sinh $(x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required. Proofs of the results of differentiation of the hyperbolic functions, given the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x_1}^{x_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$		To include solution of equations of the form $a \sinh x + b \cosh x = c$.
Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\coth^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric	Proofs of the results of differentiation of the hyperbolic functions, given the formula booklet, are included. Knowledge, proof and use of: $\cosh^2 x - \sinh^2 x = 1$ $1 - \tanh^2 x = \operatorname{sech}^2 x$ $\operatorname{coth}^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of $\sinh x$, $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using Use of the following formulae will be expected: $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$		Maximum level of difficulty: $\sinh (x + y) \equiv \sinh x \cosh y + \cosh x \sinh y$. The logarithmic forms of the inverse functions, given in the formulae
$1 - \tanh^{2} x = \operatorname{sech}^{2} x$ $\operatorname{coth}^{2} x - 1 = \operatorname{cosech}^{2} x$ Familiarity with the graphs of $\sinh x, \cosh x, \tanh x, \sinh^{-1} x, \cosh^{-1} x, \tanh^{-1} x.$ $\frac{\operatorname{Arc length and Area of surface of revolution about the x-axis}{}$ Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric $s = \int_{x_{1}}^{x_{2}} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$	$1 - \tanh^{2} x = \operatorname{sech}^{2} x$ $\operatorname{coth}^{2} x - 1 = \operatorname{cosech}^{2} x$ Familiarity with the graphs of $\sinh x, \cosh x, \tanh x, \sinh^{-1} x, \cosh^{-1} x, \tanh^{-1} x.$ Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a $\operatorname{surface} of \operatorname{revolution} using$ Use of the following formulae will be expected: $s = \int_{x_{1}}^{x_{2}} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$		Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included. Knowledge, proof and use of:
$\cosh^2 x - 1 = \operatorname{cosech}^2 x$ Familiarity with the graphs of sinh x , $\cosh x$, $\tanh x$, $\sinh^{-1} x$, $\cosh^{-1} x$, $\tanh^{-1} x$.Arc length and Area of Surface of revolution about the x-axisCalculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametricUse of the following formulae will be expected: $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	$coth^{2} x - 1 = cosech^{2} x$ Familiarity with the graphs of sinh x, cosh x, tanh x, sinh ⁻¹ x, cosh ⁻¹ x, tanh ⁻¹ x. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution g formulae will be expected: $s = \int_{x_{1}}^{x_{2}} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$		
sinh x, cosh x, tanh x, sinh ⁻¹ x, cosh ⁻¹ x, tanh ⁻¹ x. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric Cartesian or parametric	sinh x, cosh x, tanh x, sinh ⁻¹ x, cosh ⁻¹ x, tanh ⁻¹ x. Arc length and Area of surface of revolution about the x-axis Calculation of the arc length of a curve and the area of a surface of revolution using $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$		
Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric Use of the following formulae will be expected: $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Calculation of the arc length of a curve and the area of a surface of revolution using $S = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$		
Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric Use of the following formulae will be expected: $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Calculation of the arc length of a curve and the area of a surface of revolution using $S = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$		
Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric Use of the following formulae will be expected: $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Calculation of the arc length of a curve and the area of a surface of revolution using $S = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Arc length and Area of	surface of revolution about the x-axis
surface of revolution using Cartesian or parametric $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)} + \left(\frac{dy}{dt}\right) dt$	surface of revolution using $s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)} + \left(\frac{dy}{dt}\right) dt$		
		surface of revolution using	$s = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
		-	$S = 2\pi \int_{x_1}^{x_2} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = 2\pi \int_{t_1}^{t_2} y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Mensuration

Surface area of sphere $= 4\pi r^2$ Area of curved surface of cone $= \pi r \times \text{slantheight}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a + (n-1)d]$$

Geometric series

$$u_n = ar^{n-1}$$
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Summations

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$
$$\sum_{r=1}^{n} r^{2} = \frac{1}{6}n(n+1)(2n+1)$$
$$\sum_{r=1}^{n} r^{3} = \frac{1}{4}n^{2}(n+1)^{2}$$

Trigonometry - the Cosine rule

 $a^2 = b^2 + c^2 - 2bc \cos A$

Binomial Series

$$\begin{aligned} (a+b)^n &= a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \dots + \binom{n}{r} a^{n-r}b^r + \dots + b^n \qquad (n \in \mathbb{N}) \\ &\text{where } \binom{n}{r} = {}^n \mathcal{C}_r = \frac{n!}{r!(n-r)!} \\ (1+x)^n &= 1 + nx + \frac{n(n-1)}{1.2}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{1.2\dots r}x^r + \dots \quad (|x| < 1, n \in \mathbb{R}) \end{aligned}$$

Logarithms and exponentials

 $a^x = e^{x \ln a}$

Complex numbers

 $\{r(\cos\theta + i\sin\theta)\}^{n} = r^{n}(\cos n\theta + i\sin n\theta)$ e^{iθ} = cos θ + i sin θ The roots of $z^{n} = 1$ are given by $z = e^{\frac{2\pi ki}{n}}$, for k = 0, 1, 2, ..., n-1

Maclaurin's series

$$\begin{aligned} \mathbf{f}(x) &= \mathbf{f}(0) + x \, \mathbf{f}'(0) + \frac{x^2}{2!} \, \mathbf{f}''(0) + \ldots + \frac{x^r}{r!} \, \mathbf{f}^{(r)}(0) + \ldots \\ &= \mathbf{e}^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^r}{r!} + \ldots \quad \text{for all } x \\ &= \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^{r+1} \frac{x^r}{r} + \ldots \quad (-1 < x \leq 1) \\ &= \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \ldots \quad \text{for all } x \\ &= \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^r \frac{x^{2r}}{(2r)!} + \ldots \quad \text{for all } x \\ \end{aligned}$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular hyperbola
Standard form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad \left(A \pm B \neq (k + \frac{1}{2})\pi\right)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation	
$\mathbf{f}(x)$	$\mathbf{f}'(\mathbf{x})$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$
tan kx	$k \sec^2 kx$
cosec x	$-\csc x \cot x$
sec x	$\sec x \tan x$
cot x	$-\cos^2 x$
$\sinh x$	$\cosh x$
$\cosh x$	sinh x
tanh x	$\operatorname{sech}^2 x$
$\sinh^{-1} x$	$\frac{1}{\sqrt{1+x^2}}$
$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2-1}}$
$\tanh^{-1} x$	$\frac{1}{1-x^2}$
$\frac{f(x)}{g(x)}$	$\frac{\mathbf{f}'(x)\mathbf{g}(x) - \mathbf{f}(x)\mathbf{g}'(x)}{\left(\mathbf{g}(x)\right)^2}$

Integration

(+ constant; a	>0 where relevant)
$\mathbf{f}(x)$	$\int \mathbf{f}(x) \mathrm{d}x$
tan x	$\ln \sec x$
cot x	$\ln \sin x$
cosec x	$-\ln \csc x + \cot x = \ln \tan(\frac{1}{2}x) $
sec x	$\ln \sec x + \tan x = \ln \tan(\frac{1}{2}x + \frac{1}{4}\pi) $
sec ² kx	$\frac{1}{k} \tan kx$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
tanh x	$\ln \cosh x$

$$\begin{aligned} \frac{1}{\sqrt{a^2 - x^2}} & \sin^{-1}\left(\frac{x}{a}\right) \quad (|x| < a) \\ \frac{1}{a^2 + x^2} & \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) \\ \frac{1}{\sqrt{x^2 - a^2}} & \cosh^{-1}\left(\frac{x}{a}\right) \text{ or } \ln\left\{x + \sqrt{x^2 - a^2}\right\} \quad (x > a) \\ \frac{1}{\sqrt{a^2 + x^2}} & \sinh^{-1}\left(\frac{x}{a}\right) \text{ or } \ln\left\{x + \sqrt{x^2 + a^2}\right\} \\ \frac{1}{a^2 - x^2} & \frac{1}{2a}\ln\left|\frac{a + x}{a - x}\right| = \frac{1}{a}\tanh^{-1}\left(\frac{x}{a}\right) \quad (|x| < a) \\ \frac{1}{x^2 - a^2} & \frac{1}{2a}\ln\left|\frac{x - a}{x + a}\right| \\ \int u\frac{dv}{dx}dx = uv - \int v\frac{du}{dx}dx \end{aligned}$$

Area of a sector

$$A = \frac{1}{2} \int r^2 \, \mathrm{d}\theta \qquad \text{(polar coordinates)}$$

Arc length

$$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \quad \text{(cartesian coordinates)}$$

$$s = \int \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \quad \text{(parametric form)}$$
Surface area of revolution

$$S_{t} = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dt}\right)^2} dx \quad \text{(cartesian coordinate)}$$

$$S_x = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)} dx \quad \text{(cartesian coordinates)}$$
$$S_x = 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \quad \text{(parametric form)}$$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_{0} + y_{n}) + 2(y_{1} + y_{2} + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$
The mid-ordinate rule: $\int_{a}^{b} y \, dx \approx h(y_{\frac{1}{2}} + y_{\frac{3}{2}} + ... + y_{n-\frac{3}{2}} + y_{n-\frac{1}{2}})$, where $h = \frac{b-a}{n}$
Simpson's rule: $\int_{a}^{b} y \, dx \approx \frac{1}{3} h\{(y_{0} + y_{n}) + 4(y_{1} + y_{3} + ... + y_{n-1}) + 2(y_{2} + y_{4} + ... + y_{n-2})\}$
where $h = \frac{b-a}{n}$ and n is even

Content

Roots of polynomials	.11
Complex numbers	. 17
De Moivre's theorem	.22
Proof by induction	.28
Finite series	.34
Techniques of integration	. 37
Calculus of inverse trig functions	.41
Hyperbolic functions	.44
Inverse hyperbolic functions	.47
Arc length and area of surface of revolution	.51
Past Papers	. 57

Roots of polynomials

A polynomial $ax^3 + bx^2 + cx + d = 0$ has roots α, β, γ								
•The sum of the roots: $\sum \alpha = \alpha + \beta + \gamma = -\frac{b}{a}$								
•The sum of the double products: $\sum \alpha \beta = \alpha \beta + \alpha \gamma + \beta \gamma = \frac{c}{a}$								
•The product of the roots: $\alpha\beta\gamma = -\frac{d}{a}$								
If we are given the values of								
a) the sums of the roots,								
b) the sum of the double products and								
c) the product of all the roots,								
then we can form the corresponding cubic equation :								
$x^{3} - (\text{sum of roots})x^{2} + (\text{sum of the double products})x - (\text{product of roots}) = 0$								
or using the notations								
$x^{3} - \left(\sum \alpha\right) x^{2} + \left(\sum \alpha \beta\right) x - (\alpha \beta \gamma) = 0$								
Identities to remember:								
• $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$								
Using the notations:								
$\sum (\alpha^2) = \left(\sum \alpha\right)^2 - 2\sum \alpha\beta$								
• $\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)^3 - 3(\alpha\beta + \alpha\gamma + \beta\gamma)(\alpha + \beta + \gamma) - 3\alpha\beta\gamma$								
If all the coefficients of the polynomial (of order 3) are REAL numbers,								
there are either:								
• 3 real roots								
•1 real root and 2 complex CONJUGATE roots								
If the coefficients of the polynomial are complex numbers, there are no rules.								

Formulae

Roots

Complex De Moivre numbers theorem

Proof by induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006

Jun 2006

Jan 2007

Jun 2007 Jan 2008

Jun 2008 Jan 2009

Jun 2009 Jan 2010

Jun 2010

Roots of polynomials – General case

Consider a polynomial of order n (degree n):
$a_{n}z^{n} + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_{2}z^{2} + a_{1}z + a_{0} = 0$
where $a_n, a_{n-1},, a_1, a_0$ are numbers
This polynomial has roots $\alpha_1, \alpha_2,, \alpha_n$
•The sum of the roots: $\sum \alpha_i = \alpha_1 + \alpha_2 + \alpha_3 + + \alpha_n = -\frac{a_{n-1}}{a_n}$
•The sum of the double products: $\sum \alpha \beta = \frac{a_{n-2}}{a_n}$
•The sum of the triple products: $\sum \alpha \beta \gamma = -\frac{a_{n-3}}{a_n}$
•The product of the roots: $\alpha_1 \alpha_2 \alpha_3 \alpha_n = (-1)^n \frac{a_0}{a_n}$
When all the coefficients of the polynomial are REAL numbers,
If a root α is a complex number, then its conjugate α^* is also a root.

Roots of polynomials - exercises

Question 1:

The following equations have roots α, β, γ . In each case, work out i) $\sum \alpha = \alpha + \beta + \gamma$ ii) $\sum \alpha\beta = \alpha\beta + \alpha\gamma + \beta\gamma$ iii) $\alpha\beta\gamma$ $a) z^3 + 2z^2 - 4z + 6 = 0$ $b) 2z^3 + 6z^2 - 4 = 0$ $c) z^3 + (2+i)z^2 - iz + 3 - i = 0$

iv) For each of the above equations, work out $\alpha^2 + \beta^2 + \gamma^2$

Question 2:

The equation $z^3 - 9z^2 + pz - 36 = 0$ has roots α , β and γ *a*)*W*rite down the value of

 $i)\alpha + \beta + \gamma$ $ii)\alpha\beta\gamma$

b) It is given that $\alpha^2 + \beta^2 + \gamma^2 = 73$

i) Work out the value of p

c) It is also known that α is of the form ki, where k is a positive real number.

i) work out α and β ii) work out γ

Question 3: AQA June 2005

The cubic equation $x^3 - 11x - 150 = 0$ has roots α, β, γ .

a) Write the value of $\alpha + \beta + \gamma$

b) i) Explain why $\alpha^3 = 11\alpha + 150$

ii) Hence or ortherwise show that $\alpha^3 + \beta^3 + \gamma^3 = 450$

c) Given that $\alpha = -3 + 4i$, write down the other non-real root β and find the third root γ .

d) Show that $(3-4i)^3 + (3+4i)^3 = -234$

Question 4:

The cubic equation $x^3 + px^2 + qx + 30 = 0$, where *p* and *q* are real numbers, has a root $\alpha = 1 + 2i$

a) Write down the other non-real root, β , of the equation.

b) Find

 $i)\alpha\beta$

ii) the third root, γ , of the equation.

c) Hence, or otherwise, find the value of p and q.

Formulae

Question 5:

The cubic equation $z^3 + z^2 + pz + 15 = 0$ has roots α, β, γ It is given that $\alpha^3 + \beta^3 + \gamma^3 = -49$ *a*) Write down the value of $\alpha + \beta + \gamma$. *b*)*i*) Explain why $\alpha^3 + \alpha^2 + p\alpha + 15 = 0$ *ii*) Hence, show that $\alpha^2 + \beta^2 + \gamma^2 = p + 4$ *iii*) Deduce that p = -1 *c*)*i*) Find the REAL root α of the equation *ii*) Find β and γ

Question 6:

The cubic equation $z^3 - (8+4i)z^2 + qz - 30i = 0$ has roots α, β, γ a) Write down the value of $i)\alpha + \beta + \gamma$ $ii)\alpha\beta\gamma$ b) It is given that $\alpha = \beta + \gamma$

> Show that $i) \alpha = 4 + 2i$ $ii) \beta \gamma = 3 + 6i$ iii) q = 15 + 22i

c) Show that β and γ are the roots of the equation

 $z^2 - (4+2i) + (3+6i) = 0$

d) Given that β is a real number, find β then γ

Question 7:

The cubic equation $x^3 + px^2 + qx + r = 0$ with p, q and r real numbers has roots α, β, γ $a)\alpha + \beta + \gamma = 7$ and $\alpha^2 + \beta^2 + \gamma^2 = 31$ *Find p and q* b)Given that one root is 4-i, find r

Question 8:

The cubic equation $z^3 + pz^2 + 49z + q = 0$ has roots α, β, γ .

a) Write down the value of $\alpha\beta + \alpha\gamma + \beta\gamma$

b) Given that q and p are positive real numbers and that $\alpha^2 + \beta^2 + \gamma^2 = -17$

i) Explain why the cubic equation has 2 non-real roots

ii) Find *p*.

c) One root is -2+5i

i) Find the other root

ii) Find q

	$a)\alpha + \beta + \gamma = 0 \qquad (x^{2} + 0x^{2} - 11x - 150 = 0)$	b) i) α is a root so it satisfies the equation: $\alpha^3 - 11\alpha - 150 = 0$	$\alpha^3 = 11\alpha + 150$	<i>ii</i>)For the same reason $\beta^3 = 11\beta + 150$ and $\gamma^3 = 11\gamma + 150$	Adding the three equalities, we have $x^3 \pm x^3 \pm x^3 - 11x \pm 150 \pm 118 \pm 150 \pm 11x \pm 150$	$\alpha + \beta + \gamma^3 - 11(\alpha + \beta + \gamma) + 450$	$\alpha^3 + \beta^3 + \gamma^3 = 450 because \alpha + \beta + \gamma = 0$	c) $\alpha = -3 + 4i$ so $\beta = \alpha^*$ (because the coefficients of the equation are real)	$\beta = -3 - 4i$	from question a) we have $\alpha + \beta + \gamma = 0$	$-3+4i-3-4i+\gamma=0$	$\gamma = 6$	d) from question b) i) $\alpha^3 + \beta^3 + \gamma^3 = 450$	$(-3+4i)^3 + (-3-4i)^3 + 6^3 = 450$	$-(3-4i)^3 - (3+4i)^3 = 450 - 216$	$(3-4i)^3 + (3+4i)^3 = -234$	Question 4:	a) All the coefficients of the equation are real, so if $\alpha = 1 \pm 2i$ is a root then α^* is also a root	R = 1 - 2i	$b(i) = \alpha \beta \beta \beta \beta (1-2i) = 1+4=5$	$ii) \alpha \beta \gamma = -30 \qquad 5\gamma = -30 \qquad \gamma = -6$	c) $\alpha + \beta + \gamma = -p$	1 + 2i + 1 - 2i - 6 = -p $p = 4$	$\alpha\beta + \alpha\gamma + \beta\gamma = 5 - 6(1 + 2i) - 6(1 - 2i) = q$	q = -7	
cises - answers		$\left. \begin{array}{c c} \alpha\beta + \alpha\gamma + \beta\gamma & \alpha\beta\gamma & \alpha^2 + \beta^2 + \gamma^2 \end{array} \right $	-4 -6 12	0 2 9	-i -3+i 3+6i					$+ \alpha \gamma + \beta \gamma$								and check that: $4 \times (\pm 2) - (\pm 2)^3 = 0$								
Roots of polynomials - exercises - answers		$\alpha + \beta + \gamma$	$z^3 + 2z^2 - 4z + 6 = 0 -2$	$2z^3 + 6z^2 - 4 = 0 -3$	$z^{3} + (2+i)z^{2} - iz + 3 - i = 0 \qquad -2^{-i}$		12 .	$\chi = g$	r = 36	$(b)i)\alpha^{2} + \beta^{2} + \gamma^{2} = 73 = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	$73 = (-9)^2 - 2p$	n = 4	p = 1 $p = 1$; $z \in (1; n)^3 = 0$ (1; $n^2 + 1$ (1; $n = 3 \in -0$)	(130)(k1) - 3(k1) + 4(k1) - 30 = 0	$-ik^{2} + 9k^{2} + 4ki - 50 = 0$	$(9k^2 - 36) + i(4k - k^3) = 0$	$k^{2} = 4$	k = 2 or $k = -2$ and ch	This gives $\alpha = 2i$, $\beta = -2i$	$ii) \alpha \beta \gamma = 36 = -2i \times 2i \times \gamma \qquad \gamma = 9$						
	Question 1:	,	$z^{3} + 2z^{2}$	$2z^3 + 6z$	$z^{3} + (2 -$		Question 2:	a) $(a) \sum \alpha = 9$	ii) $\alpha\beta\gamma = 36$	$b(i) \alpha^2$			$\eta - \infty (c$	c) $\alpha = v$					This gi	<i>ii</i>) $\alpha\beta\gamma$					15	

Formulae

Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

Complex numbers

ormulae Roots Complex numbers De Moivre theorem Proof by induction Finite series Inverse trig Hyperbolic functions functions Arc length Past Papers Jan 2006 **Jun 2006** Jan 2007 **Jun 2007** Jan 2008 **Jun 2008** Jan 2009 Jun 2009 Jan 2010 Jun 2010

17

Question 1:

On a Argand diagram, represent the locus of the points satisfying

a)
$$|z| = 5$$

b) $|z - 2 - 3i| = 2$
c) $|z - 2i| \le 4$
d) $|z - 3| = |z - 1 - i|$
e) $|z| = |z - 5 + 3i|$
f) $\arg(z) = \frac{\pi}{4}$
g) $\arg(z + 4 - 5i) = \frac{\pi}{6}$
h) $0 \le \arg(z + 3 + 2i) \le \frac{\pi}{3}$
i) shade the locus : $|z + 5i| \le 3$ and $|z + 5i| \ge |z - 2 + 5i|$

 +	 	 	 	 	6			 				
		1						1				
 			 		5			 				
					4			1				
 + 	 	+ 	 	 	+ "- 			-	 			
 					3			 				
	 	 	 	 	2		 	 	 	 	 	
		1	1		1			1	1			
 					'-							
								1	1			
 					0							
-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
 -6	-5	-4	-3	-2		0	1	2	3	4	5	6
 -6	-5	-4	-3	-2	-1 1	0	1	2	3	4	5	6
 -6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
 -6	-5	-4	-3	-2	-1 -1 -2	0	1	2	3	4	5	6
 -6	-5		-3	-2	-1	0	1	2	3	4	5	6
 -6	-5		-3	-2	-1 -1 -2	0	1	2	3	4	5	6
 -6			-3		-1 -2 -3 -4	0	1	2	3	4	5	6
 -6			-3		-1 -2 -3	0		2	3	4	5	6
 -6			-3		-1 -2 -3 -4	0	1	2	3	4	5	6
 -6			-3		-1 -2 -3 -4	0		2	3	4	5	6

Question 2:

The complex number z satisfies the relation

|z+2-2i|=2

a)Sketch, on an Argand diagram, the locus of z.

b) Show that the greatest value of |z| is $2(1+\sqrt{2})$

c) Find the value of z for which $\arg(z+2-2i) = \frac{1}{2}\pi$

Question 3:

a) On one Argand diagram. sketch the locus of the points satisfying

i)
$$|z-4+i| = 3$$

ii) arg $(z-2) = -\frac{\pi}{4}$

b) Indicate on your sketch the set of points satisfying both

$$|z-4+i| \le 3$$
 and $\arg(z-2) = -\frac{\pi}{4}$

Question 4:

a)Sketch on one Argand diagram

i) the locus of points satisfying |z - 3 + 2i| = 3

ii) the locus of points satisfying |z-2| = |z-2+4i|

b) Shade on your sketch the region in which

 $|z-3+2i| \le 3$ AND $|z-2| \le |z-2+4i|$ both

Question 5:

a) Indicate on an Argand diagram the region for which $|z + 6i| \le 3$

b) The complex number z satisfies $|z+6i| \le 3$. Find the range of possible values of arg z.

Question 6:

A circle C and a half-line L have equations

$$\left|z-1-2i\sqrt{3}\right|=4$$

and
$$\arg(z+1) = \frac{\pi}{3}$$
 respectively

a)Show that:

i) The circle C passes through the point where z = -1

ii) the half line L passes through the centre of C.

b)On one Argand diagram, sketch C ad L.

c)Shade on your sketch the set of points satisfying both

 $\left|z-1-2i\sqrt{3}\right| \le 4$ $0 \le \arg(z+1) \le \frac{\pi}{3}$

and

ormulae

Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

2006

Jan 2007

Jan 2008

Jun 2008 Jan 2009

Jun 2009

Jan 2010

Question 1:

- a) Circle centre (0,0) radius 5
- c) Disc centre (0, 2) radius 4

b) Circle centre (2,3) radius 2
d) Perpendicular bisector of (3,0) and (1,1)

f) Half line from (0,0) gradient $\tan \frac{\pi}{4} = 1$ with x > 0

h) and e) see diagram

- e) Perpendicular bisector of (0,0) and (5,-3)
- g) Half line from (-4,5) gradient $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ with x > -4

Question 2:

a) The locus is the circle centre (-2,2) radius r = 2

b) The greatest value of
$$|z|is|-2+2i|+r = \sqrt{(-2)^2 + (2)^2 + 2}$$

= $2\sqrt{2} + 2 = 2(1+\sqrt{2})$

c) We need to find the coordinates of the point Z.

Using trigonometry in the right-angled triangle AEZ,

we have: $EZ = 2 \times \sin \frac{\pi}{3} = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$ and $AE = 2 \times \cos \frac{\pi}{3} = 1$ This gives $Z(-1, 2+\sqrt{3})$

Question 3:

a)i) The locus is the circle centre (4,1) radius r = 3

ii) *Half line from* (2,0) *with gradient* $tan\left(-\frac{\pi}{4}\right) = -1$ *with* x > 2

b) The set of points which are solutions contitute the segment line intersection between the half line and the disc (inside of the circle)

Question 4:

a)i) Circle centre (3, -2) and radius r = 3ii) Perpendicular bisector of (2,0) and (2, -4)b) $|z-3+2i| \le 3$ is the disc (3, -2) and radius r = 3 $|z-2| \le |z-2+4i|$ is the half plane containing the point (2,0)

Question 5:

a) The locus is the disc centre (0,-6) radius r = 3*b*) The range of the arg(z) is given by drawing the tangents to the circle going through the origin (0,0). Knowing that the radius is perpendicular to the tangent, we can use trigonometry to work out the angles needed.

In OAD, angle
$$AOD = \operatorname{Sin}^{-1}\left(\frac{opp}{hyp}\right) = \operatorname{Sin}^{-1}\left(\frac{3}{6}\right) = \frac{\pi}{6}$$

The arg(z) goes from $-\frac{2\pi}{3}$ to $-\frac{\pi}{3}$ (-120° to -60°)

Question 6:

a)i)
$$|z-1-2i\sqrt{3}| = |-1-1-2i\sqrt{3}| = |-2-2i\sqrt{3}| = \sqrt{(-2)^2 + (-2\sqrt{3})^2} = z = -1$$
 belongs to C
ii) $\arg(z+1) = \arg(1+2i\sqrt{3}+1) = \arg(2+2i\sqrt{3}) = \theta$
 $\tan \theta = \frac{2\sqrt{3}}{2} = \sqrt{3}$ $\tan^{-1}\sqrt{3} = \frac{\pi}{3}$
 $z = 1+2i\sqrt{3}$ belongs to L
b)
c) see diagram.

De Moivre's theorem

	Trigonometric form of a complex number
- and the second	$z = x + iy \text{ and } z = r \text{ , } \arg(z) = \theta$
	The trigonometric form of z is : $z = r(\cos\theta + i\sin\theta)$
	De Moivre's Theorem
- Comment	
	For all $n \in \mathbb{Q}$, and all $\theta \in \mathbb{R}$, $(Cos \theta + i Sin \theta)^n = Cos(n\theta) + i Sin(n\theta)$
	Expressions of $\sin\theta$ and $\cos\theta$
	$If \ z = \cos\theta + i\sin\theta$
	then $z + \frac{1}{z} = 2\cos\theta$ and $z - \frac{1}{z} = 2i\sin\theta$
	AND
	$z^n + \frac{1}{z^n} = 2\cos(n\theta)$ and $z^n - \frac{1}{z^n} = 2i\sin(n\theta)$
	Exponential form of a complex number
	$z = r(\cos\theta + i\sin\theta)$ is noted $z = re^{i\theta}$
	The rules of calculation with exponential remain valid
	with complex numbers.
	i.e: $e^{i\theta} \times e^{i\alpha} = e^{i(\theta+\alpha)}$
	$\frac{e^{i\theta}}{e^{i\alpha}} = e^{i(\theta - \alpha)}$
	$\left(e^{i\theta}\right)^n = e^{in\theta}$ (De moivre's theorem)
	Expressions of $\sin \theta$ and $\cos \theta$
	If $z = e^{i\theta}$
	then $\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$ and $\sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$
	AND
	$\cos(n\theta) = \frac{1}{2} \left(e^{in\theta} + e^{-in\theta} \right) and \sin(n\theta) = \frac{1}{2i} \left(e^{in\theta} - e^{-in\theta} \right)$
	The n th roots of the unity: $z^n = 1$
	$z = e^{i\frac{2k\pi}{n}}$ $k = 0, 1, 2,, n-1$
	Solving $z^n = x + iy$
	$z^n = r^n e^{in\theta}$ and $x + iy = r_0 e^{i\theta_0}$
	$z = r_0^{\frac{1}{n}} e^{\frac{i\theta_0 + 2k\pi}{n}} k = 0, 1, 2,, n - 1$
	$2 - r_0 c$ $k = 0, 1, 2,, n - 1$

De Moivre's theorem - exercises

Question 1:

Work out the exact value of the following complex numbers:

a)
$$\left(\cos\frac{3\pi}{7} + i\sin\frac{3\pi}{7}\right)^7$$

b) $\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^5$
c) $\frac{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}}$
d) $\frac{\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}}{\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^6}$

Question 2:

By finding the modulus and argument first,

work out the exact value of the power of these complex numbers

a)
$$\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^{5}$$
 b) $\left(1 + i\sqrt{3}\right)^{6}$ c) $\left(4 - 4i\right)^{8}$
d) $\left(3 + \sqrt{3}i\right)^{6}$ e) $\left(-2 - 2i\sqrt{3}\right)^{9}$ f) $(-1 - i)^{12}$

Question 3:

Using De moivre's theorem, express

a) $\cos(2\theta)$ in terms of $\cos\theta$ and $\sin\theta$ b) $\sin(3\theta)$ in terms of $\cos\theta$ and $\sin\theta$ c) $\cos(3\theta)$ in terms of $\cos\theta$

Question 4:

The complex number $z = \cos \theta + i \sin \theta$ with $\theta \in \mathbb{R}$.

a)Show that $z + \frac{1}{z} = 2\cos\theta$ and work out $z - \frac{1}{z}$ in terms of $\sin\theta$. b) Using the exponential notation, $z = e^{i\theta}$, show $z^n + \frac{1}{z^n} = 2\cos(n\theta)$ for any integer *n*.

- c) Find a similar identity for $z^n \frac{1}{z^n}$.
- d) Linearise $\cos^3 \theta$
- e) Linearise $\sin^4 \theta$
- f) Work out $\int_0^{\frac{\pi}{2}} \sin^4 \theta d\theta$

ormulae

Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan

2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008 Jan 2009

Jun 2009

Jan 2010

Jun 2010

Question 5:

Using the De Moivre's theorem, show that

a) $\sin 5\theta = 5\cos^4\theta \sin\theta - 10\cos^2\theta \sin^3\theta + \sin^5\theta$

b) Find a similar expression for $\cos 5\theta$

c) Hence or otherwise, show that $\tan 5\theta = \frac{5\tan\theta - 10\tan^3\theta + \tan^5\theta}{1 - 10\tan^2\theta + 5\tan^4\theta}$

d) Show that $x = \tan \frac{\pi}{20}$ is a solution of the equation $x^5 - 5x^4 - 10x^3 + 10x^2 + 5x + 1 = 0$

e) Find the other 4 solutions.

f) Show that
$$\tan \frac{\pi}{20} + \tan \frac{9\pi}{20} - \tan \frac{7\pi}{20} - \tan \frac{3\pi}{20} = 4$$

Question 6:

a) Solve the complex equation $z^6 = 1$.

Give your answers in exponential form.

b) If ω is one of the solution (not 1), show that $1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 = 0$

c) Illustrate your solutions in an Argand diagram.

Question 7:

a) Solve $z^4 = -i$. Give your answers in the form $e^{i\theta}$ with $-\pi < \theta \le \pi$. b) Explain why the sum of the solutions is 0.

Question 8:

a)Solve in the set of complex numbers

$$z^5 = 32$$

Give your answers in the exponential form: $e^{i\theta}$ with $-\pi < \theta \le \pi$ b)Given that the sum of the root is 0, show that

$$\cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right) = -\frac{1}{2}$$

Question 9:

a) Expand $(z^3 - e^{i\theta})(z^2 - e^{-i\theta})$

b) Hence, solve $z^5 + z^3 + z^2 + 1 = 0$

Give your answers in the for x + iy

c) Illustrate these solutions on an Argand diagram.

De Moivre's theorem – exercises - answers

Question 1:

$$a)\left(\cos\frac{3\pi}{7} + i\sin\frac{3\pi}{7}\right)^{7} = \cos\frac{21\pi}{7} + i\sin\frac{21\pi}{7} = \cos3\pi + i\sin3\pi = -1$$

$$b)\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{5} = \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$

$$c)\frac{e^{i\frac{\pi}{3}}}{e^{i\frac{\pi}{6}}} = e^{i\frac{\pi}{3}} = \cos\frac{\pi}{3} + i\frac{\pi}{3} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$d)\frac{e^{i\frac{\pi}{4}}}{(e^{i\frac{\pi}{2}})^{6}} = \frac{e^{i\frac{\pi}{4}}}{e^{i\frac{\pi}{2}}} = e^{i\frac{4\pi}{4}} = e^{-i\frac{3\pi}{4}} = e^{i\frac{3\pi}{4}} = \cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$

Question 2:

$$a)\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^{3} = \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{5} = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$
$$b)(1 + i\sqrt{3})^{6} = \left(2(\frac{1}{2} + i\frac{\sqrt{3}}{2})\right)^{6} = \left(2e^{i\frac{\pi}{3}}\right)^{6} = 2^{6} \times e^{i\frac{5\pi}{3}} = 2^{6} \times e^{i2\pi} = 64$$
$$c)(4 - 4i)^{8} = \left(4\sqrt{2}\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)\right)^{8} = \left(4\sqrt{2}e^{-i\frac{\pi}{4}}\right)^{8} = \left(4\sqrt{2}\right)^{8}e^{-2\pi i} = 1048576$$
$$d)(3 + i\sqrt{3})^{6} = \left(2\sqrt{3}\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)\right)^{8} = \left(2\sqrt{3}e^{i\frac{\pi}{6}}\right)^{6} = \left(2\sqrt{3}\right)^{6} \times e^{i\pi} = -1728$$
$$e)(-2 - 2i\sqrt{3})^{9} = \left(4\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\right)^{9} = \left(4e^{-i\frac{2\pi}{3}}\right)^{9} = 4^{9} \times e^{-i6\pi} = 262144$$
$$f)(-1 - i)^{12} = \left(\sqrt{2}\left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)^{12} = \left(\sqrt{2}e^{-i\frac{3\pi}{4}}\right)^{12} = \sqrt{2}^{12} \times e^{-9\pi i} = -64$$

Question 3:

So $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ and $\sin 2\theta = 2 \sin \theta \cos \theta$ $= c^{3} + 3 \times c^{2} \times (is) + 3 \times c \times (is)^{2} + (is)^{3}$ $\cos 2\theta + i \sin 2\theta = \cos^2 \theta + 2i \sin \theta \cos \theta + (i \sin \theta)^2$ $=\cos^3\theta - 3\cos\theta(1 - \cos^2\theta)$ $=(\cos^2\theta - \sin^2\theta) + i(2\sin\theta\cos\theta)$ $=\cos^3\theta + 3\cos^2\theta - 3\cos\theta$ $b \cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^3 = (c + is)^3$ $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$ $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$ $= (c^{3} - 3cs^{2}) + i(3c^{2}s - s^{3})$ Identifying the imaginary parts gives c) Identifying the real parts gives : a) $(\cos\theta + i\sin\theta)^2 = \cos 2\theta + i\sin 2\theta$

25

Formulae Roots

Complex De Moivre Proof by numbers theorem induction

Finite Inverse trig Hyperbolic Arc length Past series functions functions

Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

Question 6:

$$z = re^{i\theta} \quad so \quad z^{5} = r^{5}e^{i5\theta} \quad and \quad 1 = e^{i0}$$

$$z^{5} = 1 \quad becomes$$

$$r^{5}e^{i5\theta} = 1e^{i0}$$

$$r^{5} = 1 \quad and \quad 5\theta = 0 + k2\pi$$

$$r = 1 \quad and \quad \theta = k\frac{2\pi}{5} \quad k = 0, 1, 2, 3, 4$$

$$solutions : z_{1} = e^{i0} = 1, \quad z_{2} = e^{i\frac{2\pi}{5}}, \quad z_{3} = e^{i\frac{4\pi}{5}}, \quad z_{4} = e^{i\frac{6\pi}{5}}, \quad z_{5} = e^{i\frac{8\pi}{5}}$$

$$b) 1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} = \frac{1 - \omega^{5}}{1 - \omega} = \frac{1 - 1}{1 - \omega} = 0$$

Question 7:

(geometric series with common ratio ω)

 $a)z^4 = -i$

$$r^{4}e^{i4\theta} = e^{-i\frac{\pi}{2}}$$

$$r^{4} = 1 \text{ and } 4\theta = -\frac{\pi}{2} + k2\pi$$

$$r = 1 \text{ and } \theta = -\frac{\pi}{8} + k\frac{\pi}{2} \quad k = -1, 0, 1, 2$$

$$solutions: z_{1} = e^{-i\frac{5\pi}{8}}, \quad z_{2} = e^{-i\frac{\pi}{8}}, \quad z_{3} = e^{i\frac{3\pi}{8}}, \quad z_{4} = e^{i\frac{7\pi}{8}}$$

$$b) z^{4} = -i \quad z^{4} + i = 0$$

ú

The coefficient of z^3 is 0, hence the sum of the roots is 0.

Question 8:

$$z^{5} = 32$$

$$r^{5}e^{i5\theta} = 32e^{i0}$$

$$r^{5} = 32e^{i0}$$

$$r^{5} = 32 and 5\theta = 0 + k2\pi$$

$$r = 2 and \theta = k\frac{2\pi}{5} k = -2, -1, 0, 1, 2$$

Solutions: $z_{1} = 2e^{-i\frac{4\pi}{5}}, z_{2} = 2e^{-i\frac{2\pi}{5}}, z_{3} = 2, z_{4} = 2e^{i\frac{2\pi}{5}}, z_{5} = 2e^{i\frac{4\pi}{5}}$

$$b) z_{1} + z_{2} + z_{3} + z_{4} + z_{5} = 0$$

$$b) z_{1} + z_{2} + z_{3} + z_{4} + z_{5} = 0$$

$$cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5} + \cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5} + 2 + \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5} + \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} + \cos\frac{4\pi}{5} + \cos\frac{4\pi}{5}$$

Question 9:

a)
$$(z^3 - e^{i\theta})(z^2 - e^{-i\theta}) = z^5 - z^3 e^{-i\theta} - z^2 e^{i\theta} + 1$$

b) when $\theta = \pi$, the expression becomes $z^5 + z^3 + z^2 + 1$
and can be factorised: $(z^3 - e^{i\pi})(z^2 - e^{-i\pi})$
 $z^5 + z^3 + z^2 + 1 = 0$ for $z^3 = e^{i\pi}$ or $z^2 = e^{-i\pi}$

 $z = e^{i\frac{\pi}{3}}$ or $z = e^{i\frac{3\pi}{3}} = -1$ or $z = e^{-i\frac{\pi}{3}}$ OR z = i or z = -i

Formulae Roots Complex De Moivre Proof by numbers theorem induction Finite Inverse trig Hyperbolic Arc length Past functions functions Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

Proof by induction

	INDUCTION PRINCIPALA proposition P_n , is to be proven true for $n \ge n_0$ • Basis case : Show that P_{n_0} is true.• Assumption / Hypothesis Suppose that P_k is true.• Induction : Show that P_{k+1} is then also true.• Conclusion : "If the proposition P_k is true then P_{k+1} is true. Because P_{n_0} is true, according to the induction principal we conclude that the proposition is true for all $n \ge n_0$ "
--	---

Question 1:

Prove by induction that

for all
$$n \ge 1$$
, $\sum_{r=1}^{n} r^2 - 4r = \frac{1}{6}n(n+1)(2n-11)$

Question 2:

Prove by induction that

for all
$$n \ge 1$$
, $n^2 - 9n + 7$ is divisible by 2

Question 3:

A sequence is given by

 $u_1 = 3$ and $u_{n+1} = 2u_n - 5$

a) Work out u_2, u_3, u_4 .

b) Show by induction that for all $n \ge 1$, $u_n = 5 - 2^n$

Question 4:

The function f, is defined by

 $f(n) = 3^{2n} - 2^{2n}$ for all $n \ge 1$

a) Work out f(1), f(2), f(3).

- b) Express f(k+1) 4f(k) in terms of k.
- *c*) Prove by induction that for all $n \ge 1, 3^{2n} 2^{2n}$ is divisible by 5

Question 5:

- *a*) *i*) Show that x = 1 is a root of $x^3 + 5x^2 + 2x 8 = 0$
 - *ii*) Factorise fully $x^3 + 5x^2 + 2x 8$

b) Prove by induction that

for all
$$n \ge 1$$
, $\sum_{r=1}^{n} 4r^3 - 12r = n(n+1)(n+3)(n-2)$

Question 6:

A sequence is given by

$$u_1 = 6$$
 and $u_{n+1} = 3u_n - 6$

a) Work out u_2, u_3, u_4 .

b) Show by induction that for all $n \ge 1$, $u_n = 3^n + 3$

Question 7:

The function f, is defined by

$$f(n) = 7^{2n} - 2 \times 3^{2n} + 1$$
 for all $n \ge 1$

a) Work out f(1), f(2), f(3).

b) Show that $f(k+1) - 49f(k) = a \times (b \times 3^{2k} + c)$ where a, b and c are to be found.

c) Prove by induction that for all $n \ge 1$, $7^{2n} - 2 \times 3^{2n} + 1$ is divisible by 16

Formulae

Roots

Complex De Moivre numbers theorem

Proof by induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan

2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008 Jan

2009

Jun 2009

Jan 2010

Jun 2010

Question 1: Let's call P_n the proposition: $\sum_{r=1}^{n} r^2 - 4r = \frac{1}{6}n(n+1)(2n-11)$	Question 2:
t's call P_n the proposition: $\sum_{r=1}^n r^2 - 4r = \frac{1}{6}n(n+1)(2n-11)$	Let's call P_n the proposition: $n^2 - 9n + 7$ is divisible by 2
	We have to prove that this proposition is true for all $n \ge 1$. • Basis case : $n = 1$
We have to prove that this proposition is true for all $n \ge 1$. • Basis case : $n = 1$	$n^2 - 9n + 6 = 1^2 - 9 \times 1 + 6 = -2(= 2 \times -1)$
Left Hand Side (LHS) : $\sum_{r=1}^{1} r^2 - 4r = 1^2 - 4 \times 1 = -3$	The proposition P ₁ is true. • Assumption :
Right Hand side (RHS): $\frac{1}{6}n(n+1)(2n-11) = \frac{1}{6} \times 1 \times 2 \times -9 = -3$	Let's assume that the proposition is true for $n = k$ (P_k is true).
The proposition P ₁ is true.	<i>i.e.</i> : $k^2 - 9k + 6$ is divisible by 2 Let's show that the proposition is true for $n = k + 1(showthat P_{i,j} is true)$.
Let's assume that the proposition is true for $n = k$ (P_k is true).	<i>i.e. let</i> 's show that $(k+1)^2 - 9(k+1) + 6$ is divisible by 2.
$i.e:\sum_{c}r^{2}-4r=rac{1}{c}k(k+1)(2k-11)$	•Induction :
Let's show that the proposition is true for $n = k + 1$ (<i>showthat</i> P_{k-1} <i>is true</i>).	$(k+1)^2 - 9(k+1) + 6 = k^2 + 2k + 1 - 9k - 9 + 6$
<i>i.e.</i> let's show that $\sum_{k=1}^{k+1} r^2 - 4r = -(k+1)(k+2)(2k-9)$	$=(k^{2}-9k+6)+2k-8$
	$= (k^2 - 9k + 6) + 2(k - 4)$
• induction:	$k^2 - 9k + 6$ is divisible by 2 by assumption
$\sum_{r=1}^{r-1} r^{z} - 4r = \sum_{r=1}^{r-1} r^{z} - 4r + \left((k+1)^{z} - 4(k+1) \right)$	2(k-4) is divisible by 2
$= \frac{1}{6}k(k+1)(2k-11) + (k+1)(k-3)$	so $(k+1)^2 - 9(k+1) + 6$ is divisible by 2 Q.E.D
$\frac{1}{1}$	Conclusion :
$= -(k+1)(k(2k-11)+6(k-3)) = -(k+1)(2k^{2}-5k-18)$	If the proposition is true for $n = k$, then it is also true for $n = k + 1$.
$= \frac{1}{6} (k+1) (2k-9) (k+2) Q.E.D$	Because it is true for $n = 1$, according to the induction principal, we can conclude that P_n is true for all $n \ge 1$.
If the proposition is true for $n = k$, then it is also true for $n = k + 1$. Because it is true for $n = 1$, according to the induction principal,	

Question a: Question a: a and u _{i=1} = 2u ₂ - 5 a and u _{i=1} = 2u ₂ - 5 b and a and a a and a and 	
case: $n = 1$ $5 - 2^n = 5 - 2^1 = 3 = u_1$ proposition is true for <i>n</i> <i>nption</i> : Let's assume that the F Let's assume that it s tru $u_{k+1} = 2u_k - 5 = 2(5 - 2$ $u_{k+1} = 5 - 2^{k+1}$ Q.E.D u_{sion} : roposition is true for <i>n</i> = 1, aco conclude that P_n is true	

Formulae

Question 5:

a) i)
$$x^{3} + 5x^{2} + 2x - 8 = (1)^{3} + 5 \times (1)^{2} + 2 \times (1) - 8 = 1 + 5 + 2 - 8 = 0$$

1 is a root of $x^{3} + 5x^{2} + 2x - 8$
ii) $x^{3} + 5x^{2} + 2x - 8 = (x - 1)(x^{2} + 6x + 8) = (x - 1)(x + 4)(x + 2)$

b) Proposition
$$P_n : \sum_{r=1}^{n} 4r^3 - 12r = n(n+1)(n+3)(n-2)$$

• Basis case:
$$n = 1$$

LHS:
$$\sum_{r=1}^{1} 4r^{3} - 12r = 4 \times 1^{3} - 12 \times 1 = 4 - 12 = -8$$

RHS: $n(n+1)(n+3)(n-2) = 1 \times 2 \times 4 \times -1 = -8$

 P_1 is true

• Assumption

Let's suppose that
$$P_k$$
 is true i.e $\sum_{r=1}^{\infty} 4r^3 - 12r = k(k+1)(k+3)(k-2)$

Let's show that P_{k+1} is true, let's show that $\sum_{r=1}^{k+1} 4r^3 - 12r = (k+1)(k+2)(k+4)(k-1)$

Induction

$$\sum_{r=1}^{k+1} 4r^3 - 12r = \sum_{r=1}^k 4r^3 - 12r + 4(k+1)^3 - 12(k+1)$$

= $k(k+1)(k+3)(k-2) + 4(k+1)^3 - 12(k+1)$
= $(k+1)(k(k+3)(k-2) + 4(k+1)^2 - 12)$
= $(k+1)(k^3 + k^2 - 6k + 4k^2 + 8k + 4 - 12)$
= $(k+1)(k^3 + 5k^2 + 2k - 8) = (k+1)(k-1)(k+4)(k+2) \ Q.E.D$

Conclusion

If P_k is true then P_{k+1} is true. P_1 is true, so according to the induction principle we conclude that the proposition P_n is true for all $n \ge 1$.

Question 6:

a)
$$u_1 = 6$$
 and $u_{n+1} = 3u_n - 6$
 $u_2 = 3 \times 6 - 6 = 12$
 $u_3 = 3 \times 12 - 6 = 30$
 $u_4 = 3 \times 30 - 6 = 84$
b) Proposition $P_n : u_n = 3^n + 3$
b) Proposition $P_n : u_n = 3^n + 3$
Basis case : $n = 1$
 $LHS : u_1 = 6$
 $RHS : 3^n + 3 = 3^1 + 3 = 6$
 P_1 is true
• Assumption

Suppose that P_k is true i.e $u_k = 3^k + 3$

Let's show that P_{k+1} is true, i.e Let's show that $u_{k+1} = 3^{k+1} + 3$ •*Induction*

$$u_{k+1} = 3u_k - 6 = 3(3^k + 3) - 6 = 3^{k+1} + 9 - 0$$
$$u_{k+1} = 3^{k+1} + 3 \qquad Q.E.D$$

9

Conclusion

If P_k is true the P_{k+1} is true. Because P_1 is true we can conclude that P_n is true for all $n \ge 1$. for all $n \ge 1$, $u_n = 3^n + 3$

Question 7: a) $f(1) = 7^2 - 2 \times 3^2 + 1 = 49 - 18 + 1 = 32$ $f(2) = 7^4 - 2 \times 3^4 + 1 = 2240$

$$f(2) = 7^{4} - 2 \times 3^{4} + 1 = 2240$$

$$f(3) = 7^{6} - 2 \times 3^{6} + 1 = 116192$$

$$b) f(k+1) - 49 f(k) = 7^{2k+2} - 2 \times 3^{2k+2} + 1 - 49(7^{2k} - 2 \times 3^{2k} + 1)$$

$$= 49 \times 7^{2k} - 18 \times 3^{2k} - 49 \times 7^{2k} + 98 \times 3^{2k} - 48$$

$$f(k+1) - 40 f(k) - 80 \times 3^{2k} - 48 - 16(5 \times 3^{2k} - 3)$$

$$f(k+1) - 49f(k) = 80 \times 3^{2k} - 48 = 16(5 \times 3^{2k} - 3)$$

c) Proposition P_n : $f(n) = 7^{2n} - 2 \times 3^{2n} + 1$ is divisible by 16

• Basis case: n = 1

 $f(1) = 32 = 16 \times 2$ is divisible by 16 The proposition is true for n = 1 (P_1 is true)

Assumption

Let's suppose that P_k true i.e $f(k) = 7^{2k} - 2 \times 3^{2k} + 1$ is divisible by 16 Let's show that P_{k+1} is true,

i.e. let's show that $f(k+1) = 7^{2k+2} - 2 \times 3^{2k+2} + 1$ is divisible by 16

Induction

$$f(k+1) - 49f(k) = 16(5 \times 3^{2k} - 3)$$

$$f(k+1) = 16(5 \times 3^{2k} - 3) + 49f(k)$$

$$16(5 \times 3^{2k} - 3)$$
 is a multiple of 16

49f(k) is a multiple of 16 because f(k) is one by supposition.

f(k+1) is therefore a multiple of 16 (as the sum of two multiples of 16)

Conclusion

If P_k is true then P_{k+1} is true P_1 is true so according to the induction principle, we can say that P_n is true for all $n \ge 1$.

and and	Formulae
and and	Roots
numbers	Complex
theorem	De Moivre
numbers theorem induction	Proof by
series	
functions	Inverse trig
functions	Inverse trig Hyperbolic Arc length
Papers	Past
and the second	Jan 2006
	Jun 2006
	Jan 2007
	Jun 2007
	Jan 2008
	Jun 2008
No. of the second s	Jan 2009
	Jun 2009
and the second	Jan 2010
	Jun 2010

Finite series

Method 1:
You might be asked to prove a result using the induction principal.
e.g.: Show by induction that "for all $n \ge 1$, $\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$ "
 In FP2, do not use the standard series from the formula book (unless told to do so).
Method 2: Differencing
Consider two functions $u(r)$ and $f(r)$
If we can write $u(r) = f(r+1) - f(r)$
then $\sum_{r=1}^{n} u(r) = \sum_{r=1}^{n} f(r+1) - f(r) = f(n+1) - f(1)$
$e.g: f(r) = 2r^2 - 1$
a) Show that $4r + 2 = f(r+1) - f(r)$
a) Show that $4r + 2 = f(r+1) - f(r)$ b) Hence work out $\sum_{r=1}^{n} 4r + 2$
Anwers :
a) $f(r+1) - f(r) = 2(r+1)^2 - 1 - (2r^2 - 1) = 2r^2 + 4r + 2 - 1 - 2r^2 + 1$ = 4r + 2
=4r+2
$b)\sum_{r=1}^{n} 4r + 2 = \sum_{r=1}^{n} f(r+1) - f(r) = f(n+1) - f(1) = 2(n+1)^{2} - 1 - 1$
$=2n^2+4n$
Partial fractions
Property: if $F(x) = \frac{ax+b}{(cx+d)(ex+f)}$ then it exists two real numbers A and B
so that $F(x) = \frac{A}{cx+d} + \frac{B}{ex+f}$
$e.g: \frac{1}{r(r+1)} = \frac{A}{r} + \frac{B}{r+1} \qquad (\times r(r+1) \text{ gives})$
1 = A(r+1) + B(r)
r = 0 gives $A = 1$
r = -1 gives $B = -1$
$\frac{1}{r(r+1)} = \frac{1}{r} - \frac{1}{r+1}$

Question 1:

(a) Given that $f(r) = \frac{1}{2}r(r+2)$, show that

$$f(r+1) - f(r) = r + \frac{3}{2}$$

(b) Use the method of differences to find the value of

$$\sum_{r=50}^{99} \left(r + \frac{3}{2} \right)$$

Question 2:

(a) Consider the polynomial $P(x) = x^3 + 10x^2 + 37x + 60$

i) Show that -5 is a root of P

ii) Show that
$$P(x) = (x+5)(x^2+5x+12)$$

(b) Given that $f(r) = \frac{1}{4}(r+1)^2(r+2)^2$, show that

$$f(r+1) - f(r) = (r+2)^3$$

(c) Use the method of differences to work out in terms of n

$$\sum_{r=1}^n (r+2)^3$$

Question 3:

a) Given that
$$\frac{2r^2 + 2r - 2}{r(r+1)} = A + B\left(\frac{1}{r} - \frac{1}{r+1}\right)$$

find the value of A and B

b) Find the value of

$$\sum_{r=1}^{99} \frac{2r^2 + 2r - 2}{r(r+1)}$$

Question 4:

a)Show that

$$\frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}$$

b) Hence find the sum of the first n terms of the series

$$\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \dots$$

Question 5:

The sum to r terms, $\boldsymbol{S}_{\boldsymbol{r}}$, of a series is given by

$$S_r = r(r+1)(r-1)^2$$

Given that u_r is the r^{th} term of the series whose sum is S_r , show that: (a) i) $u_1 = 0$

ii)
$$u_2 = 6$$
 and $u_3 = 42$

(iii)
$$u_n = n(n-1)(4n-5)$$

(b) Show that

$$\sum_{r=n+1}^{2n} u_r = n(15n^3 - 7n^2 - 3n + 1)$$

35

ormulae

Roots

Complex numbers

De Moivre theorem

Proof by induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008

Jan

2009

Jun 2009

Jan 2010

Jun 2010

Finite series - exercises - Answers	Question 3: I am motion to average the R H S as a simile fraction
Question 1:	and identify with the L.H.S
$a) f(r) = \frac{1}{2}r(r+2)$	$A + B\left(\frac{1}{r} - \frac{1}{r+1}\right) = \frac{Ar(r+1) + B(r+1) - Br}{r(r+1)} = \frac{Ar^{2} + Ar + B}{r(r+1)}$
$\int_{-\infty}^{\infty} f(r) = \frac{1}{2}(r+1)(r+3) - \frac{1}{2}r(r+2) = \frac{1}{2}\left(r^{2} + 4r + 3 - r^{2} - 2r\right)$	This should be equal to $\frac{2r^2 + 2r - 2}{r(r+1)}$ so $A = 2$ and $B = -2$
$=\frac{1}{2}(2r+3)=r+\frac{3}{2}$	$b)\sum_{r=1}^{99}\frac{2r^{2}+2r-2}{r(r+1)} = \sum_{r=1}^{99}2-2\left(\frac{1}{r}-\frac{1}{r+1}\right) = \sum_{r=1}^{99}2-2\sum_{r=1}^{99}\frac{1}{r}-\frac{1}{r+1} = 2\times99-2\left(1-\frac{1}{100}\right) = 196.02$
$b) \sum_{r=1}^{\infty} \left[r + \frac{3}{2} \right] = \sum_{r=1}^{\infty} \left[f(r+1) - f(r) = f(100) - f(50) \right]$	Question 4:
$2 \int \sum_{r=50}^{r} (r) r^{2} r$	$\frac{1}{(n+1)(n+2)} = \frac{1}{n+1} + \frac{1}{n+2} (\times (n+1)(n+2) \text{ gives})$
$=\frac{1}{2} \times 100 \times 102 - \frac{1}{2} \times 50 \times 52 = 3800$	1 = A(n+2) + B(n+1) for $n1$ 1 - 4
Question 2: a) Is – 5 a root of $x^3 + 10x^2 + 37x + 60?$	for n = -2 $1 = -B$ $B = -1$
$(-5)^{3} + 10 \times (-5)^{2} + 37 \times (-5) + 60 = -125 + 250 - 185 + 60 = 310 - 310 = 0$	Conclusion: $\frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}$
$x^{3} + 10x^{2} + 37x + 60 = (x+5)(x^{2} + 5x + 12)$	$-\sum_{n=1}^{n} 1 - \sum_{n=1}^{n} 1$
$b)f(r+1) - f(r) = \frac{1}{4}(r+2)^2(r+3)^2 - \frac{1}{4}(r+1)^2(r+2)^2$	$\frac{2}{2}\left(6 + 12 + 20 + 2 - 3 + 3 + 4 + 5 + 2 + 7 + 7 + 1\right)\left(r + 1\right)\left(r + 2\right) - \frac{2}{r_{-1}}r + 1 - r + 2$
$=\frac{1}{4}\left(r^{4}+10r^{3}+37r^{2}+60r+36\right)-\frac{1}{4}\left(r^{4}+6r^{3}+13r^{2}+12r+4\right)$	$= \frac{-1}{2} - \frac{-1}{n+2} = \frac{-1}{2n+4}$ Question 5:
$= \frac{1}{4} \left(4r^3 + 24r^2 + 48r + 32 \right) = r^3 + 6r^2 + 12r + 8$	$S_r = u_1 + u_2 + u_3 + \dots + u_r = r(r+1)(r-1)^2$
On the other hand $(R.H.S.)$: $(r+2)^3 = r^3 + 3 \times r^2 \times 2 + 3 \times r \times 2^2 + 2^3 = r^3 + 6r^2 + 12r + 8$	$ \begin{array}{l} u_{1}(t) S_{1} = u_{1} = 1 \times 2 \times 0 = 0 \\ i(t) S_{2} = u_{1} + u_{2} = 2 \times 3 \times 1^{2} = 6 \\ \end{array} $
$f(r+1) - f(r) = (r+2)^3$	$=3 \times 4 \times$
$c)\sum_{n=1}^{n} (r+2)^{3} = \sum_{n=1}^{n} f(r+1) - f(r) = f(n+1) - f(1) = \frac{1}{2} (n+2)^{2} (n+3)^{2} - \frac{1}{2} (36)$	$iii)u_n = S_n - S_{n-1} = n(n+1)(n-1)^2 - (n-1)(n)(n-2)^2 = n(n-1)\left[(n+1)(n-1) - (n-2)^2\right]$
	$= n(n-1) \left[n^2 - 1 - n^2 + 4n - 4 \right] \qquad u_n = n(n-1)(4n-5)$
$=\frac{1}{4}\left(n^{4}+10n^{3}+37n^{2}+60n\right)=\frac{1}{4}n\left(n^{3}+10n^{2}+37n+60\right)$	$b) \sum_{r}^{2n} u_r = \sum_{r}^{2n} u_r - \sum_{r}^{n} u_r$
$\sum_{r=1}^{n} (r+2)^{3} = \frac{1}{4}n(n+5)(n^{2}+5n+12)$	$= S_{2n} - S_n = 2n(2n+1)(2n-1)^2 - n(n+1)(n-1)^2 = n\left[2(2n+1)(2n-1)^2 - (n+1)(n-1)^2\right]$
	$= n \Big[(4n+2)(4n^2 - 4n + 1) - (n+1)(n^2 - 2n + 1) \Big] = n \Big(16n^3 - 8n^2 - 4n + 2 - n^3 + n^2 + n - 1 \Big)$
	$=n(15n^{3}-7n^{2}-3n+1)$

Techniques of integration

- 1) The usual functions 1) Power, logarithm, exponential, trigonometric functions $\int x^n dx = \frac{1}{2} x^{n+1} + c = n \neq -1$
- $\int x^n dx = \frac{1}{n+1} x^{n+1} + c$ $n \neq -1$
- $\int \frac{1}{x} dx = \ln|x| + c$
- $\int e^x dx = e^x + c$ c is any real number : $c \in \mathbb{R}$
- $\int \cos(x) dx = \sin(x) + c$
- $\int \sin(x) dx = -\cos(x) + c$
 - 2) Usual function composed with a linear function :

The general integral is $\int g(ax+b)dx = \frac{1}{a}G(ax+b)+c$ which means:

where G is an integral of g

- $\int (ax+b)^n dx = \frac{1}{a} \times \frac{1}{n+1} (ax+b)^{n+1} + c$ $n \neq -1$
- $\int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b| + c$
- $\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + c$

c is any real number : $c \in \mathbb{R}$

- $\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + c$
- $\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + c$
 - II) <u>Recognising expressions</u>

The general integral is $\int f' \times g[f(x)] dx = G[f(x)] + c$ which means:

where G is an integral of g

- $\int f' \times f^n dx = \frac{1}{n+1} f^{n+1} + c \quad n \neq -1$
- $\int \frac{f'}{f} dx = \ln |f| + c$
- $\int f' \times e^f dx = e^f + c$
- $\int f' \times \cos(f) dx = \sin(f) + c$
- $\int f' \times \sin(f) dx = -\cos(f) + c$

37

ormulae

Roots

Complex numbers

De Moivre theorem

Proof by induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan

2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008 Jan 2009

Jun 2009 Jan 2010

III) Integration by part

Formula: $\int_{a}^{b} u' \times v = [u \times v]_{a}^{b} - \int_{a}^{b} u \times v'$

This technique is used to integrate functions like: $x^n e^x$, $x^n \ln(x)$, $x^n \cos(x)$, $x^n \sin(x)$ where *n* is an positive integer

IV) Integration by substitution

We use this technique when changing variable make the integral easier to work out

1) Direct substitution

Consider

 $I = \int f(x) dx \quad let \, x = h(u)$

We have then f(x) = f[h(u)] and dx = h'(u)du

the integral becomes $I = \int f[h(u)] \times h'(u) du$ (and should be easier to integrate) If the integral is definite (integrate between two values), do not forget to change them according to u.

2) Indirect substitution

It is the same principal, but instead, we let a whole expression of x be u.

V) Partial fractions

An algebraic fraction can be written $\frac{P(x)}{Q(x)}$ where P(x) and Q(x) are polynomials. Like for example: $\frac{3x+4}{x^2-4x+6}$ or $\frac{4x-5}{x+1}$... How do we integrate those functions?

Case 1: degree of P = degree of Q (=1)

If
$$\frac{P(x)}{Q(x)} = \frac{ax+b}{cx+d}$$
, transform into $\frac{a}{c} + \frac{e}{cx+d}$ where $e = b - \frac{ad}{c}$.

Example 1:
$$\frac{2x+3}{x+2} = \frac{2(x+2)+e}{x+2} = \frac{2(x+2)-1}{x+2} = \frac{2(x+2)}{x+2} - \frac{1}{x+2} = 2 - \frac{1}{x+2}$$

Therefore $\int \frac{2x+3}{x+2} dx = \int 2 - \frac{1}{x+2} dx = 2x - \ln(x+2) + c$

Example 2:
$$\frac{3x+2}{2x-1} = \frac{\frac{3}{2}(2x-1)+e}{2x-1} = \frac{\frac{3}{2}(2x-1)+\frac{7}{2}}{2x-1} = \frac{3}{2} + \frac{\frac{7}{2}}{2x-1} = \frac{3}{2} + \frac{7}{2} \times \frac{1}{2x-1}$$

Therefore
$$\int \frac{3x+2}{2x-1} dx = \int \frac{3}{2} + \frac{7}{2} \times \frac{1}{2x-1} dx = \frac{3}{2}x + \frac{7}{2} \times \frac{1}{2}\ln(2x-1) + c = \frac{3}{2}x + \frac{7}{4}\ln(2x-1) + c$$

Case 2: degree of P < degree of Q

Theorem:

If an algebraic fraction is
$$R(x) = \frac{cx+d}{(rx+s)(px+q)}$$
, then we can find two numbers A and B so that
$$R(x) = \frac{A}{rx+s} + \frac{B}{px+q}.$$

How to find A and B?

Consider the algebraic fraction $\frac{5x+4}{x^2+x-2}$. Factorise the denominator: $\frac{5x+4}{(x+2)(x-1)}$, then equal this expression to $\frac{A}{x+2} + \frac{B}{x-1}$ $\frac{5x+4}{(x+2)(x-1)} = \frac{A}{(x+2)} + \frac{B}{(x-1)}$. Now multiply by (x+2)(x+1) both sides We have 5x + 4 = A(x-1) + B(x+2). Because this identity is true for all values of x, it is true in particular for x = 1 and x = -2. $5 \times 1 + 4 = A(1-1) + B(1+2)$ If x = 1, 9 = 3BB = 3If x = -2, $5 \times -2 + 4 = A(-2 - 1) + B(-2 + 2)$ -6 = -3AA = 2 $\frac{5x+4}{(x+2)(x-1)} = \frac{2}{x+2} + \frac{3}{x-1}$. We can now integrate this function. $\int \frac{5x+4}{(x+2)(x-1)} dx = \int \frac{2}{x+2} + \frac{3}{x-1} dx = 2\ln|x+2| + 3\ln|x-1| + c = \ln\left((x+2)^2|x-1|^3\right) + c$ VI) **Trigonometric functions** 1) <u>tan(x)</u> Remember: $\frac{d}{dx} \tan(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x) = \sec^2(x)$ Therefore also remember that: $\bullet \int \sec^2(x) dx = \int \frac{1}{\cos^2(x)} dx = \tan(x) + c$ • $\int \tan^2(x) = \tan(x) - x + c$ Explanation: $\int \tan^2(x) dx = \int 1 + \tan^2(x) - 1 dx = \tan(x) - x + c$ 2) Recognising expressions Instead of learning yet another formula, it is often useful to recognise familiar expressions (see chapter II)

$$\int \tan(x)dx = \int \frac{\sin(x)}{\cos(x)} = -\int \frac{-\sin(x)}{\cos(x)} dx.$$
 This is the form $\frac{f'}{f}$ which integrate into $\ln|f| + c$
$$\int \tan(x)dx = -\ln|\cos(x)| + c = \ln\left|\frac{1}{\cos(x)}\right| + c = \ln|\sec(x)| + c$$

ormulae

Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008 Jan 2009

Jun 2009 Jan 2010

 $\int \sec(x) \tan(x) dx = \int \frac{1}{\cos(x)} \times \frac{\sin(x)}{\cos(x)} dx = -\int \frac{-\sin(x)}{\cos^2(x)} dx.$ This is the form $f' \times f^n$ with n = -2, which integrate into $\frac{1}{n+1} f^{n+1} + c.$ • $\int \sec(x) \tan(x) dx = -\frac{1}{-1} \cos^{-1}(x) + c = \sec(x) + c$ 3) Linearisation of \cos^2 and \sin^2

How to integrate $\cos^2(x)$ and $\sin^2(x)$? We use the following formulae ("double angle" formulae re-arranged)

$$\cos^{2}(x) = \frac{1}{2} + \frac{1}{2}\cos(2x)$$
$$\sin^{2}(x) = \frac{1}{2} - \frac{1}{2}\cos(2x)$$

VII) <u>*Useful substitution</u>

If the integral includes	try
$(ax+b)^n$	ax + b = u
$\sqrt[n]{ax+b}$	$ax+b=u^n$
$a-bx^2$	$x = \sqrt{\frac{b}{a}}\sin(u)$
$a+bx^2$	$x = \sqrt{\frac{b}{a}} \tan(u)$
bx^2-a	$x = \sqrt{\frac{b}{a}} \sec(u)$
e^x	$e^x = u$
$\ln(ax+b)$	$ax+b=e^{u}$

VIII) <u>Useful trigonometric substitution</u> $t = Tan\left(\frac{1}{2}x\right)$

When using this substitution, Tan(x), Cos(x) and Sin(x) become rational functions.

$$Tan(x) = \frac{2t}{1-t^{2}}$$

$$Cos(x) = \frac{1-t^{2}}{1+t^{2}}$$

$$Sin(x) = \frac{2t}{1+t^{2}}$$

$$dx = \frac{2}{1+t^{2}}dt$$
Example:
$$\int \frac{1}{Sinx} dx = \int \frac{1}{2t} \times \frac{2}{1+t^{2}} dt = \int \frac{2}{2t} dt = \int \frac{1}{t} dt = \ln|t| + c$$

$$\int \frac{1}{Sinx} dx = \ln \left| Tan\left(\frac{1}{2}x\right) \right| + c$$

Calculus of inverse trig functions

Jun 2009 Jan 2010

Question 1: Differentiation

Differentiate the following functions

a)
$$y = \sin^{-1} 4x$$

b) $y = \sin^{-1} \frac{1}{2}x$
c) $y = 3\cos^{-1} \frac{x}{3}$
d) $y = x \tan^{-1}(x)$
e) $y = \cos^{-1}(\sqrt{x})$
f) $y = 3\tan^{-1}(4x^2)$

Question 2: Integration

Find the value of the integrals

a)
$$\int_{0}^{6} \frac{dx}{\sqrt{36-x^{2}}}$$
 b) $\int_{0}^{1} \frac{dx}{1+x^{2}}$ c) $\int_{-\frac{3}{2}}^{\frac{3}{2}} \frac{dx}{4x^{2}+9}$ d) $\int \frac{dx}{x^{2}+6x+18}$
e) $\int \frac{4x+5}{\sqrt{4-6x-x^{2}}} dx$ f) $\int \frac{6x+3}{x^{2}+6x+13} dx$

Question 3:

Use the substitution
$$x\sqrt{3} = 2Tan\theta$$
 to show that $\int_0^2 \frac{1}{\left(3x^2 + 4\right)^{\frac{3}{2}}} dx = \frac{1}{8}$

Question 4:

(a) Differentiate $x \tan^{-1} x$ with respect to x.

(2 marks)

(b) Show that

$$\int_{0}^{1} \tan^{-1} x \, \mathrm{d}x = \frac{\pi}{4} - \ln\sqrt{2} \tag{5 marks}$$

Question 5:

By using the substitution u = x - 2, or otherwise, find the exact value of

$$\int_{-1}^{5} \frac{\mathrm{d}x}{\sqrt{32+4x-x^2}} \tag{5 marks}$$

Question 6:

a) Use the substitution $t = \tan \theta$ to transforms the integral $\int \frac{d\theta}{9\cos^2\theta + \sin^2\theta}$ into $\int \frac{dt}{9+t^2}$

b) Hence show that $\int_{0}^{\frac{\pi}{3}} \frac{d\theta}{9Cos^{2}\theta + Sin^{2}\theta} = \frac{\pi}{18}$

Question 4:	a) $y = x \tan^{-1} x$ $\frac{dy}{dx} = \tan^{-1} x + \frac{x}{1 + x^2}$ b) $\int_0^1 \tan^{-1}(x) dx = \int_0^1 \frac{dy}{x} - \frac{x}{1 + x^2} dx = \int_0^1 x \tan^{-1} x \Big _0^1 - \int_0^1 \frac{1}{2} \ln(1 + x^2) \Big _1^1$	$\int_{-1}^{30} \frac{\sqrt{3}}{\sqrt{32 + 4x - x^2}} = \int_{-1}^{3} \frac{\pi}{4} - \ln\sqrt{2}$ $= \tan^{-1} 1 - \frac{1}{2} \ln(2) = \frac{\pi}{4} - \ln\sqrt{2}$ $\qquad \qquad $	$= \sin^{-1} \frac{1}{2} - \sin^{-1} - \frac{1}{2} = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$ Question 6: $t = \tan \theta$ $\frac{dt}{t_0} = 1 + \tan^2 \theta = 1 + t^2 d\theta = \frac{dt}{t_0}$	$ \begin{aligned} d\theta \\ \cos^2 \theta &= \frac{1}{1 + \tan^2 \theta} = \frac{1}{1 + t^2} \\ \sin^2 \theta &= 1 - \cos^2 \theta = 1 - \frac{1}{1 + t^2} = \frac{t^2}{1 + t^2} \\ \int \frac{d\theta}{d\cos^2 \theta + \sin^2 \theta} &= \int \frac{dt}{1 + t^2} \times \frac{1}{\theta + t^2} = \int \frac{dt}{\theta + t^2} \end{aligned} $	$\theta = \frac{\pi}{3} t = \tan \frac{\pi}{3} = \sqrt{3}$ $\theta = \frac{\pi}{3} t = \tan \frac{\pi}{3} = \sqrt{3}$ $\theta = 0 t = \tan 0 = 0$ $\int_{0}^{\frac{\pi}{3}} \frac{d\theta}{9 \cosh^{2} \theta + \sin^{2} \theta} = \int_{0}^{\sqrt{3}} \frac{dt}{9 + t^{2}} = \left[\frac{1}{3}\tan^{-1}\left(\frac{t}{3}\right)\right]_{0}^{\sqrt{3}} = \frac{1}{3}\tan^{-1}\frac{\sqrt{3}}{3} = \frac{1}{3} \times \frac{\pi}{6} = \frac{\pi}{18}$
Inverse trig functions and calculus - exercises - answers	Question 1: Differentiation $a)\frac{dy}{dx} = \frac{4}{\sqrt{1-16x^2}} b)\frac{dy}{dx} = \frac{1}{\sqrt{4-x^2}} c)\frac{dy}{dx} = \frac{-3}{\sqrt{9-x^2}}$ $d)\frac{dy}{dx} = \tan^{-1}(x) + \frac{x}{x^2} e)\frac{dy}{dx} = \frac{-1}{2x^2} f)\frac{dy}{dx} = \frac{24x}{x^2}.$	$dx = x^{-1} + x^{-1$	$e)\int_{-\frac{3}{2}}^{\frac{3}{2}} 4x^{2} + 9^{-\frac{3}{2}} 4x^{2} + 9^{-\frac{3}{2}} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{3} \frac{1}{3} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{3} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{x^{2}} \frac{1}{x^{2}} \frac{1}{4} \frac{1}{x^{2}} 1$	$=-2\left(2\sqrt{4}-6x-x^{2}\right)-7\right)\frac{1}{\sqrt{4}-6x-x^{2}}=-4\sqrt{4}-6x-x^{2}-7\right)\frac{1}{\sqrt{13}-(x+3)^{2}}$ $=-4\sqrt{4}-6x-x^{2}-7\sin^{-1}\left(\frac{x+3}{\sqrt{13}}\right)+c$ $f)\int\frac{6x+3}{x^{2}+6x+13}dx=\int\frac{6x+18}{x^{2}+6x+13}-\frac{15}{x^{2}+6x+13}-\frac{15}{x^{2}+6x+13}-\frac{15}{x^{2}+6x+13}-15\int\frac{dx}{(x+2)^{2}-1}dx=3\int\frac{2x+6}{x^{2}+6x+13}-\frac{15}{x^{2}+6x+13}dx$ $=3\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15\int\frac{dx}{(x+2)^{2}-1}dx=5\ln\left(x^{2}+6x+13\right)-15$	Question 3: $x\sqrt{3} = 2\tan\theta$ $x = \frac{2}{\sqrt{3}}\tan\theta$ $\frac{dx}{d\theta} = \frac{2}{\sqrt{3}}(1 + \tan^2\theta)$ $x = 0 \theta = 0$ and $x = 2 \tan\theta = \sqrt{3} \theta = \frac{\pi}{3}$ $I = \int_0^2 \frac{1}{(3x^2 + 4)^{\frac{3}{2}}} dx = \int_0^{\frac{\pi}{3}} \frac{2}{\sqrt{3}} \frac{1 + \tan^2\theta}{(4\tan^2\theta + 4)^{\frac{3}{2}}} d\theta = \int_0^{\frac{\pi}{3}} \frac{1}{4\sqrt{3}} \frac{1}{\sqrt{1 + \tan^2\theta}} d\theta$ $= \frac{\sqrt{3}}{12} \int_0^{\frac{\pi}{3}} \cos\theta d\theta = \frac{\sqrt{3}}{12} \left[\sin\theta \right]_0^{\frac{\pi}{3}} = \frac{\sqrt{3}}{12} \left(\sin\frac{\pi}{3} - \sin\theta \right) = \frac{\sqrt{3}}{12} \frac{\sqrt{3}}{2} = \frac{3}{24} = \frac{1}{8}$

De Moivre Proof by theorem induction Finite Inverse trig Hyperbolic Arc length functions Past Papers Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

43

Formulae

Roots

Complex numbers

Hyperbolic functions

Question 1:

Express, in terms of exponentials:

a) sech x

b) $\operatorname{coth} x$ c) $\tanh\left(\frac{1}{2}x\right)$

(d) cosech (3x).

Question 2:

Show that a) $\cosh^2 x - \sinh^2 x = 1$ b) $\sinh (x - y) = \sinh x \cosh y - \cosh x \sinh y$ c) $\cosh (x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$ d) $\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$

Question 3:

Given that $u = \tanh x$, use the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x}

to show that $x = \frac{1}{2} \ln \left(\frac{1+u}{1-u} \right)$

Question 4:

Differentiate the following expressions:

a) $\cosh 3x$	b) $\cosh^2(3x)$	c) $x^2 \cosh x$,	
$d) \frac{\cosh 2x}{x}$	e) x tanh x	f) sech x	g) cosech x .

Question 5:

It is given that $x = \frac{1}{2}\cosh 2t$ and $y = 2\sinh t$

Express
$$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2$$
 in terms of $\cosh t$.

Question 6:

Given that
$$y = \ln\left(\tanh\frac{x}{2}\right)$$
, where $x > 0$, show that $\frac{dy}{dx} = \operatorname{cosech} x$ (6 marks)

Question 7:

Evaluate the following integrals:

(a)
$$\int \cosh 3x \, dx$$
 b) $\int \cosh^2 x \, dx$ c) $\int x \sinh 2x \, dx$ d) $\int \tanh^2 x \, dx$

Question 8:

a) Given that
$$u = \cosh^2 x$$
, show that $\frac{du}{dx} = \sinh 2x$.
b) Hence show that $\int_0^1 \frac{\sinh 2x}{1 + \cosh^4 x} dx = \tan^{-1} (\cosh^2 1) - \frac{\pi}{4}$ (5 marks)
Question 9:

Use the substitution $x = 4\sinh^2 \theta$ to show that $\int \sqrt{\frac{x+4}{x}} dx = 2\sinh 2\theta + 4\theta + c$ (5 marks)

Formulae

Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan

2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008 Jan 2009

Jun 2009

Jan 2010

Question 5: $x = \frac{1}{2} \cosh 2t \qquad \frac{dx}{dt} = \frac{1}{2} \times 2\sinh 2t = \sinh 2t \text{ and } y = 2\sinh t \qquad \frac{dy}{dx} = 2\cosh t$ $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \sinh^2 2t + 4\cosh^2 t$ $\sin^2 2t = (2\sinh t \cosh t)^2 = 4\sinh^2 t \cosh^2 t = 4(\cosh^2 t - 1)\cosh^2 t = 4\cosh^4 t - 4\cosh^2 t$ $Hence\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 4\cosh^4 t$ Ouestion 6:	$y = \ln\left(\tanh\frac{x}{2}\right) \qquad First let's work out \frac{d}{dx}\left(\tanh\frac{x}{2}\right)$ $\frac{d}{dx}\left(\tanh\frac{x}{2}\right) = \frac{1}{2\cosh^{2}\frac{x}{2}}$ $\frac{d}{dx}\left(\tanh\frac{x}{2}\right) = \frac{1}{2\cosh^{2}\frac{x}{2}}$ $Now \frac{dy}{dx} = \frac{d}{dx}\left(\tanh\frac{x}{2}\right) = \frac{1}{2\cosh^{2}\frac{x}{2}} \times \frac{\cosh\frac{x}{2}}{\sinh\frac{x}{2}} = \frac{1}{2\sinh^{2}\frac{x}{2}} = \frac{1}{2\sinh^{2}x} = \cosh x$ $Now \frac{dy}{dx} = \frac{d}{dx}\left(\tanh\frac{x}{2}\right) = \frac{1}{2\cosh^{2}\frac{x}{2}} \times \frac{\cosh\frac{x}{2}}{\sinh\frac{x}{2}} = \frac{1}{2\sinh^{2}\frac{x}{2}} = \frac{1}{2\sinh^{2}x} = \cosh x$ $Now \frac{dy}{dx} = \frac{d}{dx}\left(\tanh\frac{x}{2}\right) = \frac{1}{2\cosh^{2}\frac{x}{2}} \times \frac{\cosh\frac{x}{2}}{\sinh\frac{x}{2}} = \frac{1}{2\sinh^{2}x + \frac{1}{2}} = \cosh x$ $Outhor = \frac{1}{2} \cosh 3x dx = \frac{1}{3} \sinh 3x + c \qquad b) \left[\cosh^{2}x dx = \int_{2}^{1}\cosh 2x dx = \int_{2}^{1}\cosh 2x dx = \frac{1}{2} \sinh 2x + \frac{1}{2} \cosh 2x dx = \frac{1}{2} \sinh 2x + \frac{1}{2} \sinh 2x + \frac{1}{2} \sinh 2x + \frac{1}{2} \cosh 2x dx = \frac{1}{2} \sinh 2x + \frac$	d) $\int \tanh^{x} x dx = -\int 1 - \tanh^{x} x - 1 dx = -\tanh x + x + c$ Question 8: $a)u = \cosh^{2} x \frac{du}{dx} = 2 \times \sinh x \times \cosh x = \sinh 2x (du = \sinh 2x dx)$ $b)when x = 0, u = \cosh^{2} 0 = 1 and when x = 1, u = \cosh^{2} 1$ $I = \int_{0}^{1} \frac{\sinh 2x dx}{1 + \cosh^{4} x} = \int_{0}^{\cosh^{2} 1} \frac{du}{1 + u^{2}} = \left[\tanh^{-1} u \right]_{0}^{\cosh^{2} 1} = \tan^{-1} (\cosh^{2} 1) - \tan^{-1} 0 = \tan^{-1} (\cosh^{2} 1) - \frac{\pi}{4}$ $du = \sinh^{2} \theta = \int_{0}^{1} \frac{dx}{1 + \cos^{2} \theta} \times \sinh^{2} \theta = \int_{0}^{1} \frac{\cosh^{2} \theta}{\sinh^{2} \theta} \times \sinh^{2} \theta = \int_{0}^{1} \cosh^{2} \theta = \int_{0}^{1} \cosh^{2} \theta = \int_{0}^{1} \frac{\cosh^{2} \theta}{\sinh^{2} \theta} \times \sinh^{2} \theta = \int_{0}^{1} \cosh^{2} \theta + \int_{0}^{1} \cosh^{2} \theta = \int_{0}^{1} \cosh^{2} \theta + \int_{0}$
Hyperbolic functions – exercises - answersQuestion 1:Question 1: $e^x + e^{-x}$ $a) sech x = \frac{1}{e^x + e^{-x}}$ $b) coth x = \frac{1}{tanh x} = \frac{e^x + e^{-x}}{sinh x} = \frac{e^{2x} + 1}{e^{2x} - 1}$ (after $x = e^x$) $a) sech x = \frac{1}{e^2 - e^{-2}} = \frac{e^x - 1}{e^x + 1}$ $b) coth x = \frac{1}{tanh x} = \frac{cosh x}{sinh x} = \frac{e^x + e^{-x}}{e^{2x} - 1}$ (after $x = e^x$) $c) tanh \left(\frac{1}{2}x\right) = \frac{e^2 - e^{-2}}{e^2 + e^{-2}} = \frac{e^x - 1}{e^x + 1}$ $(after x = \frac{e^x}{e^2})c) tanh \left(\frac{1}{2}x\right) = \frac{e^2 - e^{-2}}{e^2 + e^{-2}} = \frac{e^x - 1}{e^x + 1}(after x = \frac{x}{e^2})$	Question 2: a) $\cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{1}{4}\left(e^{2x} + e^{-2x} + 2 - e^{2x} - e^{-2x} + 2\right) = \frac{1}{4} \times 4 = 1$ b) $\sinh x \cosh y - \cosh x \sinh y = \frac{e^x - e^{-x}}{2} \times \frac{e^y + e^{-y}}{2} - \frac{e^x + e^{-x}}{2} \times \frac{e^y - e^{-y}}{2}$ b) $\sinh x \cosh y - \cosh x \sinh y = \frac{e^{x-y} - e^{-x}}{2} \times \frac{e^{y+y} - e^{-x+y}}{2} - \frac{e^{x+y} - e^{-x+y}}{2} = \frac{e^{y-y} - e^{-x+y}}{2}$ $= \frac{e^{y+y} + e^{x-y} - e^{-x+y}}{4} - \frac{e^{x+y} - e^{-x-y}}{4} = \frac{2e^{x-y} - 2e^{-x+y}}{2} = \frac{e^{x-y} - e^{-x+y}}{2} = \sin (x-y)$ c) same technique $d(1 + \tanh^2 x = 1 + \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = \frac{(e^x + e^{-x})^2}{(e^x + e^{-x})^2} = \frac{2(e^2x + e^{-2x})}{(e^x + e^{-x})^2} = \frac{2(e^2x + e^{-2x})}{(e^x + e^{-x})^2} = \frac{2(e^2x + e^{-2x})}{(e^2x + e^{-2x})} = \frac{2e^{2x} - e^{-2x}}{2} = \tanh 2x$	$u = \tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$ $u = \tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$ $u (e^{2x} + 1) = e^{2x} - 1 make (e^{2x} \ the \ subject) e^{2x} (u - 1) = -1 - u$ $e^{2x} = \frac{-1 - u}{u - 1} = \frac{1 + u}{1 - u} so 2x = \ln\left(\frac{1 + u}{1 - u}\right) and x = \frac{1}{2}\ln\left(\frac{1 + u}{1 - u}\right)$ $Question 4: b) 2x \sinh(3x) \times \cosh(3x) = 3\sinh 6x$ $g = \frac{1}{\sinh x}, f) y = \operatorname{sech} x = \frac{1}{\cosh^2 x}, \frac{dy}{dx} = -\frac{\sinh x}{\cosh^2 x} = -\tanh x \operatorname{sech} x$ $g = \frac{1}{\sinh x}, \frac{dy}{dx} = -\frac{\cosh x}{\sinh^2 x} = -\coth x \operatorname{cosch} x$

Inverse hyperbolic functions

Jun 2007 Jan 2008 Jun 2008 Jan 2009

Jun 2009 Jan 2010

Question 1:

Show that

a)
$$Sinh^{-1}x = \ln\left(x + \sqrt{x^2 + 1}\right)$$

b) $Tanh^{-1}x = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$

Question 2:

Differentiate the following:

a)
$$\tanh^{-1}\frac{x}{3}$$

b) $\sinh^{-1}\frac{x}{4}$
c) $\cosh^{-1}2x$
d) $e^x \sinh^{-1}x$
e) $\frac{1}{x} \cosh^{-1}x^2$
f) $\cosh^{-1}\frac{1}{x}$

Question 3:

a) Show that the equation	$14\sinh x - 10\cosh x = 5 \text{ can be expressed as } 2e^{2x} - 5e^{x} - 12 = 0.$
b) Hence solve the equation	$14\sinh x - 10\cosh x = 5$, giving your answer as a natural logarithm.

Question 4:

Solve the equations:

a) $4\sinh x + 3e^x = 9$ b) $3\sinh x + 4\cosh x = 4$ c) $\cosh 2x - 3\sinh x = 5$ d) $\cosh 2x - 3\cosh x = 4$ e) $8\sinh x = 3\operatorname{sech} x$ f) $3\operatorname{sech}^2 x + 7\tanh x = 5$

Question 5:

Evaluate the following integrals

a)
$$\int \frac{dx}{\sqrt{x^2 + 9}}$$
 b) $\int \frac{dx}{\sqrt{x^2 - 16}}$ c) $\int \frac{dx}{\sqrt{4x^2 + 25}}$
d) $\int \frac{dx}{\sqrt{9x^2 + 49}}$ e) $\int \frac{dx}{\sqrt{(x + 1)^2 + 4}}$ f) $\int \frac{dx}{\sqrt{(x - 2)^2 - 16}}$
g) $\int \frac{dx}{\sqrt{x^2 + 4x + 5}} dx$ h) $\int \frac{dx}{\sqrt{x^2 - 2x - 2}}$

x

Ouestion 1:

a)
$$y = \sinh^{-1} x$$
 so $\sinh y = x$
 $e^{y} = \sinh y + \cosh y = \sinh y + \sqrt{1 + \sinh^{2} y}$
 $e^{y} = x + \sqrt{1 + x^{2}}$
 $y = \ln(x + \sqrt{1 + x^{2}})$
b) $y = \tanh^{-1} x$ so $\tanh y = x$
 $\tanh y = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}} = \frac{e^{2y} - 1}{e^{2y} + 1} = x$ making e^{2y} the subject :
 $e^{2y} - 1 = e^{2y} x + x$ $e^{2y} = \frac{1 + x}{1 - x}$ $y = \frac{1}{2} \ln(\frac{1 + x}{1 - x})$
Question 2:
 $a) \frac{dy}{dx} = \frac{1}{3} \times \frac{1}{1 - (\frac{x}{3})^{2}} = \frac{3}{9 - x^{2}}$ $b) \frac{dy}{dx} = \frac{1}{4} \times \frac{1}{\sqrt{1 + (\frac{x}{4})^{2}}} = \frac{1}{\sqrt{16 + x^{2}}}$

$$c)\frac{dy}{dx} = 2 \times \frac{1}{\sqrt{(2x)^2 - 1}} = \frac{2}{\sqrt{4x^2 - 1}} \qquad d)\frac{dy}{dx} = e^x \sinh^{-1} x + \frac{e}{\sqrt{1 + x^2}}$$
$$e) - \frac{1}{x^2} \cosh^{-1} x^2 + \frac{1}{x} \times 2x \times \frac{1}{\sqrt{(x^2)^2 - 1}} = -\frac{1}{x^2} \cosh^{-1} x^2 + \frac{2}{\sqrt{x^4 - 1}}$$

Question 3:

a)
$$14\sinh x - 10\cosh x = 14 \times \frac{e^x - e^{-x}}{2} - 10 \times \frac{e^x + e^{-x}}{2} = 2e^x - 12e^{-x}$$

so $14\sinh x - 10\cosh x = 5$ becomes $2e^x - 12e^{-x} = 5$
 $(\times e^x) 2e^{2x} - 12 - 5e^x = 0$

b)
$$2e^{2x} - 5e^{x} - 12 = 0$$

 $(2e^{x} + 3)(e^{x} - 4) = 0$
 $e^{x} = -\frac{3}{2}$ (impossible) or $e^{x} = 4$

$$x = \ln 4 = 2\ln 2$$

Question 4:

a) $4\sinh x + 3e^x = 9$

$$4 \times \frac{e^{x} - e^{-x}}{2} + 3e^{x} - 9 = 0 \qquad b) 3\sinh x + 4\cosh x = 4$$

$$5e^{x} - 2e^{-x} - 9 = 0 \quad (\times e^{x}) \qquad 3 \times \frac{e^{x} - e^{-x}}{2} + 4 \times \frac{e^{x} + e^{-x}}{2} = 4 \quad (\times 2e^{x})$$

$$5e^{2x} - 9e^{x} - 2 = 0 \qquad 7e^{2x} + 1 - 8e^{x} = 0$$

$$(5e^{x} + 1)(e^{x} - 2) = 0 \qquad (7e^{x} - 1)(e^{x} - 1) = 0$$

$$e^{x} = -\frac{1}{2}(impossible) \text{ or } e^{x} = 2 \qquad e^{x} = \frac{1}{7} \text{ or } e^{x} = 1$$

$$x = \ln 2 \qquad x = -\ln(7) \text{ or } x = 0$$

c)
$$\cosh 2x - 3\sinh x = 6$$

 $2\sinh^2 x + 1 - 3\sinh x - 6 = 0$
 $2\sinh^2 x - 3\sinh x - 5 = 0$
 $(2\sinh x - 5)(\sinh x + 1) = 0$
 $\sinh x = \frac{5}{2} \text{ or } \sinh x = -1$
 $x = \ln\left(\frac{5}{2} + \sqrt{\left(\frac{5}{2}\right)^2 + 1}\right)$
or $x = \ln\left(-1 + \sqrt{(-1)^2 + 1}\right)$
 $x = \ln\left(\frac{5 + \sqrt{29}}{2}\right) \text{ or } x = \ln\left(\sqrt{2} - 1\right)$

)

Formulae

Roots

Complex De Moivre numbers theorem

Proof by induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008 Jan 2009

Jun 2009

Jan 2010

$$d) \cosh 2x - 3\cosh x = 4$$

$$2 \cosh^{2} x - 1 - 3\cosh x - 4 = 0$$

$$2 \cosh^{2} x - 3\cosh x - 5 = 0$$

$$(2 \cosh x - 5)(\cosh x + 1) = 0$$

$$\cosh x = \frac{5}{2} \text{ or } \cosh x = -1 \text{ (impossible)}$$

$$x = \pm \cosh^{-1}\left(\frac{5}{2}\right) = \pm \ln\left(\frac{5}{2} + \sqrt{\left(\frac{5}{2}\right)^{2} - 1}\right)$$

$$x = \pm \ln\left(\frac{5 + \sqrt{21}}{2}\right)$$

$$x = \pm \ln\left(\frac{5 + \sqrt{21}}{2}\right)$$

$$x = \ln\left(\frac{\sqrt{22} + \sqrt{6}}{4}\right) \text{ or } x = \ln\left(\frac{\sqrt{22} - \sqrt{6}}{4}\right)$$

f) $3\operatorname{sech}^{2} x + 7 \tanh x = 5$ $3(1 - \tanh^{2} x) + 7 \tanh x - 5 = 0$ $3 \tanh^{2} x - 7 \tanh x + 2 = 0$ $(3 \tanh x + 1)(\tanh x + 2) = 0$ $\tanh x = -\frac{1}{3} \text{ or } \tanh x = -2(\operatorname{impossible})$ $x = \tanh^{-1}\left(-\frac{1}{3}\right) = \frac{1}{2}\ln\left(\frac{1 - \frac{1}{3}}{1 + \frac{1}{3}}\right) = \frac{1}{2}\ln\left(\frac{1}{2}\right)$

Question 5:

$$a) \int \frac{dx}{\sqrt{x^{2}+9}} = \sinh^{-1}\left(\frac{x}{3}\right) + c$$

$$b) \int \frac{dx}{\sqrt{x^{2}-16}} = \cosh^{-1}\left(\frac{x}{4}\right) + c$$

$$c) \int \frac{dx}{\sqrt{4x^{2}+25}} = \int \frac{1}{2} \times \frac{dx}{\sqrt{x^{2}+\left(\frac{25}{4}\right)}} = \frac{1}{2}\sinh^{-1}\left(\frac{2x}{5}\right) + c$$

$$d) \int \frac{dx}{\sqrt{9x^{2}+49}} = \int \frac{1}{3} \times \frac{dx}{\sqrt{x^{2}+\left(\frac{49}{9}\right)}} = \frac{1}{3}\cosh^{-1}\left(\frac{3x}{7}\right) + c$$

$$e) \int \frac{dx}{\sqrt{(x+1)^{2}+4}} = \sinh^{-1}\left(\frac{x+1}{2}\right) + c$$

$$f) \int \frac{dx}{\sqrt{(x-2)^{2}-16}} = \cosh^{-1}\left(\frac{x-2}{4}\right) + c$$

$$g) \int \frac{dx}{\sqrt{x^{2}+4x+5}} = \int \frac{dx}{\sqrt{(x+2)^{2}+1}} = \sinh^{-1}\left(x+2\right) + c$$

$$h) \int \frac{dx}{\sqrt{x^{2}-2x-2}} - \int \frac{dx}{\sqrt{(x-1)^{2}-3}} = \sinh^{-1}\left(\frac{x-1}{\sqrt{3}}\right) + c$$

Arc length and area of surface of revolution

51

ormulae

Roots

Jan

2006

Jun 2006

Jan 2007

Jun 2007

Jan 2008

Jun 2008

Jan 2009

Jun 2009

Jan 2010

Question 1:

Find the length of the arc of the curve with equation $y = \frac{1}{3}x^{\frac{3}{2}}$, from the origin to the point with x-coordinate 12. (Hint: *substitute* $\left(1 + \frac{1}{4}x\right)by$ "*u*"*to* integrate)

Question 2:

The curve C has equation $y = \ln(\cos x)$. Find the length of the arc of C between

the points with x-coordinate 0 and $\frac{\pi}{3}$.

Question 3:

The parabola P has the following parametric definition: $x = 4t^2$ and y = 4t. Work out the length of the arc between the point A(t = 0) and B(t = 3).

(Integration hint: Let
$$\frac{1}{2}\sinh u = t$$
)

Question 4:

(a) Use the definitions

$$\sinh \theta = \frac{1}{2}(e^{\theta} - e^{-\theta})$$
 and $\cosh \theta = \frac{1}{2}(e^{\theta} + e^{-\theta})$

to show that:

- (i) $2 \sinh \theta \cosh \theta = \sinh 2\theta$; (2 marks)
- (ii) $\cosh^2 \theta + \sinh^2 \theta = \cosh 2\theta$. (3 marks)

(b) A curve is given parametrically by

 $x = \cosh^3 \theta, \quad y = \sinh^3 \theta$

(i) Show that

$$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = \frac{9}{4}\sinh^2 2\theta \cosh 2\theta \qquad (6 \text{ marks})$$

(ii) Show that the length of the arc of the curve from the point where $\theta = 0$ to the point where $\theta = 1$ is

$$\frac{1}{2}\left[\left(\cosh 2\right)^{\frac{3}{2}} - 1\right] \tag{6 marks}$$

Question 5:

(a) Given that $y = \ln \tanh \frac{x}{2}$, where x > 0, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{cosech} x \qquad (6 \text{ marks})$$

- (b) A curve has equation $y = \ln \tanh \frac{x}{2}$, where x > 0. The length of the arc of the curve between the points where x = 1 and x = 2 is denoted by *s*.
 - (i) Show that

$$s = \int_{1}^{2} \coth x \, \mathrm{d}x \qquad (2 \text{ marks})$$

(ii) Hence show that $s = \ln(2\cosh 1)$. (4 marks)

Question 6:

The arc of the curve $y = x^3$, between the origin and the point (1,1), is rotated through 4 right-angles about the x-axis. Find the area of the surface generated.

Question 7:

The arc, in the first quadrant, of the curve with parametric equations

$$x = \operatorname{sech} t \quad and \quad y = \tanh t$$

between the points where t = 0 and $t = \ln 2$, is rotated completely about the x-axis.

Show that the area of the surface generated is $\frac{2\pi}{5}$.

Question 8:

A curve has parametric equations

$$x = t - \frac{1}{3}t^3, \quad y = t^2$$

(a) Show that

$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = (1+t^2)^2 \qquad (3 \text{ marks})$$

(b) The arc of the curve between t = 1 and t = 2 is rotated through 2π radians about the *x*-axis.

Show that S, the surface area generated, is given by $S = k\pi$, where k is a rational number to be found. (5 marks)

Question 9:

- (a) Use the definition $\cosh x = \frac{1}{2}(e^x + e^{-x})$ to show that $\cosh 2x = 2\cosh^2 x 1$. (2 marks)
- (b) (i) The arc of the curve $y = \cosh x$ between x = 0 and $x = \ln a$ is rotated through 2π radians about the x-axis. Show that S, the surface area generated, is given by

$$S = 2\pi \int_0^{\ln a} \cosh^2 x \, \mathrm{d}x \qquad (3 \text{ marks})$$

(ii) Hence show that

$$S = \pi \left(\ln a + \frac{a^4 - 1}{4a^2} \right) \tag{5 marks}$$

Question 10:

A curve has parametric equations

 $x = a(1 - \cos^3 \theta)$ and $y = a \sin^3 \theta$, for $0 \le \theta \le \frac{\pi}{2}$, where *a* is a positive constant. Show that, when this curve is rotated through 2π radians about the x-axis,

the curved surface area generated is $\frac{6}{5}\pi a^2$.

es - Question 4: $a)i)2\sinh\theta\cosh\theta = 2 \times \frac{e^{\theta} - e^{-\theta}}{2} \times \frac{e^{\theta} + e^{-\theta}}{2} = \frac{e^{2\theta} - e^{2\theta}}{2} = \sinh 2\theta$	<i>ii</i>) $\cosh^2 \theta + \sinh^2 \theta = \left(\frac{e^{\theta} + e^{-\theta}}{2}\right)^2 + \left(\frac{e^{\theta} - e^{-\theta}}{2}\right)^2 = \frac{e^{2\theta} + e^{-2\theta} + 2}{4} + \frac{e^{2\theta} + e^{-2\theta} - 2}{4}$	$=\frac{e^{2\theta}+e^{-2\theta}}{2}=\cosh 2\theta$ b) $\mathbf{x}=\cosh^3\theta$ and $\mathbf{v}=\sinh^3\theta$	$\frac{dx}{d\theta} = 3\sinh\theta\cosh^2\theta and \frac{dy}{dx} = 3\cosh\theta\sinh^2\theta$	$i)\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = 9\sinh^{2}\theta\cosh^{4}\theta + 9\cosh^{2}\theta\sinh^{4}\theta$	$= 9\sinh^2\theta\cosh^2\theta(\cosh^2\theta + \sinh^2\theta)$	$=9\left(\frac{\sinh^2 2\theta}{4}\right)(\cosh 2\theta) = \frac{9}{4}\sinh^2 2\theta\cosh 2\theta$	$ii) s = \int_0^1 \sqrt{\left[\left(\frac{dx}{dO}\right)^2 + \left(\frac{dy}{dO}\right)^2\right]} d\theta = \int_0^1 \frac{3}{2} \sinh 2\theta \sqrt{\cosh 2\theta} d\theta$	$s = \frac{3}{2} \left[\int_{-\infty}^{1} 2 \sinh 2\theta (\cosh 2\theta) \frac{1}{2} d\theta = \int_{-\infty}^{1} f' \times f'' = \frac{1}{-1} f''^{n+1} \right]$	$3\lceil 2, \ldots, \frac{3}{2} \rceil^{-1} \lceil 1\lceil \ldots, \frac{3}{2} \rceil^{-1} \rceil \rceil \rceil 1\lceil \ldots, \frac{3}{2} \rceil$	$s = -\left[-(\cosh 2\theta)^2\right]_0 = 2\left[(\cosh 2)^2 - (\cosh \theta)^2\right] = \frac{1}{2}\left[(\cosh 2)^2 - (\cosh \theta)^2\right] = \frac{1}{2}\left[(\cosh 2)^2 - 1\right]$	$a) y = \ln\left(\tanh\frac{x}{2}\right)$		$\frac{1}{1-x} \times \frac{\cosh \frac{1}{2}}{2} = \frac{1}{1-x} = \frac{1}{1-x}$	$2\sinh\frac{x}{2}\cosh\frac{x}{2} \sinh x$	$b(i) = \int_{1}^{2} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{1}^{2} \sqrt{1 + \operatorname{cosech}^{2} x} dx = \int_{1}^{2} \sqrt{\frac{\sinh^{2} x + 1}{\sinh^{2} x}} dx = \int_{1}^{2} \frac{\cosh x}{\sinh x} dx$	$s = \left[\ln(\sinh x) \right]_{1}^{2} = \ln(\sinh 2) - \ln(\sinh 1) = \ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$	
Arc length and area of surface of revolution - exercises answers	Question 1: $y = \frac{1}{3}x^{\frac{3}{2}} = \frac{dy}{dx} = \frac{1}{3} \times \frac{3}{2}x^{\frac{1}{2}} = \frac{1}{2}\sqrt{x}$	The length of the arc is $s = \int_0^{12} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^{12} \sqrt{1 + \frac{1}{4}x} dx$	Using the substitution $u = 1 + \frac{1}{4}x$:	$\frac{du}{dx} = \frac{1}{4}$ and when $x = 0, u = 1$ when $x = 12, u = 4$	$s becomes \int_{1}^{4} \sqrt{u} \times 4 du = \left[4 \times \frac{2}{3} u^{\frac{3}{2}} \right]^{4} = \frac{64}{3} - \frac{8}{3} = \frac{56}{3}$	Question 2:	n x	$s = \int_0^3 \sqrt{1 + (-\tan x)^2} dx = \int_0^3 \sec x dx \qquad (formula \ book)$	$s = [m(secx + m(x))_0 - m(z + yz) - m(z + yz)]$	$x = 4t^2$ and $y = 4t$ $\frac{dx}{dt} = 8t$ and $\frac{dy}{dt} = 4$	$s = \int_0^3 \sqrt{(8t)^2 + (4)^2} dt = \int_0^3 \sqrt{64t^2 + 16} dt$	$Let \frac{1}{2}\sinh u = t \qquad \frac{dt}{du} = \frac{1}{2}\cosh u$	when $t = 0$, $u = 0$ when $t = 3$, $u = \sinh^{-1} 6$	$s = \int_0^{\sinh^{-1}6} \sqrt{64 \times \frac{1}{4} \sinh^2 u + 16} \times \frac{1}{2} \cosh u du = \int_0^{\sinh^{-1}6} 4\cosh u \times \frac{1}{2} \cosh u du$	$s = \int_0^{\sinh^{-1}6} 2\cosh^2 u du = \int_0^{\sinh^{-1}6} \cosh 2u + 1 du = \left[\frac{1}{2}\sinh 2u + u\right]_0^{\sinh^{-1}6}$	$\sum_{n=0}^{\infty} s = \left[\sinh u \cos u + u\right]_{0}^{\sinh^{-1}6} = \left[\sinh u \sqrt{1 + \sinh^{2} u} + u\right]_{0}^{\sinh^{-1}6}$	$\mathbf{F}_{\mathbf{c}} = \mathbf{E} \left\{ \mathbf{c} : \mathbf{h} + \mathbf{k}^2 + \mathbf{c} : \mathbf{h} + \mathbf{k} - \mathbf{k} \cdot (27 + \mathbf{h}) \right\}$

Question 9: $a) 2\cosh^2 x - 1 = 2\left(\frac{e^x + e^{-x}}{2}\right)^2 - 1 = \frac{e^{2x} + e^{-2x} + 2}{2} - \frac{2}{2} = \frac{e^{2x} + e^{-2x}}{2} = \cosh 2x$	$b(i) y = \cosh x \frac{dy}{dx} = \sinh x$ $S = 2\pi \int_0^{\ln a} \cosh x \sqrt{1 + \sinh^2 x} dx = 2\pi \int_0^{\ln a} \cosh^2 x dx$	$S = \pi \int_0^{\ln a} \cosh 2x + 1 dx = \pi \left[\frac{1}{2} \sinh 2x + x \right]_0^{\ln a} = \pi \left(\frac{1}{2} \sinh(2\ln a) + \ln a \right)$	• sinh(2 ln a) = sinh(ln a ²) = $\frac{e^{-e}}{2}$ = $\frac{e^{-e}}{2}$ = $\frac{a^{2}}{2}$ = $\frac{a^{-1}}{2a^{2}}$	So $3 = \pi \left(\frac{4a^2}{4a^2} + \ln a \right)$	$x = a(1 - \cos^3 \theta) \text{ and } y = a\sin^3 \theta$ dx	$\frac{d\theta}{d\theta} = 3a\sin\theta\cos^2\theta and \frac{d\theta}{d\theta} = 3a\cos\theta\sin^2\theta$	$S = 2\pi \int_0^{\frac{\pi}{2}} a \sin^3 \theta \sqrt{(3a\sin\theta\cos^2\theta)^2 + (3a\cos\theta\sin^2\theta)^2} d\theta$	$S = 6\pi a^2 \int_0^{\frac{\pi}{2}} \sin^3 \theta \sqrt{\sin^2 \theta \cos^4 \theta + \cos^2 \theta \sin^4 \theta} d\theta$	$S = 6\pi a^2 \int_0^{\frac{\pi}{2}} \sin^3 \theta \sin \theta \cos \theta \sqrt{\cos^2 \theta + \sin^2 \theta} d\theta$	$S = 6\pi a^2 \int_0^{\frac{\pi}{2}} \cos\theta \sin^4\theta d\theta = 6\pi a^2 \left[\frac{1}{5}\sin^5\theta\right]_0^{\frac{\pi}{2}} = 6\pi a^2 \left(\frac{1}{5} - 0\right) = \frac{6}{5}\pi a^2$
$y = x^{3} \qquad \frac{dy}{dx} = 3x^{2}$ $S = 2\pi \int_{0}^{1} x^{3} \sqrt{1 + (3x^{2})^{2}} dx = \frac{2\pi}{36} \int_{0}^{1} 36x^{3} \sqrt{1 + 9x^{4}} dx$	$S = \frac{2\pi}{36} \left[\frac{2}{3} (1+9x^4)^{\frac{3}{2}} \right]_0^1 = \frac{\pi}{27} \left(10\sqrt{10} - 1 \right)$ Question 7:	$x = \operatorname{sech} t \text{and} y = \operatorname{tanh} t$ $\frac{dx}{dt} = -\frac{\sinh t}{\cosh^2 t} \text{and} y = \frac{1}{\cosh^2 t}$	$S = 2\pi \int_0^{1n^2} \tanh t \times \sqrt{\left(-\frac{8\min t}{\cosh^2 t}\right)} + \left(\frac{1}{\cosh^2 t}\right) dt$ $S = 2\pi \int_0^{1n^2} \frac{\sinh t}{\sinh t} \times \frac{\cosh t}{\cosh t} dt = 2\pi \int_0^{1n^2} \sinh t \times \cosh^{-2} t dt$	$S = 2\pi \left[-\frac{1}{\cosh t} \int_0^\infty \frac{x \cosh^2 t}{\cosh t} dt - 2\pi \int_0^\infty \sinh t x \cosh t dt \right]$ $S = 2\pi \left[-\frac{1}{\cosh t} \int_0^{\ln 2} = 2\pi \left(1 - \frac{1}{\cosh(\ln 2)} \right)$	$\cosh(\ln 2) = \frac{e^{\ln 2} + e^{-\ln 2}}{2} = \frac{e^{\ln 2} + e^{\frac{\ln 2}{2}}}{2} = \frac{2 + \frac{1}{2}}{2} = \frac{5}{4}$	so $S = 2\pi \left(1 - \frac{4}{5}\right) = \frac{2\pi}{5}$ Question 8:	$x = t - \frac{1}{3}t^3 and y = t^2$ $\frac{dx}{dt} = 1 - t^2 and \frac{dy}{dt} = 2t$	$a)\left(\frac{dx}{dt}\right) + \left(\frac{dy}{dt}\right) = (1-t^2)^2 + (2t)^2 = 1+t^4 - 2t^2 + 4t^2 = 1+t^4 + 2t^2 = (1+t^2)^2$	$b) S = 2\pi \int_{-1}^{2} t^{2} \sqrt{(1+t^{2})^{2}} dt = 2\pi \int_{-1}^{2} t^{2} (1+t^{2}) dt$ $S = 2\pi \int_{-1}^{2} t^{2} + t^{4} dt = 2\pi \left[\frac{1}{2}t^{3} + \frac{1}{2}t^{5}\right]^{2} = 2\pi \left(\frac{8}{2} + \frac{32}{2} - \frac{1}{2} - \frac{1}{2}\right)$	$S = \frac{256}{15}\pi$

Question 6:

Æ Roots 仍 SIND Complex 0 2 ν_{i} De Moivre Proof by theorem induction Finite series Inverse trig Hyperbolic Arc length Past functions functions R eris D Jan 2006 Jun 2006 NR Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010 on $0 \leq$ Д 1/2 (1,0)=begin CEC 1/2 oth

57

ormulae

$ \begin{array}{ccc} \ \media \ \\media \ \\\media \ \\media \ \\media \\\media \ \\media \ \\media \ \\\media \ \\\media \\\\media \\\\media \\\\media \\\media \\\media \\\media \\\media \\\media \\\media \ \\media \\\media \\\media \\\\media \\\\media \\\\media \\\\media \\\\media \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$					Answer a	Answer all questions.	
MTHANCE Mathematical functions Mathematical function function Mathematical function Mathmathematical function Mathematical fun	General Certificate of Education January 2006 Advanced Level Examination		AQA	$\vec{\mathcal{L}}$	(a) Show that	$=\frac{2r+1}{2}$	(7 marks)
Figh 27 January 2006 1.3 D pm to 3.00 pmTo be a bine 3.00 pmTo 3.2 $\frac{3}{7}$ $\frac{5}{7}$ $\frac{7}{7}$ 7	MATHEMATICS Unit Further Pure 2	MFP2	A S S E S S M E N T and Q U A L I F I C A T I O N S A L L I A N C E		r^{2} $(r+1)$ (b) Hence find the sum of the first <i>n</i> terr	$r^{2}(r+1)^{2}$ so of the series	
Image: Section construction: Image: Section: Image:					$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3}$	$\frac{7}{2} + \frac{7}{3^2 \times 4^2} + \dots$	(4 marks)
The allowed: 1 hour 30 minutes The allowed: 1 hour 30 minutes The allowed: 1 hour 30 minutes • where p_i and r are real, has noots x, β and r . It is the or hold; point equation equated on the free of your ansere book. The <i>Examining body</i> for this preverse a MIP?. • (a) Given that $x + \beta + \gamma = 4$ and $x^2 + \beta^2 + \gamma^2 = 20$ • Where p_i and p_i and p_i and p_i and p_i and p_i . • $\beta + \beta + \gamma^2 = 20$ • Allow and the shown; otherwise marks for method may be tost. • (b) Given further that one root is $3 + i$, find the values of p and q . • Allow and the shown; otherwise marks for method may be shown; otherwise marks for method may be shown in brackers. • (b) Given further that one root is $3 + i$, find the value of r_i . • In enserstory working should be shown; otherwise marks for method may be shown in brackers. • (c) Given further that one root is $3 + i$, find the value of r_i . • In enserstory working should be shown in brackers. • (c) Given further that one root is $3 + i$, find the value of r_i . • In enserstory are shown in brackers. • (c) Given further that one root is $3 + i$, find the value of r_i . • In enserstory working should be shown in thrackers. • (c) Given furth $r_i = 1 = r_i$. • (c) Given furth $r_i = 1 = r_i$. • (c) Given furth $r_i = 1 = r_i$. • (c) Given furth $r_i = 1 = r_i$. • (c) Given furth $r_i = r_i = r_i$. • (c) Given furt $r_i = r_i$. • (For this paper you must have: an 8-page answer book the blue AQA booklet of formulae and statistical tables You may use a graphics calculator. 				The cubic equation	0 = r + r = 0	
Interaction(a) Given thatInstruction(b) Given that• Use blue or black ink or bull-point pen. Pencil should only be used for draving. • Write the induct of your answer book. The <i>Examining body</i> for this • Write the induct of your answer book. The <i>Examining body</i> for this • What the induct of your answer book. The <i>Examining body</i> for this • What the induct of your answer book. The <i>Examining body</i> for this • What the induct of your answer book. The <i>Examining body</i> for this • What the induct of your answer book. The <i>Examining body</i> for this • A fight $+ y = 4$ and $x^2 + \beta^2 + y^2 = 20$ find the value of x .• Marker all greesions. • In increasing working is a pown in brackers.(b) Given further that one root is 3+1, find the value of x . • Different that one root is 3+1, find the value of x .Information • In anxion mark for this paper is 7.5.3The complex numbers z_1 and $z_2 = \frac{1}{2} + \frac{\sqrt{2}}{2}$.Information • Colleges started observies, formulae may be quoted, withour proof, from the booklet.(a) Show that $z_1 = i$.Unless started observies, formulae may be quoted, withour proof, from the booklet.(a) Show that $z_1 = i$.Information • Unless started observies, formulae may be quoted, withour proof, from the booklet.(b) Show that $z_1 = i$.Information • Unless started observies, formulae may be quoted, withour proof, from the booklet.(b) Show that $z_1 = i$.Information • Unless started observies, formulae may be quoted, withour proof, from the booklet.(c) Show that $z_1 = i$.Information • Unless started observies, formulae may be quoted, withour proof, from the booklet.(c) Show that $z_1 = i$.Information • Unless started observies	Time allowed: 1 hour 30 minutes				where p, q and r are real, has roots $lpha, eta$ ar	d y.	
• All necessary working should be shown: otherwise marks for method may be lost.(b) Given further that one root is 3 + i, find the value of r.Information Information a for questions are shown in brackets.3 The complex numbers z_1 and z_2 are given by $z_1 = \frac{1+i}{1-i}$ and $z_2 = \frac{1}{2} + \frac{\sqrt{5}}{2}$; (a) Show that $z_1 = i$.Advice to Uses stated otherwise, formulae may be quoted, without proof, from the booklet.(b) Given further that one root is 3 + i, find the value of r.Advice (a) The maximum mark for questions are shown in brackets.3 The complex numbers z_1 and $z_2 = \frac{1}{2} + \frac{\sqrt{5}}{2}$; (a) Show that $z_1 = i$.Advice (b) Show that $ z_1 = z_2 $.(c) Show that $ z_1 = z_2 $.(d) Draw an Argand diagram to show the points representing z_1, z_2 and $z_1 + z_2$.(e) Use your Argand diagram to show the points representing z_1, z_2 and $z_1 + z_2$.(b) Taw an Argand diagram to show the points representing z_1, z_2 and $z_1 + z_2$.(e) Use your Argand diagram to show the that $\tan \frac{1}{12}\pi = 2 + \sqrt{3}$	 Instructions Use blue or black ink or ball-point pen. Pencil shot Write the information required on the front of your a paper is AQA. The Paper Reference is MFP2. 	ild only be used for drawin unswer book. The <i>Examin</i>	g. ing Body for this		$\alpha + \beta + \gamma = 4$ lues of <i>p</i> and <i>q</i> .		(5 marks)
Information 3 The complex numbers z_1 and z_2 are given by • The maximum mark for this paper is 7.5. • The maximum mark for this paper is 7.5. • The mark for questions are shown in brackets. • The complex numbers z_1 and $z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}$ • Unless stated otherwise, formulae may be quoted, without proof, from the booklet. • (a) Show that $z_1 = i$. • Unless stated otherwise, formulae may be quoted, without proof. from the booklet. • (b) Show that $ z_1 = z_2 $. • (b) Show that $ z_1 = z_2 $. • (b) Show that $ z_1 = z_2 $. • (c) Express both z_1 and z_2 in the form $re^{j\theta}$, where $r > 0$ and $-\pi < \theta < \pi$. • (c) Use your Argand diagram to show the points representing z_1, z_2 and $z_1 + z_2$. • (c) Use your Argand diagram to show that • (c) Use your Argand diagram to show that • (c) Use your Argand diagram to show that		narks for method may be lo	ost.			nd the value of r .	(5 marks)
Advice $z_1 = \frac{1+i}{1-i}$ and $z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ • Unless stated otherwise, formulae may be quoted, without proof, from the booklet. (a) Show that $ z_1 = z_2 $. (b) Show that $ z_1 = z_2 $. (c) Express both z_1 and z_2 in the form $r^{j\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$. (d) Draw an Argand diagram to show the points representing z_1 , z_2 and $z_1 + z_2$. (e) Use your Argand diagram to show that $ z_1 = 2 + \sqrt{3}$. (f) $\frac{5}{12}\pi = 2 + \sqrt{3}$.	InformationThe maximum mark for this paper is 75.The marks for questions are shown in brackets.					y	
 (a) Show that z₁ = i. (b) Show that z₁ = z₂ . (c) Express both z₁ and z₂ in the form re^{iθ}, where r > 0 and -π < θ ≤ π. (d) Draw an Argand diagram to show the points representing z₁, z₂ and z₁ + z₂. (e) Use your Argand diagram to show that tan tan tan tan tan tan tan tan tan t	Advice • Unless stated otherwise, formulae may be quoted, wi	ithout proof, from the book	let.				
 (b) Show that z₁ = z₂ . (c) Express both z₁ and z₂ in the form re^{jθ}, where r > 0 and -π < θ ≤ π. (d) Draw an Argand diagram to show the points representing z₁, z₂ and z₁ + z₂. (e) Use your Argand diagram to show that tan ⁵/₁₂π = 2 + √3 							(2 marks)
 (c) Express both z₁ and z₂ in the form re^{jθ}, where r > 0 and -π < θ ≤ π. (d) Draw an Argand diagram to show the points representing z₁, z₂ and z₁+z₂. (e) Use your Argand diagram to show that tan ⁵/₁₂π = 2 + √3 							(2 marks)
 (d) Draw an Argand diagram to show the points representing z₁, z₂ and z₁+z₂. (e) Use your Argand diagram to show that tan 5π 12π = 2 + √3 					(c) Express both z_1 and z_2 in the form r_2	$\mathbf{i}\theta$, where $r > 0$ and $-\pi < \theta \leqslant \pi$.	(3 marks)
(e) Use your Argand diagram to show that $\tan \frac{5}{12}\pi = 2 + \sqrt{3}$					(d) Draw an Argand diagram to show the	points representing z_1 , z_2 and $z_1 + z_2$.	
$\tan \frac{5}{12}\pi = 2 + \sqrt{3}$					(e) Use your Argand diagram to show th	at	
	59				$\tan \frac{5}{12}\pi$	$= 2 + \sqrt{3}$	(3 marks)
	108 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010	Jan 2007 Jun 2007 Jan 2008	Jun 2006 Jan	Past Papers Jan 2006	Finite Inverse trig Hyperbolic Arc length series	ts Complex De Moivre Proof by numbers theorem induction	Formulae Roots

60

END OF QUESTIONS

al Comments		AG			A1 for at least 3 lines											Real $\alpha\beta\gamma$	Realr			Provided r is real
Marks Total	IM	A1 2			M1A1		MI	A1F 4	9	12	MI	A1 A1F	AIF 5	B1	BIF	MI	AIF 5	M1 B1	B1	A2,1,0
Solution $(r + 1)^2 - r^2$			(b) $\frac{3}{1^2 \times 2^2} = \frac{1}{1^2} - \frac{1}{2^2}$	$\frac{5}{2^2 \times 3^2} = \frac{1}{2^2} - \frac{1}{3^2}$	$\frac{7}{3^2 \times 4^2} = \frac{1}{3^2} - \frac{1}{4^2}$ MI	$\frac{2n+1}{n^2(n+1)^2} = \frac{1}{n^2} - \frac{1}{(n+1)^2}$	Clear cancellation N	$1 - \frac{1}{(n+1)^2}$ A	Total		$\sum_{\substack{(\alpha+\beta+\gamma)^2 = \Sigma \alpha^2 + 2\Sigma \alpha\beta}} e^{-\frac{1}{2}\alpha^2 + 2\Sigma \alpha\beta}$	+ <i>2.2.00</i> -2		(b) $3-i$ is a root E	Third root is -2	$\alpha\beta\gamma = (3+i)(3-i)(-2)$		Alternative to (b) Substitute 3 + i into equation $(3 + i)^2 = 8 + 6i$	5	r = 20

MFP2

MFP2

61

Sensible attempt at the difference between 2 series Provided previous 5 marks earned Comments AG Marks Total 9 ŝ 9 **MIA1** ml Al Bl Ξ Μ $\mathbf{A1}$ $\mathbf{A1}$ Total $\sum_{r=1}^{k+1} (r+1)2^{r-1} = k2^k + (k+2)2^k$ (b) $\sum_{r=1}^{2n} (r+1)2^{r-1} - \sum_{r=1}^{n} (r+1)2^{r-1}$ $\begin{array}{c|c}
2 & Solution \\
4(a) & Assume result true for <math>n = k \\
\end{array}$ n=1 $2 \times 2^0 = 2 = 1 \times 2^1$ $P_k \Longrightarrow P_{k+1}$ and P_1 is true $\sum_{j=1}^{k} (r+1)2^{j-1} = k 2^{k}$ $=2n\ 2^{2n}-n2^n$ $=2^{k}\left(k+k+2\right)$ $= n \Big(2^{n+1} - 1 \Big) 2^n$ $=2^{k+1}\left(k+1\right)$ $=2^{k}\left(2k+2\right)$ MFP2 (cont)

Follow through circle in incorrect position Follow through circle in incorrect position Accept $\sqrt{4^2 + 4^2} + 4$ as a method Comments Touching both axes Correct centre Circle AG Marks Total ю m m 0 AIF AlF AlF AlF B1 B1 B1 W W Total (c) Correct position of z, ie LSolution $a = -\left(4 - 4\cos\frac{1}{6}\pi\right)$ 0 $b = 4 + 4\sin\frac{1}{6}\pi = 6$ $=\sqrt{4^2+4^2}+4$ $= -(4 - 2\sqrt{3})$ $=4\left(\sqrt{2}+1\right)$ (b) $|z| \max = OK$ MFP2 (cont) Q 5(a)

MFP2

MFP2

IFP2 (cont)				MFP2 (cont)			
0	Solution	Marks	Total	Comments Q	L	Marks Total	Comments
6(a)(i)	$z + \frac{1}{z} = \cos \theta + i \sin \theta + $			$\operatorname{Orz} + \frac{1}{2} = e^{j\theta} + e^{-j\theta} $ 7(a)(j)	$2\left(\frac{e^{\theta}-e^{-\theta}}{2}\right)\left(\frac{e^{\theta}+e^{-\theta}}{2}\right)$		
	$\cos(-\theta) + i\sin(-\theta)$ $= 2\cos\theta$	M1 A1	2			د ۱۸۱۷	U.S.
(9)	$\int_{a} \frac{z^2 + 1}{z^2 + \cos 2\theta + i \sin 2\theta}$						DV
	$\frac{z}{z^2} = -\cos zv + i\sin zv + \cos zv + i\sin (-3\theta)$	IM			(ii) $\left[\left(\frac{e^{\theta} - e^{-\theta}}{2} \right)^2 + \left(\frac{e^{\theta} + e^{-\theta}}{2} \right)^2 \right]$	M1	
	$=2\cos 2\theta$		2	OE			
(iii)	$z^2 - z + 2 - \frac{1}{z} + \frac{1}{z^2}$				$=\frac{e^{2\theta}-2+e^{-2\theta}+e^{2\theta}+2+e^{-2\theta}}{4}$		
					$= \cosh 2\theta$	Al 3	AG
	$= 7 \cos 7a - 7\cos a + 7$	IM		(b)(i) (b)	(b)(i) $x = 3\cosh^2 \theta \sinh \theta ''$	MIAI	Allow M1 for reasonable attempt at differentiation but M0 for nutting in
	Use of $\cos 2\theta = 2\cos^2 \theta - 1$	ml					terms of $e^{it\theta}$ or sinh 3 θ unless real
	$=4\cos^2\theta-2\cos\theta$	AI	ŝ	AG			progress made towards $\dot{x}^2 + \dot{y}^2$
લ		MIAI			$y = 3\sinh^2\theta\cosh\theta$	A1	Allow this M1 if not squared out, must be
	-			Alternative:			clear sum in question is $x^2 + y^2$
	$z + \frac{1}{z} = 1$ $z^2 - z + 1 = 0$	MIAI		$\cos \theta = 0$ $\theta = \pm \frac{1}{2}\pi$ M1	$x^2 + y^2 = 9\cosh^4 \theta \sinh^2 \theta$ + $9\sinh^4 \theta \cosh^2 \theta$	MI	Ç
	$z = \frac{1 \pm i\sqrt{3}}{2}$	AIF	ν.	AI MI	$=9\sinh^2\theta\cosh^2\theta\left(\cosh^2\theta+\sinh^2\theta\right)$	AI	Accept $\int_{0}^{1} \left\{ \frac{9}{4} \sinh^2 2\theta \cosh 2\theta \right\} d\theta$
	2 Accept solution to (b) if done otherwise			$=\frac{1}{2}(1\pm i\sqrt{3})$ Al Al	$-\frac{9}{2000}$ sinth ² 29 cost 29	v 17	but limits must appear somewhere
	Alternative	IM			4		
	If $\theta = +\frac{1}{2}\pi \theta = -\frac{1}{3}\pi$			(i)	$S = \int_{0}^{1} \frac{3}{2} \sinh 2\theta \sqrt{\cosh 2\theta} \mathrm{d}\theta$	MI	
	$z=i$ $z=\frac{1+\sqrt{3}i}{2}$	AI			0 10	11111	
	Or any correct z values of θ Any 2 correct answers	IN IS			$I = \int_{0}^{3} \frac{1}{2} u^{2} du = \frac{3}{2} \times \frac{2}{2} u^{2}$	AlF	
	Une correct answer only Total	IG	12		(1 3) ¹		
					$S = \left\{\frac{1}{2}(\cosh 2\theta)^{\frac{1}{2}}\right\}_{0}$	AIF	
					$=\frac{1}{2}\left\{\left(\cosh 2\right)^{\frac{3}{2}}-1\right\}$	A1 6	AG
					Total	17	
					IUIAL	<u>c</u> /	

MEP 2

MFP2

MFP2 (cont)

AQA – Further pure 2 – Jan 2006 – Answers

Question 1	Exam report
$a)\frac{1}{r^{2}} - \frac{1}{(r+1)^{2}} = \frac{(r+1)^{2}}{r^{2}(r+1)^{2}} - \frac{r^{2}}{r^{2}(r+1)^{2}} = \frac{r^{2} + 2r + 1 - r^{2}}{r^{2}(r+1)^{2}} = \frac{2r+1}{r^{2}(r+1)^{2}}$	
$b)\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots + \frac{2n+1}{n^2(n+1)^2} = \sum_{r=1}^n \frac{2r+1}{r^2(r+1)^2} and$	There were many fully correct answers to this question. A few candidates did not spot the connection between the parts (a) and
$\sum_{r=1}^{n} \frac{2r+1}{r^{2}(r+1)^{2}} = \sum_{r=1}^{n} \frac{1}{r^{2}} - \frac{1}{(r+1)^{2}}$	(b). Otherwise, the only errors in part (b) were errors of sign leading to the
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\ldots+\frac{1}{(n-1)^2}-\frac{1}{n^2}+\frac{1}{n^2}-\frac{1}{(n+1)^2}$	answer $1 - \frac{1}{(n+1)^2}$ or the summation of n +1 terms rather than n
All the terms cancel out except the first and the last one :	terms of the given series.
$\sum_{r=1}^{n} \frac{2r+1}{r^2(r+1)^2} = 1 - \frac{1}{(n+1)^2}$	

Question 2:	Exam report
a) $x^{3} + px^{2} + qx + r = 0$ has three roots α, β and γ . $\alpha + \beta + \gamma = 4$ so $p = -4$ $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	Candidates were also able to achieve good results on this question. In part (a), where errors occurred they were almost always errors of signs. For instance the value of p was given as 2 instead of .2 or the formula for
$20 = (4)^{2} - 2q$ $q = -2$ b) p,q and r are REAL numbers so	$\left(\sum \alpha\right)^2$ was incorrectly quoted as $\sum \alpha^2 - 2\sum \alpha\beta$. There were fewer completely correct solutions to part (b) often due to inelegant methods of solution. The most successful candidates obtained the values of the other two roots and then worked out the product $\alpha\beta\gamma$. The
if $3+i$ is a root, then its conjugate is also a root $\alpha = 3+i$, $\beta = 3-i$ $\alpha + \beta + \gamma = 4$ gives $6+\gamma = 4$ and $\gamma = -2$	main loss of marks using this method was to equate <i>r</i> to $\alpha\beta\gamma$ instead of $-\alpha\beta\gamma$. The other main method of approach to this part of the question was to substitute 3 + i into the cubic equation with the values of <i>p</i> and <i>q</i> already found in part (a). However any error in the values of <i>p</i> and <i>q</i> or in the substitution inevitably led to <i>r</i> having a complex value. Surprisingly this did not seem to worry
$r = -\alpha\beta\gamma = -(3+i)(3-i)(-2) = (9-i^2) \times 2 = 20$ r = 20	the candidates in spite of the fact that the question stated that <i>r</i> was real.

Question 3:	Exam report
$z_{1} = \frac{1+i}{1-i} and z_{2} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ $a) z_{1} = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{1+2i+i^{2}}{1-i^{2}} = \frac{2i}{2} = i$ $b) z_{1} = i = 0+1i = \sqrt{0^{2}+1^{2}} = 1$ $ z_{2} = \left \frac{1}{2} + \frac{\sqrt{3}}{2}i\right = \sqrt{\left(\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1$ $ z_{1} = z_{2} $ $c) z_{1} = i = e^{i\frac{\pi}{2}}$ $z_{2} = \frac{1}{2} + \frac{\sqrt{3}}{2}i = Cos(\frac{\pi}{3}) + iSin(\frac{\pi}{3}) = e^{i\frac{\pi}{3}}$	Part (a) was well done, as was part (b). In part (c) it was surprising to note how many candidates could not express the complex number in the form $re^{i\theta}$, although z_2 was almost invariably correctly written as $e^{i\frac{\pi}{3}}$. Errors in part (c) however did not deter candidates from drawing a correct Argand diagram as they usually used the form $\mathbf{a} + i\mathbf{b}$ when plotting their points. Although the vast majority of scripts ended with $Tan\frac{5\pi}{12} = 2 + \sqrt{3}$, very, very few candidates gave convincing proof that $\arg(z_1 + z_2)$ was $\frac{5\pi}{12}$, but rather seemed to take it for granted.

Question 3: (continues)

Question 5. (continues)	
d) e) The argument of z_3 is $\arg(z_2) + \frac{\arg(z_1) - \arg(z_2)}{2}$	2- 2- 2-
$\frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$ and $\frac{1}{2} of \frac{\pi}{6} = \frac{\pi}{12}$	1.5 -
$\arg(z_3) = \frac{\pi}{3} + \frac{\pi}{12} = \frac{5\pi}{12}.$	0.5
and $z_3 = z_1 + z_2 = i + \frac{1}{2} + \frac{\sqrt{3}}{2}i = \frac{1}{2} + i(1 + \frac{\sqrt{3}}{2})$	-1 -0.5 0 0.5
So $Tan\frac{5\pi}{12} = \frac{1 + \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 2 + \sqrt{3}$	-0.5

Let's show that the proposition is then true for $n = k + 1$, meaning let's show that $\sum_{r=1}^{k+1} (r+1)2^{r-1} = (k+1)2^{k+1}$.	Question 4:	Exam report
<i>LHS</i> : 2 and <i>RHS</i> : $(1+1) \times 2^{1-1} = 2$ The proposition is true for $n = 1$. • Propostion P _k : Let's suppose that for $n = k$, the proposition is true, meaning we suppose that $\sum_{r=1}^{k} (r+1)2^{r-1} = k2^{k}$. Let's show that the proposition is then true for $n = k + 1$, meaning let's show that $\sum_{r=1}^{k+1} (r+1)2^{r-1} = (k+1)2^{k+1}$. • $\sum_{r=1}^{k+1} (r+1)2^{r-1} = \sum_{r=1}^{k} (r+1)2^{r-1} + (k+2)2^{k}$ $= k2^{k} + (k+2)2^{k} = k2^{k} + k2^{k} + 2^{k+1} = 2k2^{k} + 2^{k+1}$ $= k2^{k+1} + 2^{k+1} = (k+1)2^{k+1}$. • Conclusion: If the propostion is true for $n = k$ then it is true for $n = k + 1$,	, -1 ,	
we can conclude, according to the induction principal, that it is true for all $n \ge 1$: for all $n \ge 1$, $\sum_{n=1}^{n} (r+1)2^{r-1} = n2^n$	•Base case: $n = 1$ LHS: 2 and RHS: $(1+1) \times 2^{1-1} = 2$ The proposition is true for $n = 1$. •Propostion P_k : Let's suppose that for $n = k$, the proposition is true, meaning we suppose that $\sum_{r=1}^{k} (r+1)2^{r-1} = k2^k$. Let's show that the proposition is then true for $n = k + 1$, meaning let's show that $\sum_{r=1}^{k+1} (r+1)2^{r-1} = (k+1)2^{k+1}$. • $\sum_{r=1}^{k+1} (r+1)2^{r-1} = \sum_{r=1}^{k} (r+1)2^{r-1} + (k+2)2^k$ $= k2^k + (k+2)2^k = k2^k + k2^k + 2^{k+1} = 2k2^k + 2^{k+1}$ $= k2^{k+1} + 2^{k+1} = (k+1)2^{k+1}$. •Conclusion: If the proposition is true for $n = k$ then it is true for $n = k + 1$, because it is true for $n=1$, we can conclude, according to the induction principal,	fair. Although candidates had some idea of what was required for the inductive process, in part (a) they appeared to be easily confused. Common statements were for instance $(k+2)2^{k} = k2^{k}$ or $(k+1)2^{k-1} + (k+2)2^{k}$ or to even write down correctly $k2^{k} + (k+2)2^{k}$ but without any reference whatsoever as to what the expression

_								
Q		0	C	ti	0	n	л	•
U.	u	e	5	u	υ		4	•

b) $\sum_{r=n+1}^{2^{n}} (r+1)2^{r-1} = \sum_{r=1}^{2^{n}} (r+1)2^{r-1} - \sum_{r=1}^{n} (r+1)2^{r-1}$ $= 2n \times 2^{2^{n}} - n2^{n} = n2^{n} (2 \times 2^{n} - 1)$ $\sum_{r=n+1}^{2^{n}} (r+1)2^{r-1} = n2^{n} (2^{n+1} - 1)$

Exam report

In part (b), unless candidates realised that the given series was the difference of two other series no progress was made and only a few realised the connection with part (a). A common approach was to try and prove this result by induction also.

Question 5:	Exam report
Call the complex number $-4+4i$, z_A and	
A(-4,4) the corresponding point in the Argand diagram.	
M is the point corresponding to the complex number z.	
a) $ z+4-4i = 4$	
z - (-4 + 4i) = 4 corresponds to the locus	
AM = 4	
This is the circle centre A radius $r = 4$.	
b) The furthest point away from O on the circle is K. $ z _{\text{max}} = OK = OA + r = z_A + 4 = \sqrt{(-4)^2 + 4^2} + 4$ $ z _{\text{max}} = \sqrt{32} + 4 = 4\sqrt{2} + 4 = 4(\sqrt{2} + 1)$	
c) $\arg(z+4-4i) = \frac{\pi}{6}$ means $angle(AM, ox) = \frac{\pi}{6}$. We show the position with the point L. Using trigonometry in ALH, we have $x_L = a = -4 + AH = -4 + 4\cos\frac{\pi}{6} = -4 + 2\sqrt{3}$ and $y_L = b = 4 + LH = 4 + 4\sin\frac{\pi}{6} = 6$ $z_L = (-4 + 2\sqrt{3}) + 6i$	Most candidates realised that the locus in part (a) was a circle although it was frequently drawn in an incorrect quadrant, and occasionally with a radius of 2 rather than a radius of 4. The correct answer to part (b) was usually obtained although sometimes with a less than convincing argument. There were relatively fewer correct solutions to part (c). Those candidates who addressed the geometry of the figure were the most successful, but those who converted the equations of the circle and line into the Cartesian form and then attempted to solve a pair of simultaneous equations usually abandoned their solution after making algebraic errors.

Question 6:	Exam report
$z = e^{i\theta}$	
$a(i)z + \frac{1}{z} = e^{i\theta} + \frac{1}{e^{i\theta}} = e^{i\theta} + e^{-i\theta}$	
$= Cos\theta + iSin\theta + Cos\theta - iSin\theta$	
$z + \frac{1}{z} = 2Cos\theta$	
<i>ii</i>) $z^{2} + \frac{1}{z^{2}} = e^{i2\theta} + \frac{1}{e^{i2\theta}} = e^{i2\theta} + e^{-i2\theta}$	
$= \cos 2\theta + i\sin 2\theta + \cos 2\theta - i\sin 2\theta$	Parts (a) was quite well done and many candidates scored the available seven marks. There were however some serious algebraic errors, the commonest of which was to equate
$z^2 + \frac{1}{z^2} = 2Cos2\theta$	$z^{2} + \frac{1}{z^{2}} to \left(z + \frac{1}{z}\right)^{2}$ in part (a)(ii) with some consequent faking
<i>iii</i>) $z^2 - z + 2 - \frac{1}{z} + \frac{1}{z^2} = 2Cos2\theta - 2Cos\theta + 2$	to arrive at the printed result in part (a)(iii). Part (b) however was very poorly attempted. Candidates did not seem to realise that z
we know that $\cos 2\theta = 2\cos^2 \theta - 1$ so	could be equal to zero and consequently multiplied $(\cos\theta + i\sin\theta)^2 by 4\cos^2\theta - 2\cos\theta$. Of those candidates who
$z^{2} - z + 2 - \frac{1}{z} + \frac{1}{z^{2}} = 2(2\cos^{2}\theta - 1) - 2\cos\theta + 2$	realised that $4Cos^2 - 2Cos\theta$ was equal to zero, the factorisation of this quadratic in $Cos\theta$ evaded most and, even
$z^{2} - z + 2 - \frac{1}{z} + \frac{1}{z^{2}} = 4Cos^{2}\theta - 2Cos\theta$	when attempts were made to solve $4Cos^2\theta - 2Cos\theta = 0$, the
$z z^{2}$ b) $z^{4} - z^{3} + 2z^{2} - z + 1 = 0$ factorise by z^{2}	factor $Cos\theta$ disappeared and the other solution $Cos\theta = \frac{1}{2}$
(z = 0 is not a solution)	usually produced just one root from $\theta = \frac{\pi}{3}$. Candidates who
$z^{2}(z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}})=0$ This gives	were able to obtain both $Cos\theta = 0$ and $Cos\theta = \frac{1}{2}$ usually
$z^2 - z + 2 - \frac{1}{z} + \frac{1}{z^2} = 0$	produced only two solutions and subsequently two roots. It did not seem to occur to candidates that a quartic equation would have four roots.
$4Cos^2\theta - 2Cos\theta = 0$	
$2Cos\theta(2Cos\theta - 1) = 0$	
$Cos\theta = 0 \text{ or } Cos\theta = \frac{1}{2}$	
$\theta = \frac{\pi}{2} \text{ or } \theta = -\frac{\pi}{2} \text{ or } \theta = \frac{\pi}{3} \text{ or } \theta = -\frac{\pi}{3}$	
$z = e^{\pm i\frac{\pi}{2}} = \pm i \text{ or } z = e^{\pm i\frac{\pi}{3}} = \frac{1}{2} \pm i\frac{\sqrt{3}}{2}$	

Question 7:	Exam report
(a)i) $Sinh\theta = \frac{1}{2}(e^{\theta} - e^{-\theta})$ and $Cosh\theta = \frac{1}{2}(e^{\theta} + e^{-\theta})$	
$2Sinh\theta Cosh\theta = 2 \times \frac{1}{2}(e^{\theta} - e^{-\theta}) \times \frac{1}{2}(e^{\theta} + e^{-\theta})$	
$=rac{1}{2} \Big(e^{2 heta} + e^0 - e^0 - e^{-2 heta} \Big)$	
$=\frac{1}{2}(e^{2\theta}-e^{-2\theta})=Sinh(2\theta)$	
$ii) \operatorname{Cosh}^{2}\theta + \operatorname{Sinh}^{2}\theta = \left(\frac{1}{2}(e^{\theta} - e^{-\theta})\right)^{2} + \left(\frac{1}{2}(e^{\theta} + e^{-\theta})\right)^{2}$	
$=\frac{1}{4}\left(e^{2\theta}-2e^{0}+e^{-2\theta}\right)+\frac{1}{4}\left(e^{2\theta}+2e^{0}+e^{-2\theta}\right)$	Candidates were generally well drilled in proving the identities of parts (a)(i) and (a)(ii) although in
$= \frac{1}{4} \left(2e^{2\theta} + 2e^{2\theta} \right) = \frac{1}{2} \left(e^{2\theta} + e^{-2\theta} \right) = Cosh(2\theta)$	(a)(ii) sometimes $\left(e^{ heta}-e^{- heta} ight)^2$ was written as
$b) x = Cosh^{3}\theta , y = Sinh^{3}\theta$	$e^{2\theta} + e^{-2\theta}$ with the same result from $\left(e^{\theta} + e^{-\theta}\right)^2$
$i)\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = \left(3Sinh\theta Cosh^{2}\theta\right)^{2} + \left(3Cosh\theta Sinh^{2}\theta\right)^{2}$	thus obtaining the correct answer from incorrect algebra. Part (b)(i) was usually quite well done so long as candidates did not write
$=9Sinh^2\theta Cosh^4\theta + 9Cosh^2\theta Sinh^4\theta$	$Cosh^{3}\theta$ as $\frac{1}{8}(e^{\theta}+e^{-\theta})^{3}$. Those who worked in
$=9Sinh^{2}\theta Cosh^{2}\theta \left(Cosh^{2}\theta+Sinh^{2}\theta\right)$	powers of e^{θ} and $e^{-\theta}$ found it impossible to
$=9\left(\frac{1}{2}Sinh2\theta\right)^{2}(Cosh2\theta)$	reconcile their formula with the printed result and so make little meaningful progress. Part (b)(ii) proved to be beyond all but the most able candidates. The required integral,
$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \frac{9}{4}Sinh^2 2\theta Cosh2\theta$	$\int \frac{3}{2} Sinh2\theta \sqrt{Cosh2\theta} d\theta$, was tackled
$ii)S = \int_0^1 \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^1 \sqrt{\frac{9}{4}Sinh^2 2\theta Cosh2\theta} d\theta$	successfully by these candidates by a variety of methods. Some spotted the integral, others used the substitution $u = Cosh2\theta$ whilst others again integrated by parts.
$S = \int_0^1 \frac{3}{2} \operatorname{Sinh2\theta} \sqrt{\operatorname{Cosh2\theta}} d\theta = \frac{3}{2} \int_0^1 \operatorname{Sinh2\theta} \sqrt{\operatorname{Cosh2\theta}} d\theta$	
$S = \frac{3}{2} \int_0^1 Sinh2\theta \times Cosh^{\frac{1}{2}} 2\theta d\theta.$	
This is an integral of the form $\int f' \times f^n = \frac{1}{n+1} f^{n+1}$	
$S = \frac{3}{2} \left[\frac{1}{2} \times \frac{2}{3} \times Cosh^{\frac{3}{2}} 2\theta \right]_{0}^{1} = \frac{1}{2} \left(Cosh^{\frac{3}{2}} 2 - Cosh^{\frac{3}{2}} 0 \right)$	
$S = \frac{1}{2} \left((Cosh2)^{\frac{3}{2}} - 1 \right)$	

Grade Boundaries

Comp.		Maximum		Scaled Ma	rk Grade E	Boundaries	
Code	Component Title	Scaled Mark	Α	В	С	D	E
MFP2	GCE MATHEMATICS UNIT FP2	75	58	51	44	38	32

June 2006

Answer all questions.

1 (a) Given that

 $\frac{r^2 + r - 1}{r(r+1)} = A + B\left(\frac{1}{r} - \frac{1}{r+1}\right)$

(3 marks)

find the values of A and B.

(b) Hence find the value of

 $\sum_{r=1}^{99} \frac{r^2 + r - 1}{r(r+1)}$

(4 marks)

2 A curve has parametric equations

 $x = t - \frac{1}{3}t^3, \quad y = t^2$

(a) Show that

 $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = (1+t^2)^2 \tag{3 marks}$

(b) The arc of the curve between t = 1 and t = 2 is rotated through 2π radians about the *x*-axis.

Show that S, the surface area generated, is given by $S = k\pi$, where k is a rational number to be found. (5 marks)

3 The curve C has equation

 $y = \cosh x - 3 \sinh x$

(a) (i) The line y = -1 meets C at the point (k, -1).

Show that

 $e^{2k} - e^k - 2 = 0 \tag{3 marks}$

(ii) Hence find k, giving your answer in the form $\ln a$.

(4 marks)

(b) (i) Find the *x*-coordinate of the point where the curve *C* intersects the *x*-axis, giving your answer in the form *p* ln *a*.
(*i*) Show that *C* has no stationary points.
(*i*) Show that there is exactly one point on *C* for which d²y/dx² = 0.
(*l* mark)
(*ii*) On one Argand diagram, sketch the locus of points satisfying:

4 (a) On one Argand diagram, sketch the locus of points satisfying:
(i) |z - 3 + 2i| = 4;

(ii) $\arg(z-1) = -\frac{1}{4}\pi$. (3 marks)

(3 marks)

(b) Indicate on your sketch the set of points satisfying both

 $|z-3+2\mathrm{i}|\leqslant 4$ and $\arg(z-1)=-\frac{1}{4}\pi \qquad (l \ mark)$

Formulae Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length Past functions functions

Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

P85475/Jun06/MFP2

•	equation
	cubic
Ē	The
ı	n

0
11
-:
1
マ
ī
- 26
+
~
-4
1
۲ <u>3</u>

•
2
and
an
β
ж́
-
roots
00
ŭ
las
ha
പ്
nber
mum
ц
eх
mplex
9
8
ਰ
60
9
ere
wher
W
~

of:	
value	
the	
down	
Write	
(a)	

	(i) $\alpha + \beta + \gamma$;	(1 mark)
	(ii) $\alpha\beta\gamma$.	(1 mark)
(p)	(b) Given that $\alpha = \beta + \gamma$, show that:	
	(i) $\alpha = 2i$;	(1 mark)
	(ii) $\beta \gamma = -(1+2i);$	(2 marks)
	(iii) $q = -(5+2i)$.	(3 marks)
(c)	(c) Show that β and γ are the roots of the equation	
	$z^2 - 2iz - (1 + 2i) = 0$	(2 marks)

6 (a) The function f is given by

(d) Given that β is real, find β and γ .

(3 marks)

$$\mathbf{f}(n) = 15^n - 8^{n-2}$$

Express

 $\mathrm{f}(n+1)-8\mathrm{f}(n)$

in the form $k \times 15^n$. (4 marks) (b) Prove by induction that $15^n - 8^{n-2}$ is a multiple of 7 for all integers $n \ge 2$. (4 marks)

(2 marks) (2 marks) (3 marks) (2 marks) (4 marks) (3 marks) (1 mark) 7 (a) Find the six roots of the equation $z^6 = 1$, giving your answers in the form $e^{j\phi}$, where $-\pi < \phi \le \pi$. (3 mark (iv) Given that $z = \cot \theta - i$, show that $z + 2i = zw^2$. END OF QUESTIONS $(z+2\mathrm{i})^6 = z^6$ $(z+2\mathrm{i})^6 = z^6$ giving your answers in the form a + ib. (ii) Find the five roots of the equation (b) It is given that $w = e^{i\theta}$, where $\theta \neq n\pi$. (ii) Show that $\frac{w}{w^2 - 1} = -\frac{i}{2\sin\theta}$. (iii) Show that $\frac{2i}{w^2 - 1} = \cot \theta - i$. (i) Show that $\frac{w^2 - 1}{w} = 2i \sin \theta$. (c) (i) Explain why the equation has five roots.

0	•		1		đ
	2	Solution	Marks	I otal	Comments
	1(a)	$r^{2} + r - 1 = A(r^{2} + r) + B$	IM		Any correct method
A		A = 1, B = -1	AI		
			AIF	m	ft B if incorrect A and vice versa
					Or $\frac{r^2 + r - 1}{2} = 1 - \frac{1}{2}$ B1
					$r^{2} + r$ $r(r+1)$
					$=1-\left(\frac{1}{r}-\frac{1}{r+1}\right)$ M1A1
ccuracy					~
ntk	(q)				
sequent work	~	$r = 1$ $1 - \frac{1}{2} + \frac{1}{2}$			
rrect work		7/ 1			
efit of doubt		$r=2$ $1-\frac{1}{2}+\frac{1}{2}$	IW		Do not allow M1 if merely
aced by candidate		2 3			$\Sigma^{1}-\Sigma^{-1}$ is summed
book		1/ 1			$\begin{bmatrix} r & 1 \\ r^{+1} \end{bmatrix}$
leme		$r = 99 1 - \frac{7}{99} + \frac{100}{100}$	AIF		A1 for suitable (3 at least) number of rows
		$Sum = 98 + \frac{1}{100}$	ml		Must have 98 or 99
t ngure(s)		= 98.01	AlF	4	OE Allow correct answer with no working
					4 marks
			Total	7	
	2(a)		B1		
mally see evidence of		$\dot{x}^2 + \dot{y}^2 = (1 - t^2)^2 + 4t^2$	IM		
ome units where part		$-(1, +2)^2$	11	"	AG: must he intermediate line
ur Principal Examiner			ł	n	
very unlikely that the	(q)				
narks. However, the		$S = 2\pi \int_{1}^{1} (1 + t^2) t^2 dt$	M1A1		Must be correct substitutions for M1
wever close, earn no		$-2\pi\left[\frac{t^3}{t^3},\frac{t^5}{t^5}\right]^2$	•		Allow if one term interveted normantly
ed he shown for full		$-\frac{4}{3}\left[\frac{3}{5}+5\right]_{1}$	I		
		$= 2\pi \left[\frac{8}{2} + \frac{32}{2} - \frac{1}{2} - \frac{1}{2} \right]$	AIF		Any form
the meeting directly.		3 5 3 5			

MFP2

Key To Mark Scheme And Abbreviations Used In Marking

mark is dependent on one or more M marks and is for method

mark is for method

M m or dM

A	mark is dependent on M or m marks and is for accuracy	and is for accura	tcy
В	mark is independent of M or m marks and is for method and accuracy	s and is for meth	nod and accuracy
Е	mark is for explanation		
\checkmark or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent w
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of dou
sc	special case	WR	work replaced by ca
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
−x EE	deduct x marks for each error	ტ	graph
NMS	no method shown	c	candidate
ΡΙ	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dþ	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence o use of this method for any marks to be awarded. However, there are situations in some units where par marks would be appropriate, particularly when similar techniques are involved. Your Principal Examine will alert you to these and details will be provided on the mark scheme. Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

s s

A1F

 $=\frac{256\pi}{15}$

Total

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2 (cont)			1	
ð	Solution	Marks	Total	Comments
4				
(a)(j)	Circle Correct centre Enclosing the origin	B1 B1 B1	m	
(ii)	Half line Correct starting point Correct angle	B1 B1 B1	n	
(q)	Correct part of the line indicated	BIF	1	
5(a)(i)	$\alpha + eta + \gamma = 4\mathbf{i}$	B1	1	
(ii)	$\alpha\beta\gamma = 4-2i$	B1	1	
(i)(q)	$\alpha + \alpha = 4i, \ \alpha = 2i$	B1	1	AG
(ii)	$\beta \gamma = \frac{4-2i}{2i} = -2i-1$	M1 A1	7	Some method must be shown, eg $\frac{2}{i}$ -1 AG
(iii)	$q = \alpha\beta + \beta\gamma + \gamma\alpha$ = $\alpha(\beta + \gamma) + \beta\gamma$ = $2i \cdot 2i - 2i - 1 = -2i - 5$	MI MI A1	m	Or $\alpha^2 + \beta\gamma$, ie suitable grouping AG
(c)	Use of $\beta + \gamma = 2i$ and $\beta \gamma = -2i-1$ $z^2 - 2i z - (1+2i) = 0$	MI AI	7	Elimination of say γ to arrive at $\beta^2 - 2i\beta - (1+2i) = 0$ MIA0 unless also some reference to γ being a root AG
(p)		MI		For any correct method
	$\beta = -1$, $\gamma = 1 + 2i$	AIAI	ю ;	A1 for each answer
	Total	_	13	

MFP2 (cont)				
δ	Solution	Marks	Total	Comments
3(a)(i)	$\frac{\mathbf{e}^k + \mathbf{e}^{-k}}{2} - \frac{3\left(\mathbf{e}^k - \mathbf{e}^{-k}\right)}{2} = -1$	IM		Allow if 2's are missing or if coshy and sinhy interchanced
		Al		
	$\mathbf{e}^{2k} - \mathbf{e}^k - 2 = 0$	Al	ю	AG Condone x instead of k
(II)	(ii) $\left(e^{k} + 1 \right) \left(e^{k} - 2 \right) = 0$	IM		
	$e^k eq -1$	E1		Must state something to earn E1. Do not
	$e^k = 2$	Al		accept ignoring or crossing out.
	$k=\ln 2$	AlF	4	
(j)(q)	$\cosh x = 3\sinh x$ or in terms of e^x	IM		
	$\tanh x = \frac{1}{3}$ or $2e^x = 4e^x$	A1		
	$x = \frac{1}{2} \ln \left(\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} \right)$ or $e^{2x} = 2$	AlF		
	$x = \frac{1}{2}\ln 2$	A1	4	CAO
(ii)	$\frac{dy}{dx} = \sinh x - 3\cosh x$ or $-e^x - 2e^{-x}$	IM		
	= 0 when $\tan x = 3$ or $e^{2x} = -2$	Al		
	Correct reason	Εl	ю	Must give a reason
(III)	$\frac{d^2y}{dx^2} = y = 0 \text{ at } \left(\frac{1}{2}\ln 2, 0\right)$	BIF	1	
	ie one point			
	Total		15	

MFP2

Comments	OE MIA1 only if: (1) range for k is incorrect eg 0,1,2,3,4,5 (2) i is missing	AG		AG	Or for $\frac{1}{\sin \theta} e^{i\theta}$		AG	ie any correct method	AG		Alternatively:	$z+2i=e^{\frac{4\pi i t}{3}}z$ B1	$z = \frac{z_1}{k\pi i} \text{M1}$	roots A2,1,0	(NB roots are $\pm \sqrt{3} - i; \pm \frac{1}{\sqrt{3}} - i; -i$)		
Total	ю	7		7			б		2	1		4				17	75
Marks	M1 A2,1,0	MIAI	IM	AI	IM	AI	AI	MI	Al	E1	B1	M1 A2.1.0					
Solution	0 	$\frac{w^2 - 1}{w} = w - \frac{1}{w} = 2i\sin\theta$	$\frac{w}{w^2}$	$=-rac{i}{2\sin\theta}$	$\frac{2i}{w^2 - 1} = \frac{-2iw^{-1}i}{2\sin\theta}$	$= \frac{1}{\sin \theta} (\cos \theta - i \sin \theta)$	$= \cot \theta - \mathbf{i}$	$z = \frac{2i}{w^2 - 1}$ Or $z + 2i = \frac{2i}{w^2 - 1} + 2i$	$z + 2\mathbf{i} = zw^2$			$z = \cot \frac{k\pi}{6} - \mathbf{i}$, $k = \pm 1, \pm 2, 3$				Total	TOTAL
ð	7(a)	(I)(q)	(1)					(iv)			(

MFP2 (cont)	()			
0	Solution	Marks Total	Total	Comments
6(a)	$f(n + 1) - 8f(n) = 15^{n+1} - 8^{n-1}$			
	$-8(15^n - 8^{n-2})$	MIA1		
	$=15^{n+1}-8.15^{n}$			
	$=15^{\prime\prime}\left(15-8\right)$	IM		For multiples of powers of 15 only
	$=7.15^{t_1}$	A1	4	For valid method ie not using 120^n etc
(q)	(b) Assume $f(n)$ is $M(7)$			
	Then $f(n+1) - 8f(n) = 7 \times 15^n$	IM		Or considering $f(n+1)-f(n)$
	$\mathbf{f}(n\!+\!1)=\mathbf{M}(\mathcal{7})\!+\!\mathbf{M}(\mathcal{7})$			
	= M(7)	A1		
	n = 2: f(n) = 15 ² - 8 ⁰ = 224			
	$=$ 7 \times 32	B1		$n = 1 \mathrm{B0}$
	$P(n) \Rightarrow P(n+1)$ and $P(2)$ true	E1	4	Must score previous 3 marks to be awarded E1
	Total		8	

MFP2

AQA – Further pure 2 – Jun 2006 – Answers

Question 1:	Exam report
Question 1: $1)a)\frac{r^{2}+r-1}{r(r+1)} = A + B\left(\frac{1}{r} - \frac{1}{r+1}\right) = A + B\left(\frac{r+1-r}{r(r+1)}\right)$ $= \frac{Ar(r+1)+B}{r(r+1)} = \frac{Ar^{2} + Ar + B}{r(r+1)}$ It is now clear that $A = 1$ and $B = -1$ $b)\sum_{r=1}^{99} \frac{r^{2}+r-1}{r(r+1)} = \sum_{r=1}^{99} 1 - \left(\frac{1}{r} - \frac{1}{r+1}\right) = \sum_{r=1}^{99} 1 - \sum_{r=1}^{99} 1 - \frac{1}{r+1}$ $\sum_{r=1}^{99} \frac{r^{2}+r-1}{r(r+1)} = 99 - \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{98} - \frac{1}{99} + \frac{1}{99} - \frac{1}{100}\right)$ $= 99 - 1 + \frac{1}{100} = 98.01$	Many candidates experienced difficulty in finding the values of A and B in part (a). They seemed to want to equate the left hand side of the identity to $\frac{C}{r} + \frac{D}{r+1}$, thus ignoring the fact that the powers of r in the numerator and denominator were equal. Generally the most successful candidates were those who rewrote the left hand side of the equation as $1 - \frac{1}{r(r+1)}$ with the subsequent expressing of $\frac{1}{r(r+1)}$ in partial fractions. If candidates were usually went on to complete part (b) correctly. The main source of error in this part, if mistakes were made, was to overlook the fact that that the constant
	term, as well as the variable terms, had to be summed from 1 to 99. The constant term was often left as 1.

Question 2:	Exam report
$a)\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dx}{dt}\right)^{2} = (1-t^{2})^{2} + (2t)^{2} = 1-2t^{2}+t^{4}+4t^{2}$	
$= 1 + 2t^2 + t^4 = \left(1 + t^2\right)^2$	
b) From the formula book : $S = 2\pi \int_{1}^{2} y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$	This was a very well-answered question with the vast majority of candidates either gaining full marks or losing one mark through faulty arithmetic. Very occasionally a candidate
$S = 2\pi \int_{1}^{2} y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = 2\pi \int_{1}^{2} t^{2} \times (1+t^{2}) dt$	differentiated $t^{2}+t^{4}$ or integrated $t^{2}+t^{4}$, but wrote down $\frac{t^{3}}{3} + \frac{t^{4}}{4}$
$S = 2\pi \int_{1}^{2} t^{2} + t^{4} dt = 2\pi \left[\frac{1}{3}t^{3} + \frac{1}{5}t^{5}\right]_{1}^{2} = 2\pi \left(\frac{8}{3} + \frac{32}{5} - \frac{1}{3} - \frac{1}{5}\right)$	
$S = \frac{256}{15}\pi$	

Question 3:	Exam report
Question 3: a)i) $y = Cosh x - 3Sinh x$ meets $y = -1$ at $(k, -1)$ This gives $-1 = Cosh k - 3Sinh k$ $-1 = \frac{1}{2} (e^k + e^{-k}) - \frac{3}{2} (e^k - e^{-k})$ $-1 = \frac{1}{2} e^k + \frac{1}{2} e^{-k} - \frac{3}{2} e^k + \frac{3}{2} e^{-k}$ $-1 = -e^k + 2e^{-k}$ (× e^k) $-e^k = -e^{2k} + 2$ $e^{2k} - e^k - 2 = 0$ ii) $(e^k)^2 - e^k - 2 = 0$	Exam report Again, this question proved to be a good source of marks for many candidates. Some candidates in part (a)(i) mixed the exponential forms for cosh x and sinh x,whilst others, having expressed cosh x and sinh x in exponential form correctly and having arrived at $-e^k + 2e^{-k} = -1$ were unable to take the final step which led to the printed result. There was, also, not always a very convincing reason for the rejection of $e^k = -1$ in this part of the question. A very common error in part (a)(ii) was to write $2k - k - \ln 2 = 0$ after the printed answer, leading to the correct
$(e^k - 2)(e^k + 1) = 0$	
$e^k = 2$ or $e^k = -1$ (No solution)	
$k = \ln(2)$ (e ^x is positive for all x)	

Question 3: (Continues)	Exam report
b) C intersect the x - axis when $y = 0$,	
we have to solve: $Cosh x - 3Sinh x = 0$	
$\frac{1}{2}(e^x + e^{-x}) - \frac{3}{2}(e^x - e^{-x}) = 0$	
$e^x + e^{-x} - 3e^x + 3e^{-x} = 0$	
$4e^{-x} - 2e^{x} = 0$ (× $e^{x}/2$)	
$2-e^{2x}=0$	
$e^{2x} = 2 \qquad \qquad 2x = \ln(2)$	Part (b)(i) was usually answered well, as was part (b)(ii), apart from
$x = \frac{1}{2} \ln(2)$	those candidates who thought that the derivatives of hyperbolic functions followed the pattern of the derivatives of trigonometrical functions and so incurred sign errors. The explanation for the
$ii)\frac{dy}{dx} = Sinh x - 3Cosh x = 0$	rejection of solutions to $e^{2x} = -2$ was more convincing in this part of the question than was the rejection of $e^k = -1$ in part (a)(ii). Part (b)(ii) was usually correct.
Sinh x = 3Cosh x	(b)(ii) was usually correct.
Tanh x = 3	
No solution as : for all x , $-1 < Tanh x < 1$	
C has no stationary point.	
$iii)\frac{d^2y}{dx^2} = \cosh x - 3\sinh x = y$	
and $y = 0$ only for $x = \frac{1}{2}\ln(2)$	
Question 4:	Exam report
a)i)Let $z_A be3-2i$ and $A(3,-2)$	
and $M(z)$	
<i>Then</i> $ z-3+2i = 4$	
is equivalent to $AM = 4$	
This is a circle, centre A, radius $r = 4$.	
ii) Let $z_B = 1$ and $B(1,0)$	Responses to this question were usually quite good and it was
and $fM(z)$	pleasing to note some quite accurate neat diagrams using a ruler and
anaj M(2)	compasses, Errors in parts (a)(i) and part (a)(ii) were usually errors of
Then $\arg(z-1) = -\frac{\pi}{4}$	compasses. Errors in parts (a)(i) and part (a)(ii) were usually errors of sign. For instance in part (a)(i) the centre of the circle was sometimes taken to be the point (-3,2)or even (3,2) and in part (a)(ii) the half line would be drawn from either (0,1)or (-1,0). Just occasionally the

is equivalent to angle $(BM, ox) = -\frac{\pi}{4}$

taken to be $+rac{\pi}{4}or+rac{3\pi}{4}$. In part (b), a substantial number of candidates thought that the set of points must involve an area and consequently shaded some region in their sketch.

Question 5:	Exam report
$z^{3}-4iz^{2}+qz-(4-2i)=0 \text{ has roots } \alpha,\beta,\gamma$	
a) i) $\alpha + \beta + \gamma = 4i$ ii) $\alpha\beta\gamma = 4 - 2i$	
$b)\alpha = \beta + \gamma$	
i) $\alpha + \beta + \gamma = 4i$ becomes $\alpha + \alpha = 4i$ so $\alpha = 2i$ ii) $\alpha\beta\gamma = 4 - 2i$ $\beta\gamma = \frac{4 - 2i}{\alpha} = \frac{4 - 2i}{2i} \times \frac{i}{i} = \frac{4i + 2}{-2}$ $\beta\gamma = -2i - 1 = -(1 + 2i)$	Apart from the occasional sign errors, part (a) was answered well. Where sign errors did occur there was some faking to establish the printed answers in part (b). Part (b) is an example of what was mentioned at the beginning of this report in that with all three answers being printed, sufficient working needed to be shown in order to obtain full credit.
<i>iii</i>) $q = \alpha\beta + \alpha\gamma + \beta\gamma$ $= \alpha(\beta + \gamma) + \beta\gamma$ $= \alpha^{2} + \beta\gamma = (2i)^{2} - (1 + 2i)$ q = -4 - 1 - 2i q = -5 - 2i <i>c</i>) $\beta + \gamma = 2i$ and $\beta\gamma = -(1 + 2i)$ <i>so</i> β and γ are roots of the equations	Whilst most candidates knew roughly what was required for part (c), few candidates could express their argument succinctly. A number of candidates attempted to divide the cubic equation by $z-2i$ with varying success. Probably the commonest method of approach in part (d) was to substitute β for z in the quadratic equation in z and then to equate real parts. Equating real parts led to $\beta^2 = 1$ from which a substantial number of candidates assumed that $\beta = 1$ instead of considering the imaginary
$z^{2} - 2iz - (1+2i) = 0$ d) $\beta = 1$ is an "obvious" root $(1^{2} - 2i - (1+2i) = 0)$ $z^{2} - 2iz - (1+2i) = (z-1)(z^{2} + (1+2i)) = 0$ roots are $\beta = 1$ and $\gamma = 1+2i$	parts of the equation as well.

Question 6:	Exam report		
a) $f(n+1) - 8f(n) = (15^{n+1} - 8^{n-1}) - 8(15^n - 8^{n-2})$			
$= 15^{n+1} - 8^{n-1} - 8 \times 15^n + 8^{n-1}$			
$=15^{n}(15-8)$			
$f(n+1) - 8f(n) = 7 \times 15^n$	Although there were some good		
b) Proposition, P_n : For all $n \ge 2$, $15^n - 8^{n-2}$ is a multiple of 7.	solutions to part(a) of this question it did		
Base case: for $n = 2$, $15^2 - 8^{2-2} = 225 - 1 = 224 = 7 \times 32$	show in many cases a lack of understanding of the theory of indices. It		
the proposition is true for $n = 2$.	was quite common to see 8×15^{n} written as a 120^{n} and $8 \times 8^{n-2}$ as 64^{n-2} . There was		
We suppose that P_k is true : for $n = k$, $f(k) = 15^k - 8^{k-2}$ is a multiple of 7.	also a lack of clarity in part (b). It was not unusual to see the first line of the inductive proof to state "Assume result true for $n = k$ i.e. that f (k) =15 ^k - 8 ^k -2 "		
Let's show that P_{k+1} is the true: let's show that $f(k+1) = 15^{k+1} - 8^{k-1}$			
is a multiple of 7.	to be followed by "f $(k+1) - 8f(k)$ is a		
According to question a) $f(k+1) = 7 \times 15^k + 8f(k)$	multiple of 7 ", showing a lack of understanding of the proof by induction in the case of multiples of integers. Some		
	candidates tried to establish the result		
7×15^k is a multiple of 7	for $n = 1$ in spite of being told that n was greater than or equal to 2. A substantial		
8f(k) is a multiple of 7, because $f(k)$ is (hypothesis)	minority of candidates ignored the hint in part (a) and in part (b) considered		
therefore $f(k+1)$ is a multiple of 7	f(k+1) - f(k) with a measure of success		
<i>Conclusion</i> : If P_k is true then P_{k+1} is also true, because P_2 is true,			
according to the induction principle, we can conclude			

that for all $n \ge 2$, P_n is true.

Question 7:	Exam report
a) Let note $z = re^{i\phi}$ then $z^6 = r^6 \times e^{i6\phi}$	
and $1 = 1e^{i0}$	
The equation $z^6 = 1$ is equivalent to	
$r^6 imes e^{i6\phi} = 1 imes e^{i0}$	
This gives $r^6 = 1$ $r = 1$	
$6\phi = 0 + k2\pi \qquad -3 < k \le 3$	
$\phi = k \frac{\pi}{3} \qquad -2 \le k \le 3$	
$so \ z = e^{-i\frac{2\pi}{3}} \ or \ e^{-i\frac{\pi}{3}} \ or \ e^{i\theta} \ or \ e^{i\frac{\pi}{3}} \ or \ e^{i\frac{2\pi}{3}} \ or \ e^{i\pi}$ $b)i) \ \frac{w^2 - 1}{w} = \frac{e^{i2\theta} - 1}{e^{i\theta}} = \frac{e^{i\theta}(e^{i\theta} - e^{-i\theta})}{e^{i\theta}} = e^{i\theta} - e^{-i\theta} = 2iSin\theta$	Although part (a) of this question was standard work it was surprising to see many candidates fail to obtain full marks. The commonest errors were either to express the six roots of $z^6 = 1$ in the form a + ib , or to give the roots in the range 0 to 2π . A
$ii)\frac{w}{w^2 - 1} = \frac{1}{2iSin\theta} = \frac{1}{2iSin\theta} \times \frac{i}{i} = -\frac{i}{2Sin\theta}$	few candidates wrote down the 6 roots as $e^{i\frac{2\pi}{3}}$ with $k = \pm 1, \pm 2, \pm 3$. In part (b), parts (i) and (iv) were often well done, but relatively few candidates spotted part (b)(ii) as the
$iii)\frac{2i}{w^2 - 1} = \frac{2i}{2iwSin\theta} = \frac{1}{e^{i\theta} \times Sin\theta} = \frac{e^{-i\theta}}{Sin\theta} = \frac{Cos\theta - iSin\theta}{Sin\theta}$	reciprocal of part (b)(i), and it was not unusual to see $rac{w}{w^2-1}$
$= \frac{Cos\theta}{Sin\theta} - i\frac{Sin\theta}{Sin\theta} = Cot\theta - i$	rewritten as $w^{-1} - w$.
$iv)z = Cot\theta - i$ so $\frac{2i}{w^2 - 1} = z$	Part (b)(iii) was beyond all but the most able candidates
$2i = zw^2 - z$	although quite a number arrived at $\frac{1}{Sin\theta e^{i\theta}}$ at which point
$z + 2i = zw^{2}$ c)i)(z+2i) ⁶ = z ⁶ is equivalent to order 5 polynomial=0	their solutions usually petered out. There was a wide variety of reasons why the equation $(z + 2i)^6 = z^6$ had only 5 roots with about 50% of them spurious.
(the terms in z^6 cancel out)	
$(12 + 2i)^{6} = z^{6}$ $\left(\frac{z+2i}{z}\right)^{6} = 1$	In part (c)(ii) only one or two candidates used the hints given in the earlier parts of the question, but instead, solved the equation $(z + 2i)^6 = z^6$ from first principles by writing
	$z + 2i = z e^{i\frac{k\pi}{3}} \text{ followed by } z = \frac{2i}{e^{i\frac{\pi}{3}} - 1}.$
$(w^{2})^{6} = 1$ So $w^{2} = e^{i\frac{\pi k}{3}}$ (question(a))	Of the few serious attempts made by candidates at this part of the question, most solutions ended at the point indicated and only the most able candidates found the five roots of the
$w = e^{i\frac{\pi k}{6}}$	equation in the required form.
This gives	
$z = \cot 0 - i , \cot \frac{\pi}{6} - i , \cot \frac{\pi}{3} - i$	
$\cot\frac{2\pi}{3}-i$, $\cot\frac{5\pi}{6}-i$	
$z = -i, \sqrt{3} - i, \frac{\sqrt{3}}{3} - i, -\frac{\sqrt{3}}{3} - i, -\sqrt{3} - i$	

Answer all questions.

1 (a) Given that

$4 \cosh^2 x = 7 \sinh x + 1$	the two possible values of sinh x .
	find the 1

(4 marks)

- (b) Hence obtain the two possible values of x, giving your answers in the form $\ln p$. (3 marks)
- **2** (a) Sketch on one diagram:

(i) the locus of points satisfying $ z - 4 + 2i = 2$;	(3 marks)
(ii) the locus of points satisfying $ z = z - 3 - 2i $.	(3 marks)
(b) Shade on your sketch the region in which	
both $ z-4+2i \leq 2$	

3 The cubic equation

$$z^3 + 2(1 - i)z^2 + 32(1 + i) = 0$$

has roots α , β and γ .

(a) It is given that α is of the form ki, where k is real. By substituting z = ki into the equation, show that k = 4.
(b) Given that β = -4, find the value of γ.

4 (a) Given that $y = \operatorname{sech} t$, show that:

(i)
$$\frac{dy}{dt} = -\operatorname{sech} t \tanh t$$
; (3 marks)
 $A_{\rm UV} > 2$

(ii)
$$\left(\frac{dt}{dt}\right) = \operatorname{sech}^2 t - \operatorname{sech}^4 t.$$
 (2 marks

(b) The diagram shows a sketch of part of the curve given parametrically by

$$x = t - \tanh t$$
 $y = \operatorname{sech} t$

The curve meets the y-axis at the point K, and P(x, y) is a general point on the curve. The arc length KP is denoted by s. Show that:

(i)
$$\left(\frac{dt}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \tanh^2 t;$$
 (4 marks)

(2 marks)

 $|z| \leqslant |z-3-2\mathbf{i}|$

and

(ii)
$$s = \ln \cosh t$$
; (3 marks)

(iii)
$$y = e^{-s}$$
. (2 marks)

(c) The arc KP is rotated through 2π radians about the x-axis. Show that the surface area generated is

$$2\pi(1-e^{-3})$$
 (4 marks)

Formulae

Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

5 (a) Prove by induction that, if n is a positive integer,

$+i\sin n\theta$ (5 marks)	(2 marks)	
$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$	(b) Find the value of $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6$.	(c) Show that

 $(\cos\theta + i\sin\theta)(1 + \cos\theta - i\sin\theta) = 1 + \cos\theta + i\sin\theta$

(3 marks)

(d) Hence show that

$$\left(1 + \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6 = 0 \qquad (4 \ marks)$$

- 6 (a) Find the three roots of $z^3 = 1$, giving the non-real roots in the form $e^{i\theta}$, where $-\pi < \theta \le \pi$. (2 marks)
 - (b) Given that ω is one of the non-real roots of $z^3 = 1$, show that

$$1 + \omega + \omega^2 = 0$$

(2 marks)

(c) By using the result in part (b), or otherwise, show that:

(i)
$$\frac{\omega}{\omega+1} = -\frac{1}{\omega};$$
 (2 marks)

(ii)
$$\frac{\omega^2}{\omega^2 + 1} = -\omega$$
; (1 mark)

(iii)
$$\left(\frac{\omega}{\omega+1}\right)^k + \left(\frac{\omega^2}{\omega^2+1}\right)^k = (-1)^k 2\cos\frac{2}{3}k\pi$$
, where k is an integer. (5 marks)

7 (a) Use the identity $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ with A = (r + 1)x and B = rx to show that

$$\tan rx \tan(r+1)x = \frac{\tan(r+1)x}{\tan x} - \frac{\tan rx}{\tan x} - 1$$
(4 marks)

$$\tan \frac{\pi}{50} \tan \frac{2\pi}{50} + \tan \frac{2\pi}{50} \tan \frac{3\pi}{50} + \dots + \tan \frac{19\pi}{50} \tan \frac{20\pi}{50} = \frac{\tan \frac{2\pi}{5}}{\tan \frac{\pi}{50}} - 20 \qquad (5 \ marks)$$

END OF QUESTIONS

	•
ž	ï
•	
÷	1
È	1
Ē	1
-	
	1
- 2	1
- 6	5
2	3
Ē	3
- U	2
- 8	
<u>،</u>	2
÷	5
- 5	
- ĝ	2
- 5	Į.
-	2
-	2
6	5
1	
- 5	
- 6	
٩	÷.
- 2	
- 5	5
- 2	1
~	5
Ű	2
4	1
T	
6	
Ε	
- 5	3
- 5	
2	3
1	1
) <u> </u>	۱

or method	acy	hod and accuracy			mis-copy	mis-read	required accuracy	further work	ignore subsequent work	from incorrect work	given benefit of doubt	work replaced by candidate	formulae book	not on scheme	graph	candidate	significant figure(s)	decimal place(s)
marks and is fo	and is for accur	s and is for met			MC	MR	RA	FW	ISW	FIW	BOD	WR	FB	NOS	Ċ	c	sf	dþ
mark is for method mark is dependent on one or more M marks and is for method	mark is dependent on M or m marks and is for accuracy	mark is independent of M or m marks and is for method and accuracy	mark is for explanation	follow through from previous	incorrect result	correct answer only	correct solution only	anything which falls within	anything which rounds to	any correct form	answer given	special case	or equivalent	2 or 1 (or 0) accuracy marks	deduct x marks for each error	no method shown	possibly implied	substantially correct approach
M m or dM	А	В	н	\checkmark or ft or F		CAO	CSO	AWFW	AWRT	ACF	AG	sc	OE	A2,1	−x EE	NMS	Id	SCA

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2				
ð	Solution	Marks	Total	Comments
1(a)	Use of $\cosh^2 x = 1 + \sinh^2 x$	IM		Must be correct for M1
	$4\sinh^2 x - 7\sinh x + 3 = 0$	A1		
	$(4\sinh x - 3)(\sinh x - 1) = 0$	$A1\checkmark$		Provided quadratic factorizes
	$\sinh x = \frac{3}{4}$ or 1	Al√	4	
(q)	Use of formula for sinh ⁻¹	IM		
	$x = \ln 2$ or $\ln \left(1 + \sqrt{2}\right)$	A1∕ A1∕	(f)	
	Total		7	
2(a)	2) 0 			
Θ	Circle Correct centre Correct radius Touching x-axis	B1 B1 B1	n	
(II)	Line Point (3, 2) indicated	B1		
	Line through $\left(\frac{1}{2}, 1\right)$	B1∕		
	Perpendicular to $(0,0) \rightarrow (3,2)$	Bl	ю	
(q)	Correct shaded area	B1	2	For shading inside the circle provided no other area is shaded
		B1∕∽		Must be a circle and a straight line for second B1
	Total		æ	

MFP2 (cont)				
0	Solution	Marks	Total	Comments
5(a)	Assume true for $n = k$ ($\cos \theta + i \sin \theta$) ^{k+1}			
	$=(\cos k\theta + i\sin k\theta)(\cos \theta + i\sin \theta)$	IM		
	Multiply out	A1		Any form
	$=\cos(k+1)\theta + i\sin(k+1)\theta$	A1		
	True for $n=1$ shown	B1		
	$P(k) \Rightarrow P(k+1) \text{ and } P(1) \text{ true}$	El	5	Allow E1 only if previous 4 marks earned
(q)		č,		
~	(6 6) 6 6 6	AI AI	2	
(c)	(c) $(\cos \theta + i\sin \theta)(1 + \cos \theta - i\sin \theta)$	MI		
	$=\cos\theta+\cos^2\theta-i\sin\theta\cos\theta$			
	$+i\sin\theta+i\sin\theta\cos\theta+\sin^2\theta$	A1		(Accept $-i^2 \sin^2 \theta$)
				Or $e^{i\theta}(1+e^{-i\theta})$
	$= 1 + \cos \theta + i \sin \theta$	A1	ю	AG
(p)	$\theta = \frac{\pi}{\xi}$ used	MI		In the context of part (c)
	Part (c) raised to power 6	IM		
	Use of result in part (b)	A1		
	$\left(1+\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)^{6}+$			
	$\left(1+\cos\frac{\pi}{6}-i\sin\frac{\pi}{6}\right)^6=0$	Al	4	AG
	Total		14	

MFP2 (cont)	(
δ	Solution	Marks	Total	Comments
3(a)	$-k^{3}\mathbf{i} + 2(1-\mathbf{i})(-k^{2}) + 32(1+\mathbf{i}) = 0$	IM		Any form
	Equate real and imaginary parts:			
	$-k^3 + 2k^2 + 32 = 0$	AI		
	$-2k^2 + 32 = 0$	Al		
_	$k = \pm 4$	Al		
	k = +4	El	5	AG
र्		μ		$\bigcirc \dots \sim B_{ii-1} = (33, 33i)$
(a)	Sum of roots is $-2(1-1)$	IW		Of $\alpha\beta\gamma = -(52+5\Delta)$ Must he correct for M1
	Third root 2–2i	A1∕≻	2	
	Total			
4(a)(j)	$\frac{d}{dt}\left(\frac{1}{\cosh t}\right) = -1(\cosh t)^{-2}\sinh t$	M1A1		Or $\frac{-2(e^{t}-e^{-t})}{(e^{t}+e^{-t})^{2}}$
	$=-\operatorname{sech} t \tanh t$	Al	т	AG
(ii)	Use of $\tanh^2 t = 1 - \operatorname{sech}^2 t$	M1		
	Printed result	Al	2	
(j)(q)		B1		
	$\dot{x}^{2} + \dot{y}^{2} = (1 - \operatorname{sech}^{2} t)^{2} + \operatorname{sech}^{2} t - \operatorname{sech}^{4} t$	M1A1		Any form
	$=1-\operatorname{sech}^2 t=\tanh^2 t$	Al	4	AG
(ii)	$s = \int_0^t \tanh t \mathrm{d}t$	M1		Ignore limits for M1 and first A1
	$= \left[\ln \cosh t \right]_0^t$	$\mathbf{A1}$		
	= ln cosht	Al	ŝ	AG
(III)	$e^s = \cosh t$	M1		
	$y = e^{-s}$	A1	2	AG
(c)	$S = 2\pi \int_0^t \operatorname{sech} t \tanh t dt$	MI		Ignore limits for M1 and first A1
	$=2\pi \left[-\mathrm{sech}t ight]_{0}^{t}$	Al		
	$= 2\pi(1-\operatorname{sech} t)$	A1		
	$=2\pi(1-e^{-s})$	A1	4	AG
	Total		18	

MFP2 (cont)	()			
0	Solution	Marks	Total	Comments
7(a)	$\tan((r+1)x-r)$			
	$= \frac{\tan(r+1)x - \tan rx}{2}$	1 A 1 A 1		
	$1 + \tan(r+1)x \tan rx$	TVIIM		
	Multiplying up	A1	V	
		R	t	
(q)	$x = \frac{\pi}{20}$			
	Ļ			
	$\tan \frac{\pi}{50} \tan \frac{2\pi}{50} = \frac{\tan \frac{2\pi}{50}}{\tan \frac{\pi}{50}} - \frac{\tan \frac{\pi}{50}}{\tan \frac{\pi}{50}} - 1$			
	$\tan \frac{2\pi}{50}\tan \frac{3\pi}{50} = \frac{\tan \frac{3\pi}{50}}{\tan \frac{\pi}{50}} - \frac{\tan \frac{2\pi}{50}}{\tan \frac{\pi}{50}} - 1$	MIA1		At least three lines to be shown Accept if X 's used
	$\tan\frac{19\pi}{50}\tan\frac{20\pi}{50} = \frac{\tan\frac{20\pi}{50}}{\tan\frac{\pi}{50}} - \frac{\tan\frac{19\pi}{50}}{\tan\frac{\pi}{50}} - 1$			
		m1		
	$Sum = \frac{\tan \frac{20\pi}{50}}{\tan \frac{\pi}{50}} - \frac{\tan \frac{\pi}{20}}{\tan \frac{\pi}{50}} - 19$	A1		
	ا در			
	$=\frac{1}{\tan \frac{\pi}{50}}-20$	Al	S	AG
	Total		6	
	TOTAL		75	

AQA – Further pure 2 – Jan 2007 – Answers

Question 1:	Exam report
$a) 4Cosh^2 x = 7Sinh x + 1$	•
Using $\cosh^2 x - Sinh^2 x = 1$,	
The equation becomes	
$4(\sinh^2 x + 1) = 7 \sinh x + 1$	
$4 \operatorname{Sinh}^2 x - 7 \operatorname{Sinh} x + 3 = 0$	Apart from a few candidates who factorised the quadratic in
(4Sinh x - 3)(Sinh x - 1) = 0	sinh x incorrectly, most candidates worked part (a) correctly. However, many candidates spent more time on part (b) than
$Sinh x = \frac{3}{4} or Sinh x = 1$	was necessary. They expressed sinh x in exponential form
$\frac{5}{4}$	and solved the ensuing quadratic equations rather than quote the formula for sinh ⁻¹ x given in the formulae booklet
b) $x = Sinh^{-1}(\frac{3}{4}) = \ln\left(\frac{3}{4} + \sqrt{\left(\frac{3}{4}\right)^2 + 1}\right)$	which they were entitled to do. This method also led to superfluous incorrect solutions which candidates needed to reject
$=\ln\left(\frac{3+\sqrt{25}}{4}\right)=\ln\left(2\right)$	
or $x = Sinh^{-1}(1) = \ln(1 + \sqrt{1^2 + 1}) = \ln(1 + \sqrt{2})$	
Question 2:	Exam report
a)i) Let $z_4 = 4 - 2i$ and $A(4, -2)$	
The point M represents z in the Argand diagram.	
z-4+2i =2	
$ z-z_A =2$ is equivalent to $AM=2$	
The locus of M is the circle centre $A(4, -2)$ radius $r = 2$	
<i>ii</i>) Let $z_{B} = 3 + 2i$ and $B(3,2)$	
z = z - 3 - 2i	
$ z - z_o = z - z_B $ is equivalent to	
OM=BM	A few candidates misplotted the centre of the circle, usually
The locus of M is the prependicular bisector of OB.	at (.4, 2). Apart from this most drew the circle correctly. Not
b) $ z-4+2i \le 2$ is "inside" the circle	all recognised the line as the perpendicular bisector of the line joining the origin to the point (3, 2) in part (b), but
$ z \le z-3-2i $ is the "half-plane" containing O.	rather thought that this equation represented another
	circle. This in turn had an effect on the shading in part (c) although the interior of the circle was usually shaded. It
2-	should be said that the diagrams were neat and in the main
1	well labelled and in proportion; a great improvement on sketches submitted in previous years.
-1- -2-	
3	

Question 3:	Exam report
a) $z^{3} + 2(1-i)z^{2} + 32(1+i) = 0$ has roots α, β, γ	
$\alpha = ki so$	
$(ki)^{3} + 2(1-i)(ki)^{2} + 32 + 32i = 0$	Although this question was attempted by almost every
$-ik^3 - 2k^2 + 2ik^2 + 32 + 32i = 0$	candidate, there were few whose solutions presented the
$(-2k^2+32)+i(-k^3+2k^2+32)=0$	rigour required. Most substituted k if or z in the cubic equation, equated real parts and subsequently wrote $z^2 = 16$
This gives	so $z = 4$, not realising that $z = -4$ was also a root of $z^2 = 16$
$-2k^2+32=0$	and that imaginary parts had to be equated in order to reject the solution $z = 4$.
and $-k^3 + 2k^2 + 32 = 0$	Part (b) was not particularly well answered either. The most
The first equation gives $k = 4$ or $k = -4$	common errors were errors of sign in the use of $\alpha + \beta + \gamma$ or
$-(-4)^3 + 2 \times (-4)^2 + 32 = 64 + 32 + 32 = 128 k \neq -4$	$\alpha\beta\gamma$, and those candidates using the product of the roots made extra work for themselves as they obtained a rational
$-(4)^3 + 2 \times (4)^2 + 32 = -64 + 32 + 32 = 0 k = 4$	expression for γ which needed to be simplified.
b) $\alpha = 4i, \beta = -4$ and we know that	Some candidates thought that γ equalled -4i , the complex conjugate of α .
$\alpha + \beta + \gamma = -2(1-i)$	
$4i - 4 + \gamma = -2 + 2i$	
$\gamma = 2 - 2i$	

0	ue	sti	on	Δ:
<u> </u>	C C	30	U 11	_

Question 4:Exam reporta)
$$y = Secht = \frac{1}{Cosht}$$
i) $\frac{dy}{dx} = -\frac{1}{Cosht}$ (if $y = \frac{1}{f}$ then $\frac{dy}{dx} = -\frac{f'}{f^2}$)Generally, candidates scored quite
well on this question. Some
candidates struggled with part (a)(i)
by not realising that
sech t x cosht x cosht

Question 4: continues	Exam report
c) $S_x = 2\pi \int_0^t y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = 2\pi \int_0^t \operatorname{Sech} t \times \operatorname{Tanh} t dt$	Part(c) caused problems, often by candidates attempting to integrate e^{-s} tanh <i>t</i> with respect to <i>t</i> by regarding e^{-s} either as a constant or else as e^{-t} Of those who
$S_x = 2\pi \int_0^t \frac{\sinh t}{\cosh^2 t} dt = 2\pi \int_0^t \sinh t \times \cosh^{-2}t dt = 2\pi \left[-\cosh^{-t}t\right]_0^t$	correctly integrated to arrive at .secht , again very few candidates recognised the
$S_{x} = 2\pi \left(-Secht + 1\right) = 2\pi (1 + e^{-s}) because \ Secht = e^{-s} \left(Qb\right)iii\right)$	need for limits and so were unable to arrive at the printed result.
Question 5:	Exam report
<i>a</i>) Proposition, P _n :	
for all <i>n</i> positive integer, $(Cos\theta + iSin\theta)^n = Cos(n\theta) + iSin(n\theta)$	
<i>is</i> to be proven by induction	
Base case: $n = 1$, $(Cos\theta + iSin\theta)^1 = Cos(\theta) + iSin(\theta)$	
$Cos(1\theta) + i sin(1\theta) = Cos(\theta) + i sin(\theta)$	
P_1 is true	
We suppose that for n=k, the proposition is true	
$(Cos\theta + iSin\theta)^k = Cos(k\theta) + iSin(k\theta)$	
Let's show that P_{k+1} is true,	
let's show that $(Cos\theta + iSin\theta)^{k+1} = Cos((k+1)\theta) + iSin((k+1)\theta)$	It was clear that a good number of candidates had not met the proof of de Moivre's Theorem by
$(Cos\theta + iSin\theta)^{k+1} = (Cos\theta + iSin\theta)^k \times (Cos\theta + iSin\theta)$	induction before and there were not many solutions gaining full
$= (Cos(k\theta) + iSin(k\theta))(Cos\theta + iSin\theta)$	marks. It was also not uncommon to see expressions
$= \left[Cos(k\theta)Cos\theta - Sin(k\theta)Sin\theta \right] + i \left[Cos(k\theta)Sin\theta + Sin(k\theta)Cos\theta \right]$	$ps\theta$ such as
using the trig identities: $Cos(a+b) = Cos(a)Cos(b) - Sin(a)Sin(b)$	$\cos k\theta + i \sin k\theta + \cos\theta + i \sin\theta = \cos(k+1)\theta + i \sin(k+1)\theta$
and $Sin(a+b) = Sin(a)Cos(b) + Sin(b)Cos(a)$	
we have:	
$(Cos\theta + iSin\theta)^{k+1} = Cos(k\theta + \theta) + iSin(k\theta + \theta) = Cos((k+1)\theta) + iSin(k\theta + \theta) = Cos(k+1)\theta + iSin(k+1)\theta + iSin$	$((k+1)\theta)$
Conclusion :	
If P_k is true then P_{k+1} is true, because P_1 is true	
we can conclude, according to the induction principle,	
that P_n is true for all n positive integer	

Question 5:continues	Exam report
$b) \left(\cos \frac{\pi}{6} + i\sin \frac{\pi}{6} \right)^{6} = \cos \frac{6\pi}{6} + i\sin \frac{6\pi}{6} = \cos \pi + i\sin \pi = -1$ $c) (\cos \theta + i\sin \theta) (1 + \cos \theta - i\sin \theta) =$ $(\cos \theta + i\sin \theta) + (\cos \theta + i\sin \theta) (\cos \theta - i\sin \theta) =$ $(\cos \theta + i\sin \theta) + \cos^{2}\theta + \sin^{2}\theta = \cos \theta + i\sin \theta + 1$ $d) (1 + \cos \frac{\pi}{6} + i\sin \frac{\pi}{6})^{6} + (1 + \cos \frac{\pi}{6} - i\sin \frac{\pi}{6})^{6} =$ $\left((\cos \frac{\pi}{6} + i\sin \frac{\pi}{6})(1 + \cos \frac{\pi}{6} - i\sin \frac{\pi}{6}) \right)^{6} + (1 + \cos \frac{\pi}{6} - i\sin \frac{\pi}{6})^{6} =$ $(\cos \frac{\pi}{6} + i\sin \frac{\pi}{6})^{6} \left(1 + \cos \frac{\pi}{6} - i\sin \frac{\pi}{6} \right)^{6} + (1 + \cos \frac{\pi}{6} - i\sin \frac{\pi}{6})^{6} =$ $-1 \times \left(1 + \cos \frac{\pi}{6} - i\sin \frac{\pi}{6} \right)^{6} + (1 + \cos \frac{\pi}{6} - i\sin \frac{\pi}{6})^{6} = 0$	Parts (b) and (c) were generally well done, although in part (c) a number of candidates, when multiplying i sin θ by .i sin θ , wrote .i sin ² θ and thus were unable to complete this part satisfactorily. Those candidates who spotted the connection between parts (c) and (d) usually went on to write out a correct solution to part (d), but it was disappointing to see $\left(1+Cos\frac{\pi}{6}+iSin\frac{\pi}{6}\right)^{6}$ written as $1^{6}+Cos\frac{6\pi}{6}+iSin\frac{6\pi}{6}$ with alarming regularity.

Question 6:

a) $z^{3} = 1$ we write $z = re^{i\theta}$ and $1 = 1e^{i0}$ $z^{3} = 1$ becomes $r^{3}e^{i3\theta} = 1e^{i0}$ r = 1 and $3\theta = 0 + k2\pi$ r = 1 and $\theta = k\frac{2\pi}{3}$ k = -1, 0, 1 $z = e^{-i\frac{2\pi}{3}}$ or $z = 1 = e^{i0}$ or $z = e^{i\frac{2\pi}{3}}$ b) we can note $e^{i\frac{2\pi}{3}} = \omega$ $1 + \omega + \omega^{2}$ is the sum of a geometric series with common ratio $\omega (\omega \neq 1)$ $1 + \omega + \omega^{2} = \frac{1 - \omega^{3}}{1 - \omega} = \frac{1 - 1}{1 - \omega} = 0$ $c)(i) + \omega + \omega^{2} = 0$ $\omega^{2} = -(1 + \omega)$ $\frac{\omega^{2}}{1 + \omega} = -1$ $\frac{\omega}{1 + \omega} = -\frac{1}{\omega}$ $ii) \frac{\omega}{1 + \omega} = -\frac{1}{\omega}$ $\frac{-1 - \omega^{2}}{-\omega^{2}} = -\frac{1}{\omega}$ $\frac{1 + \omega^{2}}{\omega^{2}} = -\frac{1}{\omega}$ $\frac{\omega^{2}}{1 + \omega^{2}} = -\omega$

It was disappointing to find many candidates unsure of the cube roots of unity and even more unsure of how to obtain them. It was also disappointing to note that few candidates were able to establish the result $1+\omega +\omega^2 = 0$ in part (b), in spite of the variety of ways in which this result could be established. On the whole, parts (c)(i) and (c)(ii) were correctly done in spite of using roundabout methods to obtain the printed results.

Exam report

Question 6:continues	Exam report
$iii)\left(\frac{\omega}{1+\omega}\right)^{k} + \left(\frac{\omega^{2}}{\omega^{2}+1}\right)^{k} = \left(-\frac{1}{\omega}\right)^{k} + \left(-\omega\right)^{k}$	
$= \left(-e^{-i\frac{2\pi}{3}}\right)^{k} + \left(-e^{i\frac{2\pi}{3}}\right)^{k}$ $= (-1)^{k} e^{-i\frac{2k\pi}{3}} + (-1)^{k} e^{i\frac{2k\pi}{3}}$ $= (-1)^{k} \left(e^{i\frac{2k\pi}{3}} + e^{-i\frac{2k\pi}{3}}\right)$ $= (-1)^{k} \cos(\frac{2k\pi}{3})$	In part (c)(iii), however, most solutions ended at $\left(-\frac{1}{\omega}\right)^k + (-\omega)^k$, but of those candidates who attempted this part further, sign errors hindered completely correct solutions.

a) $Tan(A-B) = Tan((r+1)x - rx) = Tan(x)$ This question was surprisingly well done a attracted many complet correct solutions. When errors occurred, it was usually in the summation terms in part (b). Candid summed 20 terms inste 19 which in turn led to so faking in arriving at the printed answer, especial the .20. For instance it was $a) Tan(A-B) = Tan((r+1)x) - rx) = Tan(x)$ This question was surprisingly well done a attracted many complet correct solutions. When errors occurred, it was usually in the summation terms in part (b). Candid summed 20 terms inste 19 which in turn led to so faking in arriving at the printed answer, especial the .20. For instance it was	ely n of lates ad of
and $Tan((r+1)x - rx) = \frac{Tan((r+1)x) - Tan(rx)}{1 + Tan((r+1)x)Tan(rx)}$ So $Tan x = \frac{Tan((r+1)x) - Tan(rx)}{1 - Tan((r+1)x)Tan(rx)}$ $1 + Tan((r+1)x)Tan(rx) = \frac{Tan((r+1)x) - Tan(rx)}{Tan x}$ attracted many complete correct solutions. When errors occurred, it was usually in the summation terms in part (b). Candid terms in terms in part (b). Candid terms in terms	ely n of lates ad of
So $Tan x = \frac{Tan((r+1)x) - Tan(rx)}{1 - Tan((r+1)x)Tan(rx)}$ $1 + Tan((r+1)x)Tan(rx) = \frac{Tan((r+1)x) - Tan(rx)}{Tan x}$ errors occurred, it was usually in the summation terms in part (b). Candid summed 20 terms inster 19 which in turn led to so faking in arriving at the	n of lates ad of
So $Tan x = \frac{Tan((r+1)x) - Tan(rx)}{1 - Tan((r+1)x)Tan(rx)}$ $1 + Tan((r+1)x)Tan(rx) = \frac{Tan((r+1)x) - Tan(rx)}{Tan x}$ errors occurred, it was usually in the summation terms in part (b). Candid summed 20 terms inster 19 which in turn led to so faking in arriving at the	n of lates ad of
So $Tan x = \frac{Tan((r+1)x) - Tan(rx)}{1 - Tan((r+1)x)Tan(rx)}$ $1 + Tan((r+1)x)Tan(rx) = \frac{Tan((r+1)x) - Tan(rx)}{Tan x}$ usually in the summation terms in part (b). Candid summed 20 terms instered to summed 20 terms in the summation terms in part (b).	lates ad of
$1 + Tan((r+1)x)Tan(rx) = \frac{Tan((r+1)x) - Tan(rx)}{Tan x}$ $1 + Tan((r+1)x)Tan(rx) = \frac{Tan((r+1)x) - Tan(rx)}{Tan x}$ $1 + Tan(rx) = \frac{Tan(rx) - Tan(rx)}{Tan x}$	ad of
Taking in arriving at the	
Taking in arriving at the	ome
Taking in arriving at the	
$Tan((r+1)x)Tan(rx) = \frac{Tan((r+1)x)}{2} - \frac{Tan(rx)}{2} - 1$	II. <i>.</i>
	•
<i>Tan x Tan x</i> the .20. For instance it w not uncommon to see t	
$b)Tan\frac{\pi}{50}Tan\frac{2\pi}{50} + Tan\frac{2\pi}{50}Tan\frac{3\pi}{50} + \dots + Tan\frac{19\pi}{50}Tan\frac{20\pi}{50}$	
$\int \frac{1}{50} \pi n \frac{1}{50} \frac{1}{50} \pi n \frac{1}{50} \frac{1}{50} \pi n \frac{1}{50} \frac{1}{$	
$= \sum_{i=1}^{19} Tan(r\frac{\pi}{50})Tan((r+1)\frac{\pi}{50}) = \sum_{i=1}^{19} \frac{Tan((r+1)\frac{\pi}{50})}{\pi} - \frac{Tan(r\frac{\pi}{50})}{\pi} - 1 \qquad \qquad$	20
$=\sum_{r=1}^{19} Tan(r\frac{\pi}{50})Tan((r+1)\frac{\pi}{50}) = \sum_{r=1}^{19} \frac{Tan((r+1)\frac{\pi}{50})}{Tan\frac{\pi}{50}} - \frac{Tan(r\frac{\pi}{50})}{Tan\frac{\pi}{50}} - 1$ $\begin{bmatrix} \frac{50}{50} & \frac{50}{50} - \frac{1}{Tan(\frac{\pi}{50})} \\ followed by the correct \end{bmatrix}$	20
$=\sum_{r} Tan(r-\frac{1}{50})Tan((r+1)\frac{1}{50}) = \sum_{r} \frac{30}{-\pi} - \frac{30}{-\pi} - \frac{1}{-\pi}$	
$r=1$ $Tan\frac{\pi}{50}$ $Tan\frac{\pi}{50}$ followed by the correct	
answer.	
$=\frac{Tan(\frac{2\pi}{50})}{Tan\frac{\pi}{50}} - \frac{Tan(\frac{\pi}{50})}{Tan\frac{\pi}{50}} - 1 + \frac{Tan(\frac{3\pi}{50})}{Tan\frac{\pi}{50}} - \frac{Tan(\frac{2\pi}{50})}{Tan\frac{\pi}{50}} - 1 + \frac{Tan(\frac{4\pi}{50})}{Tan\frac{\pi}{50}} - \frac{Tan(\frac{3\pi}{50})}{Tan\frac{\pi}{50}} - 1$	
$= -\frac{50'}{50'} - \frac{50'}{1+} - \frac{50'}{50'} - 1 + \frac{50'}{50'} - 1 + \frac{50'}{50'} - 1$	
$Van\frac{\pi}{2}$ $Tan\frac{\pi}{2}$ $Van\frac{\pi}{2}$ $Tan\frac{\pi}{2}$ $Tan\frac{\pi}{2}$	
50 50 50 50 50 50 50 50 50 50 50 50 50 5	
-19π -18π -19π	
$++\frac{Tan(\frac{19\pi}{50})}{Tan\frac{\pi}{50}} - \frac{Tan(\frac{18\pi}{50})}{Tan\frac{\pi}{50}} - 1 + \frac{Tan(\frac{20\pi}{50})}{Tan\frac{\pi}{50}} - \frac{Tan(\frac{19\pi}{50})}{Tan\frac{\pi}{50}} - 1$	
$++\frac{50}{\pi}-\frac{50}{\pi}-1+\frac{50}{\pi}-\frac{50}{\pi}-1$	
$Tan\frac{\pi}{50}$ $Tan\frac{\pi}{50}$ $Tan\frac{\pi}{50}$	
$Tan(\frac{\pi}{2})$ $Tan(\frac{20\pi}{2})$	
all the terms cancel except $-\frac{100}{50} + \frac{50}{50} - 1 - 1 - 1 - 1 - 1 - 1$	
$Tan\frac{\pi}{2}$ $Tan\frac{\pi}{2}$	
all the terms cancel except $-\frac{Tan(\frac{\pi}{50})}{Tan\frac{\pi}{50}} + \frac{Tan(\frac{20\pi}{50})}{Tan\frac{\pi}{50}} - 1 - 1 - 1 - 1 - 1 - 1$	
$T_{au}(20\pi)$ $T_{au}(2\pi)$	
$-1 + \frac{100}{50} + 10 - \frac{100}{5} + 20$	
$= -1 + \frac{Tan(\frac{20\pi}{50})}{Tan\frac{\pi}{50}} - 19 = \frac{Tan(\frac{2\pi}{5})}{Tan\frac{\pi}{50}} - 20$	
$1an\frac{50}{50}$	

Component Code Component Title MFP2 MATHEMATICS UNIT MFP2 MaximumScaled Mark Grade BoundariesScaled MarkABCDE756153453729

K A C V	1 (a) Given that $f(r) = (r-1)r^2$, show that
A A A	$\mathbf{f}(r+1) - \mathbf{f}(r) = r(3r+1)$
MFP2 ASSESSMENT TO ASSESSMENT TO A MERCINE AND A MERCINE A	(b) Use the method of differences to find the value of
ALLIANCE	$\sum_{r=50}^{99} r(3r+1)$
	2 The cubic equation
ź	$z^3 + pz^2 + 6z + q = 0$
	has roots α , β and γ .
	(a) Write down the value of $\alpha\beta + \beta\gamma + \gamma\alpha$.
t should only be used for drawing. vour answer book The <i>Evamining Rody</i> for this	(b) Given that p and q are real and that $\alpha^2 + \beta^2 + \gamma^2 = -12$:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Tuesday 26 June 2007 1.30 pm to 3.00 pm

MATHEMATICS Unit Further Pure 2

For this paper you must have:

an 8-page answer book

General Certificate of Education Advanced Level Examination

June 2007

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
 Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
 Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

(3 marks)

(4 marks)

- (1 mark)
- 4 |--|+ ام + ale LIAL P TIPATE 9
- (2 marks) explain why the cubic equation has two non-real roots and one real root; Ξ

(3 marks) (2 marks) (i) the other two roots; (ii) the value of q.

Find:

3 Use De Moivre's Theorem to find the smallest positive angle θ for which

(5 marks) $(\cos \theta + i \sin \theta)^{15} = -i$ Formulae

Roots

Complex numbers

De Moivre theorem

Proof by induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

0

(b) Show that

6 (a) Show that

(b) On a single copy of the diagram, draw:

(a) Explain why $z_2 = iz_1$.

$$-\frac{1}{(k+1)^2} \times \frac{k+1}{2k} = \frac{k+2}{2(k+1)}$$
 (3 marks)

END OF QUESTIONS

(b) Prove by induction that for all integers $n \ge 2$

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$$
 (4 marks)

MFP2 (cont)			•	
ð	Solution	Marks	Total	Comments
4(a)	$\frac{x}{1+x^2} + \tan^{-1} x$	BIBI	2	
(q)	$\int_0^1 \tan^{-1} x dx = \left[x \tan^{-1} x \right]_0^1 - \int_0^1 \frac{x dx}{1 + x^2}$	IMI		either use of part (a) or integration by parts. Allow if sign error
	$\int \frac{xdx}{1+x^2} = \frac{1}{2}\ln\left(1+x^2\right)$	MIAIF		fit on $\int \frac{x}{1-x^2} dx$
	$I = 1 \tan^{-1} 1 - \frac{1}{2} \ln 2$	MI		
	$=\frac{\pi}{4}-\ln\sqrt{2}$	$\mathbf{A1}$	5	AG
	Total		7	
5(a)	Explanation	E2,1,0	2	E1 for $i = e^2$ or $iz_1 = -y_1 + iy_1$
(I)(q)	(b)(i) Perpendicular bisector of AB through O	B1 B1	2	
(ii)		BI		If L_2 is taken to be the line AB give B0
	from <i>B</i> parallel to <i>OA</i>	BI	ю	
(c)	$(1+i)$ z_1	M1A1	2	ft if L_2 taken as line AB
	Total		6	
6(a)	$\left(1 - \frac{1}{(k+1)^2}\right) \times \frac{k+1}{2k} = \frac{(k+1)^2 - 1}{(k+1)^2} \times \frac{k+1}{2k}$	IM		
	$=\frac{k^2 + 2k}{(k+1)^2} \times \frac{k+1}{2k}$	A1		
	$=\frac{k+2}{2(k+1)}$	$\mathbf{A1}$	б	AG
(q)	Assume true for $n = k$, then			
	$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{(k+1)^2}\right)$	IM		
	$=\frac{k+2}{2(k+1)}$	A1		
	True for $n = 2$ shown $1 - \frac{1}{2^2} = \frac{3}{4}$	B1		
		El	4	only if the other 3 marks earned
	Total		~	

-	I OLAI COMMENTS		any expanded form	3 AG	OE	clearly shown. Accept $\sum_{1}^{99} -\sum_{1}^{49}$	clear cancellation	4 cao	7	1		7	A1 for numerical values inserted		4 cao			M0 if $\sum \alpha^2$ used unless the root 2 is checked	3 incorrect \mathcal{D}^{\wedge}		2 It incorrect 3 rd root	12	or $=e^{15i\theta}$;	or $-i = e^{\frac{2\pi i}{2}}$	m1 for both R&I parts written down	ft provided the value of 15θ is a correct		or for $\cos 15\theta = 0$	(3)	
-	Marks	MI	Al	Al		MIAI	ml	A1F		B1	El	ΕI	MIAI	A1F	AIF	B1		MI	A1F	M1	A1F		MI		mlAl	A1F	AIF		(IMI) (B1)	(B1)	
	DOIUUIOR	f(r+1) - f(r)	$=r(r^{2}+2r+1-r^{2}+r)$	=r(3r+1)	r = 50	$ \begin{array}{ccc} r = 51 & f(52) - f(51) \\ r = 99 & f(100) - f(99) \end{array} $	$\sum_{r=1}^{99} r(3r+1) = f(100) - f(50)$	= 867500	Total	$\sum \alpha \beta = 6$	Sum of squares < 0.: not all real			$(\sum \alpha)^2 = 0$			Use of appropriate relationship	$\operatorname{eg} \sum \alpha = 0$	Third root 2	q = -(-1-3i)(-1+3i)2	= -20	Total	$(\cos\theta + i\sin\theta)^{15} = \cos 15\theta + i\sin 15\theta$	$\cos 15\theta = 0$	$\sin 15\theta = -1$	$15\theta = \frac{3\pi}{2}$ or 270°	$\theta = \frac{\pi}{10}$ or 18°	SC	$\cos 15\theta = -1$	$\theta = \frac{\pi}{10}$	01
MFP2	2	1(a)			(q)					2(a)	(i)(q)	1	(j)			(c)(j)				(ii)			3								

8(a)(i) $z^3 = \frac{4}{2}$ = 2: (ii) 2+2i	$z^{3} = \frac{4\pm\sqrt{16-32}}{2}$ = 2 \pm 2i			
=2: (ii) 2+2i:	± 2i _	IM		
(ii) 2+2i:		A1	2	AG
	$2+2i=2\sqrt{2}e^{\frac{\pi i}{4}}, 2-2i=2\sqrt{2}e^{\frac{-\pi i}{4}}$	MI AIAI		M1 for either result or for one of $r = 2\sqrt{2}$, $\theta = \pm \frac{\pi}{4}$
				$\left(r=2\sqrt{2} \text{ AI}, \theta=\pm\frac{\pi}{4} \text{ AI}\right)$
$z=\sqrt{2}$	$z = \sqrt{2}e^{12} + \frac{2k\pi i}{3}$ or $\sqrt{2}e^{12} + \frac{2k\pi i}{3}$	MI		M1 for either
$z = \sqrt{2}$		A2,1,0 F	9	allow A1 for any 3 correct fit errors in $\pm \frac{\pi}{4}$
(b) Multip Use of	(b) Multiplication of brackets Use of $e^{i\theta} + e^{-i\theta} = 2\cos\theta$	MI A1	5	AG
(c) $\left(\frac{z-\sqrt{z}}{z-\sqrt{z}} \right)$	$z - \sqrt{2}e^{\frac{\pi i}{2}} \left[z - \sqrt{2}e^{\frac{\pi i}{12}} \right]$			
	$=z^2-2\sqrt{2}\cos\frac{\pi}{12}z+2$	MIAIF		Ы
	$\left(z^2 - 2\sqrt{2}\cos\frac{\pi}{12}z + 2\right)$			
Product is	t is $\left(z^2 - 2\sqrt{2}\cos\frac{7\pi}{12}z + 2\right)$ $\left(z^2 - 2\sqrt{2}\cos\frac{3\pi}{2}z + 2\right)$	AIF	б	$\left(\text{or } z^2 + 2z + 2 \right)$
	(+) Total		13	
	TOTAL		35	

AQA – Further pure 2 – Jun 2007 – Answers

	Exam report
a) $f(r) = (r-1)r^{2}$ $f(r+1) - f(r) = r(r+1)^{2} - (r-1)r^{2}$ $= r[(r+1)^{2} - r(r-1)]$ $= r[r^{2} + 2r + 1 - r^{2} + r]$ = r(3r+1) b) $\sum_{r=50}^{99} r(3r+1) = \sum_{r=50}^{99} f(r+1) - f(r) = f(51) - f(50)$ + f(52) - f(51) + f(52) - f(52) $+ \dots + f(92) - f(98)$ + f(100) - f(92) All the terms cancel except $f(100) - f(50) = 99 \times 100^{2} - 49 \times 50^{2}$ $\sum_{r=50}^{99} r(3r+1) = 867500$	Exam report Almost all candidates were successful with part (a) However, in part (b) a number of candidates used $\sum r^2$ and $\sum r$ to evaluate $\sum_{r=1}^{99} r(3r+1)$ contrary to the requirement of the question and so, even with a correct answer, scored no marks. The most successful candidates for this part of the question were those who carefully wrote out a number of rows including the first and last row, to illustrate the cancellations. Some candidates went awry when writing down the first or last terms of the series.

Question 2:	Exam report
$a)\alpha\beta + \beta\gamma + \alpha\gamma = 6$	Whilst part (a) was usually correctly
$b(i)\alpha^{2} + \beta^{2} + \gamma^{2} = -12 < 0$	done, part (b)(i) was poorly answered.
This can only happens if one of the root is not a real number	Some candidates were able to comment on the condition that as the
so if α is a complex number, then $\beta = \alpha^*$ because p and q are real numbers	sum of the squares of the roots was less
and γ is real	than zero there would have to be complex roots, but few stated the
(because otherwise γ^* would be a root too, making 4 roots instead of the expected 3)	conditions that the coefficients of the
$ii)\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$	cubic equation were all real. The value
	of <i>p</i> in part (b)(ii) was very often correct
$-12 \qquad = (\alpha + \beta + \gamma)^2 - 2 \times 6$	but in part (c)(i) a very common error as $\sum_{i=1}^{n} a_{i}^{2}$
$-12 = (\alpha + \beta + \gamma)^2 - 12 \qquad \alpha + \beta + \gamma = 0$	to use $\sum lpha^2$ = -12 in order to find the
So $p = -(\alpha + \beta + \gamma) = 0$ $p = 0$	third root. This method led to $\alpha^2 = 4$
	from which almost all candidates using
c) $\alpha = -1 + 3i$ $\beta = \alpha^* = -1 - 3i$	this method wrote α =2 without even
$\alpha + \beta + \gamma = 0$	considering the possibility that α could
$-1+3i-1-3i+\gamma = 0$ $\gamma = 2$	equal -2 . Part (c)(ii) was usually worked
	correctly although $\alpha\beta\gamma = +q$ appeared
$ii) q = -\alpha\beta\gamma = -(-1+3i)(-1-3i)(2) = -2(1+9) = -20$	from time to time.

Question 3:	Exam report
$(Cos\theta + iSin\theta)^{15} = Cos(15\theta) + iSin(15\theta) = 0 - i$ $Cos(15\theta) = 0 and Sin(15\theta) = -1$ $so 15\theta = \frac{3\pi}{2} \qquad \theta = \frac{3\pi}{30} = \frac{\pi}{10}$	There were many incomplete solutions to this question. Whilst most candidates used the de Moivre's Theorem correctly, many candidates either equated real parts only to arrive at an incorrect answer, or equated imaginary parts. In this latter case, the solution $\theta = -\frac{\pi}{30}$ appeared frequently in spite of the request in the question that θ should be positive, or the correct answer appeared but from an incomplete solution. Some candidates solved $\cos\theta = 0$ and $\sin\theta = -1$ but gave two different values of θ as their answer, one from each equation.

Question 4 :	Exam report
$a) y = xTan^{-1}x \qquad \frac{dy}{dx} = 1 \times Tan^{-1}x + x \times \frac{1}{1+x^2}$ $\frac{dy}{dx} = Tan^{-1}x + \frac{x}{1+x^2}$ $b) \int_0^1 Tan^{-1}x dx = \int_0^1 (Tan^{-1}x + \frac{x}{1+x^2}) - \frac{x}{1+x^2} dx$ $= \left[xTan^{-1}x \right]_0^1 - \int_0^1 \frac{x}{1+x^2} dx$ $= Tan^{-1}1 - \left[\frac{1}{2} \ln(1+x^2) \right]_0^1$ $= \frac{\pi}{4} - \frac{1}{2} \ln 2 = \frac{\pi}{4} - \ln \sqrt{2}$	This is the first time that a question has been set on inverse trigonometrical functions since this topic was included in the MFP2 specification. It was clear that many candidates did not know what tan.1x was. They were able to complete part (a) with the help of the formulae booklet although even then there was confusion between the derivatives of tan ⁻¹ and tanh ⁻¹ x as the derivative of tan ⁻¹ was given as $\frac{1}{1-x^2}$. However it was part (b) that revealed the true lack of understanding of inverse trigonometrical functions. Part (b) was either abandoned altogether or when attempted tan ⁻¹ x was frequently written as $\frac{1}{\tan x}$.

Question 5:	Exam report						
a) $Angle AOB = 90^{\circ} and OA = OB$							
In complex terms this means that $ z_1 = z_2 $							
and $Arg\left(\frac{z_2}{z_1}\right) = \frac{\pi}{2}$	Explanations in part (a) were very unclear and generally far from convincing. Candidates generally referred to what had happened to						
This gives $\frac{z_2}{z_1} = 1e^{i\frac{\pi}{2}} = i$ $z_2 = iz_1$	the coordinates of the points represented by z_1 and z_2 , but few made allusion to the significance of <i>i</i> in the <i>iz</i> . The neatest solutions came from candidates who considered						
$b(i) A(z_1), B(z_2) and M(z)$	multiplication of a complex number by <i>i</i> as a						
$ z-z_1 = z-z_2 $ is equivalent to	rotation anticlockwise of $\pi/2$						
AM = BM	Inaccurate copying of the diagram in part (b)						
L_1 is the perpendicular bisector of AB.	caused loss of marks. For instance, although						
ii) arg $(z - z_2) = arg(z_1)$	candidates knew that the locus L ₁ was the perpendicular bisector of AB, poor diagrams						
L_2 is the half line from B, parallel to OA.	meant that their line did not pass through the						
c)Let's call I the point of intersection and $I(z_1)$	origin. Again, for the locus L_2 , although the majority of candidates drew a half line through						
OBIAis a square :	<i>B</i> , their line was not always parallel to <i>OA</i> .						
Because OAbeing perpendicular to OB	Part (c) proved to be beyond most candidates						
we knowthat IB is also perpendicular to OB	probably because few realised that the point of						
and by symmetry about the line L_1 , IA is perpendicular to A	D. intersection of L_1 and L_2 was, in fact, the fourth						
<i>OBIA</i> is a quadrilateral with 4 right angles and OA=OB	vertex of the square whose three other vertices were <i>A</i> , <i>O</i> and <i>B</i>						
so OBIA is a square							
In complex term, $z_1 = z_1 + z_2 = z_1 + iz_1 = (1+i)z_1$							

Question 6:	Exam report
$\left(1 - \frac{1}{(k+1)^2}\right) \times \frac{k+1}{2k} = \left(\frac{(k+1)^2 - 1}{(k+1)^2}\right) \times \frac{k+1}{2k}$ $= \frac{k^2 + 2k}{(k+1)^2} \times \frac{k+1}{2k} = \frac{k(k+2)}{2k(k+1)} = \frac{(k+2)}{2(k+1)}$	Part (a) was usually answered correctly although there were many very long-winded algebraic methods employed including the multiplication out of just about every bracket followed immediately by their re-factorisation.

Question 6:continues Exam report Proposition P_n : For $n \ge 2$, $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$ is to be proven by induction. $\left(1-\frac{1}{2^2}\right) = \frac{2^2-1}{2^2} = \frac{3}{4}$ and $\frac{n+1}{2n} = \frac{2+1}{2\times 2} = \frac{3}{4}$ Base case: n=2 The proposition is true for n=2Let's suppose that the propostion is true for n=k, meaning $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{k^2}\right) = \frac{k+1}{2k}$ There was however much muddled thinking in part (b). Whilst most candidates had some Let's show that the proposition is true for n=k+1, outline of the method of induction many candidates Let's show that $\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{(k+1)^2}\right) = \frac{k+2}{2(k+1)}$ attempted this part with no reference whatever to the series product in question, whilst others tried to **add** the $(k + 1)^{th}$ term to the sum of k products. $\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\dots\left(1-\frac{1}{(k+1)^2}\right) = \left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\dots\left(1-\frac{1}{k^2}\right)\left(1-\frac{1}{(k+1)^2}\right)$ Candidates who did consider the series usually used Σ rather than Π but this was not penalised. $=\frac{k+1}{2k} \times \left(1 - \frac{1}{(k+1)^2}\right) = \frac{k+2}{2(k+1)} \text{ from part } a)$ *Conclusion* : If the proposition is true for n=k, then it is true for n=k+1 because the proposition is true for n=2, according to te induction principle I can conclude that the proposition is true for all $n \ge 2$: for all $n \ge 2$, $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$

Question 7:	Exam report
$y = 4\sqrt{x}$ $a) s = \int_{0}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx \text{ from the formulae booklet}$ $\frac{dy}{dx} = 4 \times \frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}} \qquad \left(\frac{dy}{dx}\right)^{2} = \left(\frac{2}{\sqrt{x}}\right)^{2} = \frac{4}{x}$ $s = \int_{0}^{1} \sqrt{1 + \frac{4}{x}} dx = \int_{0}^{1} \sqrt{\frac{x+4}{x}} dx$	This question was generally answered well and many candidates were able to score 12 out of the available 15 marks. Part (a) was well answered apart from a few candidates who wrote $\frac{dy}{dx} = 2x^{-\frac{1}{2}}$ followed by $\frac{1}{2x^{\frac{1}{2}}}$

Question 7:continuesExam reportb)i) x = 4Sinh²θ
$$\frac{dx}{d\theta} = 4 \times 2 \times Cosh\theta \times Sinh\theta$$

 $d\theta = 4 \times 2 \times Cosh\theta \times Sinh\theta$
 $dx = 8Cosh\theta Sinh\theta d\theta$ In part (b) there were two main
sources of error. The first was to
interchange dx with dθ without any
consideration of $\frac{dx}{d\theta}$; and the second
was to write $s = \int_0^1 \sqrt{\frac{x+4}{x}} dx = \int_s^{Sinh^{-1}0.5} \sqrt{\frac{4Sinh²\theta + 4}{4Sinh²\theta}} \times 8Cosh\theta Sinh\theta d\theta$
 $s = \int_0^{Sinh^{-1}0.5} \sqrt{\frac{4Cosh²\theta}{4Sinh²\theta}} \times 8Cosh\theta Sinh\theta d\theta = \int_0^{Sinh^{-1}0.5} \frac{Cos\theta}{Sinh\theta} \times 8Cosh\theta Sinh\theta d\theta$ In part (b) there were two main
sources of error. The first was to
interchange dx with dθ without any
consideration of $\frac{dx}{d\theta}$; and the second
was to write $s = \int_0^{Sinh^{-1}0.5} \sqrt{\frac{4Cosh²\theta}{4Sinh²\theta}} \times 8Cosh\theta Sinh\theta d\theta = \int_0^{Sinh^{-1}0.5} \frac{Cos\theta}{Sinh\theta} \times 8Cosh\theta Sinh\theta d\theta$ There were also a few candidates who
were unable to differentiate $4Sinh^2\theta$. $s = \int_0^{Sinh^{-1}0.5} 8Cosh²\theta - 1 so Cosh²\theta = \frac{1}{2} + \frac{1}{2}Cosh2\theta$ In part (b)(i), most candidates were
able to integrate $8cosh²\theta$ correctly but
few were able to arrive at the printed
result in part (b)(ii). Wost cardidates either
failed to change the limits for x to the
corresponding limits for θ or else
wrote the answer with no evident
method. This was unacceptable as the
answer for the arc lengths was given. $s = 4Sinh^{-1}0.5 + 2Sinh(2Sinh^{-1}0.5) = 4Sinh^{-1}0.5 + 2\frac{\sqrt{5}}{2} = 4Sinh^{-1}0.5 + \sqrt{5}$

Question 8:

a)i) $z^{6} - 4z^{3} + 8 = 0$ Let z^{3} bet, the equation becomes $t^{2} - 4t + 8 = 0$ discriminant:(-4)-4×1×8=-16=(4i)² a) $4 \pm 4i$ a) $2 \pm 2i$

So
$$t = z^{*} = \frac{1}{2} = z^{*} = 2 \pm 2i$$

ii) Let's write $z^{3} = (re^{i\theta})^{3} = r^{3}e^{i3\theta}$
 $2 \pm 2i = 2\sqrt{2} \left(\frac{1}{\sqrt{2}} \pm i\frac{1}{\sqrt{2}}\right) = 2\sqrt{2}e^{\pm i\frac{\pi}{4}}$

These complex numbers are equal when

$$r^{3} = 2\sqrt{2}$$
 and $3\theta = \pm \frac{\pi}{4} + 2k\pi$
 $r = \sqrt{2}$ and $\theta = \pm \frac{\pi}{12} + k\frac{2\pi}{3}$ $k = -1, 0, 1$

This gives 6 solutions :

$$\sqrt{2}e^{\pm i\frac{\pi}{12}} \text{ or } \sqrt{2}e^{\pm i\frac{3\pi}{12}} \text{ or } \sqrt{2}e^{\pm i\frac{7\pi}{12}}$$
$$b)(z - ke^{i\theta})(z - ke^{-i\theta}) = z^2 - zk(e^{i\theta} + e^{-i\theta}) + k^2e^{i\theta}$$
$$= z^2 - 2zkCos\theta + k^2$$

$$c)z^{5} - 4z^{5} + 8 = (z - \sqrt{2}e^{i\frac{\pi}{12}})(z - \sqrt{2}e^{-i\frac{\pi}{12}})(z - \sqrt{2}e^{i\frac{7\pi}{12}})(z - \sqrt{2}e^{-i\frac{7\pi}{12}})(z - \sqrt{2}e^{-i\frac{3\pi}{12}})(z - \sqrt{2}e^{-i\frac{3\pi}{12}}) = (z^{2} - 2\sqrt{2}\cos\frac{\pi}{12} - 2)(z^{2} - 2\sqrt{2}\cos\frac{7\pi}{12} - 2)(z^{2} - 2\sqrt{2}\cos\frac{3\pi}{12} - 2)$$

Candidates were usually able to establish the result in part (a) although the methods used were sometimes somewhat inelegant. Part (a)(ii) was reasonably well done although some carelessness was in evidence in this part. For instance, some candidates although showing

Exam report

that the argument of z^3 was $\pm \frac{\pi}{4}$ continued their solution with only $+\frac{\pi}{4}$ and so arrived at

a total of three roots. Others having reached $|z^3| = \sqrt{8}$ then thought that $|z| = \sqrt{8}$ also. A few candidates used a method which,

although possible, was not really suitable. They replaced the z^3 in $z^6+4z^3+8=0~$ with 2 $\pm 2i$ and so arrived at z^6 = \pm 8i .

This latter equation gave the twelve roots of $z^{12} = -.64$ and the method was incomplete unless 6 of the roots were rejected. Part (b) was generally well done, but part (c) was really only completed by candidates who had correctly answered part (a)(ii).

Compon	nent	Maximum		Scaled Ma	ark Grade B	oundaries	
Code	e Component Title	Scaled Mark	A	В	С	D	E
MFP2	GCE MATHEMATICS UNIT FP2	75	56	49	42	35	29

				Answer all questions.	
General Certificate of Education January 2008 Advanced Level Examination		AQA	 Express 4+4i in t Solve the equation 	(a) Express $4 + 4i$ in the form $re^{i\theta}$, where $r > 0$ and $-\pi < 0 \leq \pi$. (b) Solve the equation	(3 marks)
MATHEMATICS Unit Further Pure 2	MFP2	ASSESSMENT and QUALIFICATIONS ALLIANCE	eiving vont answer	$z^5 = 4 + 4\mathrm{i}$ oriving vour answers in the form $r\mathrm{e}^{\mathrm{i} heta}$ where $r>0$ and $-\pi<0 \lesssim \pi$.	(5 marks)
Thursday 31 January 2008 9.00 am to 10.30 am					
Eor this namer vou must have.			2 (a) Show that		
 an 8-page answer book an 8-page answer book the blue AQA booklet of formulae and statistical tables. 				$(2r+1)^3 - (2r-1)^3 = 24r^2 + 2$	(3 marks)
You may use a graphics calculator.			(b) Hence, using the m	(b) Hence, using the method of differences, show that	
Time allowed: 1 hour 30 minutes				$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$	(6 marks)
 Instructions Use blue or black ink or ball-point pen. Pencil should only be used for drawing. Write the information required on the front of your answer book. The <i>Examining Body</i> for this 	uld only be used for dianswer book. The E_{X}	awing. <i>umining Body</i> for this	3 A circle C and a half-line L have equations	tL have equations	
paper is AQA. The <i>Paper Reference</i> is MFP2. • Answer all questions.				$ z - 2\sqrt{3} - \mathbf{i} = 4$	
• Show all necessary working; otherwise marks for method may be lost.	tethod may be lost.			ш ⁽² - ²)-то	
Information			and	$ang(z+1) = \frac{6}{6}$	
 The maximum mark for this paper is 75. The marks for questions are shown in brackets. 			respectively.		
Advice			(a) Show that:		
• Unless stated otherwise, you may quote formulae, without proof, from the booklet.	vithout proof, from the	booklet.	(i) the circle C p	(i) the circle C passes through the point where $z = -i$;	(2 marks)
			(ii) the half-line I	(ii) the half-line L passes through the centre of C .	(3 marks)
			(b) On one Argand dia;	On one Argand diagram, sketch C and L .	(4 marks)
			(c) Shade on your sket	Shade on your sketch the set of points satisfying both	
				$ z-2\sqrt{3}-\mathbf{i} \leqslant 4$	
			and	$0\leqslant \arg(z+\mathrm{i})\leqslant rac{\pi}{6}$	(2 marks)

97

Formulae

Roots

Complex De Moivre numbers theorem

Proof by induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

4 The cubic equation		6 (a) (i) By applying De Moivre's theorem to $(\cos \theta + i \sin \theta)^3$, show that	
$z^3 + iz^2 + 3z - (1 + i) = 0$		$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	(3 marks)
has roots α , β and γ .		(ii) Find a similar expression for $\sin 3\theta$.	(1 mark)
(a) Write down the value of:		(iii) Deduce that	
(i) $\alpha + \beta + \gamma$;	(1 mark)	$\tan 3\theta = \frac{\tan^3 \theta - 3 \tan \theta}{\tan^2 \theta}$	(3 marks)
(ii) $\alpha\beta + \beta\gamma + \gamma\alpha;$	(1 mark)		
(iii) $\alpha\beta\gamma$.	(1 mark)	(b) (i) Hence show that $\tan \frac{1}{12}$ is a root of the cubic equation	
(b) Find the value of:		$x^3 - 3x^2 - 3x + 1 = 0$	(3 marks)
(i) $\alpha^2 + \beta^2 + \gamma^2$;	(3 marks)	(ii) Find two other values of θ , where $0 < \theta < \pi$, for which $\tan \theta$ is a root of this cubic constion.	oot of this (2 marks)
(ii) $\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2$;	(4 marks)	(c) Hence show that	(
(iii) $\alpha^2 \beta^2 \gamma^2$.	(2 marks)		
(c) Hence write down a cubic equation whose roots are α^2 , β^2 and γ^2 .	(2 marks)	$\tan \frac{\tan 12}{12} + \tan \frac{12}{12} = 4$	(2 marks)
5 Prove by induction that for all integers $n \ge 1$		7 (a) Given that $y = \ln \tanh \frac{x}{2}$, where $x > 0$, show that	
$\sum_{n=1}^{n} (r^2 + 1)(r!) = n(n+1)!$	(7 marks)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{cosech} x$	(6 marks)
T		(b) A curve has equation $y = \ln \tanh \frac{x}{2}$, where $x > 0$. The length of the arc of the curve between the points where $x = 1$ and $x = 2$ is denoted by s.	f the curve
		(i) Show that	
		$s = \int_{1}^{2} \coth x dx$	(2 marks)
		(ii) Hence show that $s = \ln(2 \cosh 1)$.	(4 marks)

END OF QUESTIONS

>	Solution	Marks	Total	Comments
3(a)(i)	$z = -i$ $ -2\sqrt{3} - 2i = \sqrt{12 + 4} = 4$	MI		-2√3 - 2i
	-	AI	2	- +
(ii)	(ii) Centre of circle is $2\sqrt{3} + i$	B1		Do not accept $(2\sqrt{3}, 1)$ unless attempt to
	Substitute into line	IM		solve using trig
	$arce\left(2,\overline{5}+2\mathrm{i} ight)=rac{\pi}{2}$ shown	11	(1	
(4)		R	o	
	• •			
)			
	Circle: centre correct through (0 – 1)	B1 B1		
	Half line: through $(0, -1)$	B1		
		B1	4	
(c)	Shading inside circle and below line	BIF	ç	
	Total	1	11	
4(a)(i)	$\sum \alpha = -i$	Bl	1	
(ii)	$\sum \alpha \beta = 3$	B1	1	
(iii)		B1	1	
(b)(i)	$\sum \alpha^2 = (\sum \alpha)^2 - 2\sum \alpha \beta$ used	MI		Allow if sign error or 2 missing
	$=(-i)^2 - 2 \times 3$	A1F		
	=-7	AlF	б	ft errors in (a)
(ij)	$\sum \alpha^2 \beta^2 = (\sum \alpha \beta)^2 - 2\sum \alpha \beta \cdot \beta \gamma$	MI		Allow if sign error in 2 missing
	$=(\sum \alpha \beta)^2 - 2\alpha \beta \gamma \sum \alpha$	A1		
	=9-2(1+i)(-i)	A1F		ft errors in (a)
	=7+2i	A1F	4	ft errors in (a)
(III)	$\alpha^2 \beta^2 \gamma^2 = (1+i)^2 = 2i$	M1 A1F	7	ft sign error in $\alpha\beta\gamma$
(c)	$z^{3} + 7z^{2} + (7 + 2i)z - 2i = 0$	B1F		Correct numbers in correct places
		5	(

	Comments		M1 needs some reference to $a + 2k\pi i$ A1 for $r = \begin{bmatrix} A & A & A \\ A & A & A \end{bmatrix}$ incorrect r , θ part (a)	Accept r in any form eg 32^{L}_{10} Correct but some answers outside range allow A1 ft incorrect r, θ in part (a)				AG	3 rows seen Do not allow M1 for $(2n+1)^3 - 1$ not	equal to anything		M1 for multiplication of bracket or taking $(2n+1)$ out as a factor	CAO	AG	
	Total	ŝ		Ś	×		Ċ	3						9	9
	Marks	M1 AIAI	MI AIF AIF	A2,1,0 F		IM	A1	AI	MIA1		$\mathbf{A1}$	MI	A1	A1	
	Solution	Any method for finding r or θ $r = 4\sqrt{2}, \theta = \frac{\pi}{4}$	$z^{s} = 4\sqrt{2}e^{\frac{\pi i}{4}}$ $z = \sqrt{2}e^{\frac{\pi i}{3} + \frac{2\pi i}{5}}$	$z = \sqrt{2} e^{\frac{\pi i}{20}}, \sqrt{2} e^{\frac{9\pi i}{20}}, \sqrt{2} e^{\frac{17\pi i}{20}}, \sqrt{2} e^{\frac{17\pi i}{20}}, \sqrt{2} e^{\frac{17\pi i}{20}}, \sqrt{2} e^{\frac{17\pi i}{20}}$	Total	Attempt to expand $(2r+1)^3 - (2r-1)^3$	$(2r+1)^3$ or $(2r-1)^3$ expanded	$24r^{2} + 2$	$r = 1 3^3 - 1^3 = 24 \times 1^2 + 2$ $r = 2 5^3 - 3^3 = 24 \times 2^2 + 2$	$r = n$ $(2n+1)^3 - (2n-1)^3 = 24 \times n^2 + 2$	$(2n+1)^3 - 1 = 24\sum_{r=1}^n r^2 + 2n$	$8n^3 + 12n^2 + 6n + 1 - 1 - 2n = 24\sum_{r=1}^n r^2$	$8n^3 + 12n^2 + 4n = 24\sum_{r=1}^n r^2$	$\sum_{r=1}^{n} r^{2} = \frac{1}{6}n(n+1)(2n+1)$	Total
MFP2	ð	1(a)	(q)			2(a)			(q)						

MFP2 (cont)				
ð	Solution	Marks	Total	Comments
7(a)	$\frac{dy}{dx} = \frac{1}{\tanh \frac{x}{2}} \dots$	B1		
	$\operatorname{sech}^2 \frac{x}{2} \dots$	B1		
	<u>-</u> - -	B1		
	$=\frac{1}{\frac{\sinh \frac{X}{2}}{\cosh \frac{X}{2}}\cosh^2 \frac{1}{2}}$	IM		OE ie expressing in sinh $\frac{x}{2}$ and $\cosh \frac{x}{2}$
	$=\frac{1}{2\sinh\frac{x}{2}\cosh\frac{x}{2}}$			
	$=\frac{1}{\sinh x}$	IM	y	ie use of $\sinh 2A = 2\sinh A\cosh A$
	Alternative $\ln \frac{X}{2} - \ln \cosh \frac{X}{2}$	(B1)	0	2
	$\frac{1}{2} \frac{\cosh \frac{x}{2}}{\sinh \frac{x}{2}} - \frac{1}{2} \frac{\sinh \frac{x}{2}}{\cosh \frac{x}{2}}$	(B1B1)		
	$\frac{\cosh^2 \frac{X}{2} - \sinh^2 \frac{X}{2}}{2\sinh \frac{X}{2}\cosh \frac{X}{2}}$	(IMI)		
	Z Z Use of sinh24 = 2sinh A cosh A result	(MI) (AI)		
(j)(q)	$s = \int_{1}^{2} \sqrt{1 + \cosh^2 x} \mathrm{d}x$	IM		
	$=\int_{1}^{2} \coth x dx$	Al	2	AG
(ii)	$s = [\ln \sinh x]_1^2$	MI		needs to be correct
	= ln sinh 2 – ln sinh 1 2 sinh 1 cosh 1	A1		
	$=\ln\frac{1}{\sinh 1}$	AIF		must be seen
	$= \ln(2\cosh I)$ Total	AI	4 5	AG
	TOTAL		32	
			S	

ſ

Comments								If all 6 marks earned				AG		T [cod	Osca	Error in sin 3θ		AG	VE-11	Used (possibly implied)	Must be hence			N 6			
Total								7	7			ю	-					б				б	2			7	14
Marks		M1A1	m1	Al	Al		B1	E1		MI	A1	Al	AIF	IJŊ	IIVI	AIF		Al	Ē	19	IM	Al	BIB1	IJŊ	TIM	AI	
Solution	Assume result true for $n = k$ Then $\sum_{i=1}^{k+1} (r^2 + 1)r!$	$= \left((k+1)^2 + 1 \right) (k+1)! + k (k+1)!$	Taking out $(k+1)$! as factor	$= (k+1)!(k^{2} + 2k + 1 + 1 + k)$	=(k+1)(k+2)!	$k = 1$ shown $(1^2 + 1)1! = 2$	$1 \times 2! = 2$	$\mathrm{P}_k \Longrightarrow \mathrm{P}_{k+1}$ and P_1 true	Total	$\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^3$	$=\cos^{3}\theta + 3i\cos^{2}\theta\sin\theta + 3i^{2}\cos\theta\sin^{2}\theta$ $\pm i^{3}\sin^{3}\theta$	Real parts: $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	Imaginary parts: $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$	$\tan 3\theta = \frac{\sin 3\theta}{\sin 3\theta}$	$\cos 2\theta$	$=\frac{3\cos^2\theta\sin\theta-\sin^3\theta}{\cos^3\theta-3\sin^2\theta\cos\theta}$	$=\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}$	$=\frac{\tan^3\theta-3\tan\theta}{3\tan^2\theta-1}$	$\tan \frac{3\pi}{1} = 1$	12 -	$\tan \frac{\pi}{12}$ is a root of $1 = \frac{x' - 3x}{3x^2 - 1}$	$x^3 - 3x^2 - 3x + 1 = 0$	Other roots are $\tan \frac{5\pi}{12}$, $\tan \frac{9\pi}{12}$	$\tan \frac{\pi}{2} + \tan \frac{5\pi}{2} + \tan \frac{9\pi}{2} = 3$	π 5 π .	$\tan \frac{12}{12} + \tan \frac{12}{12} = 4$	Total
MFP2 (cont) Q	N.									6(a)(i)			(1)	(iii)					(i)(d)				(ii)	(2)			

AQA – Further pure 2 – Jan 2008 – Answers

a) $4 + 4i = 4\sqrt{2} \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = 4\sqrt{2}e^{i\frac{\pi}{4}}$ b) Let's write $z^5 = (re^{i\theta})^5 = r^5 e^{i5\theta}$ $z^5 = 4 + 4i$ becomes $r^5 e^{i5\theta} = 4\sqrt{2}e^{i\frac{\pi}{4}}$ so $r^5 = 4\sqrt{2}$ and $5\theta = \frac{\pi}{4} + k \times 2\pi$ $r = \sqrt{2}$ and $\theta = \frac{\pi}{20} + k \times \frac{2\pi}{5}$ $k = -2, -1, 0, 1, 2$ $r = \sqrt{2}$ and $\theta = -\frac{15\pi}{20}, -\frac{7\pi}{20}, \frac{\pi}{20}, \frac{9\pi}{20}, \frac{17\pi}{20}$ The 5 th roots of $4 + 4i$ are : $r = \sqrt{2} = r^{3\pi} = -i^{7\pi} = -i^{\pi} = -\frac{9\pi}{20} = -i^{17\pi}$	Question 1:	Exam report
$z^{5} = 4 + 4i \ becomes$ $r^{5}e^{i5\theta} = 4\sqrt{2}e^{i\frac{\pi}{4}}$ So $r^{5} = 4\sqrt{2} \ and \ 5\theta = \frac{\pi}{4} + k \times 2\pi$ $r = \sqrt{2} \ and \ \theta = \frac{\pi}{20} + k \times \frac{2\pi}{5} \ k = -2, -1, 0, 1, 2$ $r = \sqrt{2} \ and \ \theta = -\frac{15\pi}{20}, -\frac{7\pi}{20}, \frac{\pi}{20}, \frac{9\pi}{20}, \frac{17\pi}{20}$ The 5 th roots of \ 4 + 4i \ are :	$a) 4 + 4i = 4\sqrt{2} \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = 4\sqrt{2}e^{i\frac{\pi}{4}}$	
$\sqrt{2e^{-i\frac{\pi}{4}}}$, $\sqrt{2e^{-i\frac{\pi}{20}}}$, $\sqrt{2e^{i\frac{\pi}{20}}}$, $\sqrt{2e^{i\frac{\pi}{20}}}$, $\sqrt{2e^{i\frac{\pi}{20}}}$	$z^{5} = 4 + 4i \text{ becomes}$ $r^{5}e^{i5\theta} = 4\sqrt{2}e^{i\frac{\pi}{4}}$ so $r^{5} = 4\sqrt{2}$ and $5\theta = \frac{\pi}{4} + k \times 2\pi$ $r = \sqrt{2} \text{ and } \theta = \frac{\pi}{20} + k \times \frac{2\pi}{5} k = -2, -1, 0, 1, 2$ $r = \sqrt{2} \text{ and } \theta = -\frac{15\pi}{20}, -\frac{7\pi}{20}, \frac{\pi}{20}, \frac{9\pi}{20}, \frac{17\pi}{20}$	However, responses to part (b) were less successful. A number of candidates gave the roots of $z^5 = 1$ as their answer to part (b), whilst others left the modulus of the roots as $4\sqrt{2}$ instead of $\sqrt{2}$, and others again gave solutions outside the range of θ as specified in the question. Some candidates yet again were either unable to handle $\frac{1}{5}\left(\frac{\pi}{4}+k\times 2\pi\right)$ or, when taking the fifth root of $e^{\left(\frac{\pi}{4}+k\times 2\pi\right)i}$,

Question 2:	Exam report
$(2r+1)^{3} - (2r-1)^{3} = (8r^{3} + 12r^{2} + 6r + 1) - (8r^{3} - 12r^{2} + 6r - 1)$	Again part (a) was answered well, but
$24r^2 + 2$	solutions to part (b) were mixed.
$24r^{2}+2$	Generally speaking, the best solutions
$n = n^{n} 2 n^{n} (2 n^{3} (2 n^{3} n^{3$	came from candidates who rewrote
$b)24\sum_{n=1}^{n}r^{2} = \sum_{n=1}^{n} \left((2r+1)^{3} - (2r-1)^{3} - 2 \right) = \sum_{n=1}^{n} \left((2r+1)^{3} - (2r-1)^{3} \right) - \sum_{n=1}^{n} 2$	part (a) as
$= 3^{3} - 1 + 5^{3} - 3^{3} + 7^{3} - 5^{3} + \dots + r = 1$	$r^{2} = \frac{1}{24} \left((2r+1)^{3} - (2r-1)^{3} - 2 \right)$
$(2n-1)^{3} - (2n-3)^{3} + (2n+1)^{3} - (2n-1)^{3} - 2n$	before making their summation. Those
	candidates who preferred to use part
$= -1 + (2n+1)^3 - 2n = -1 + 8n^3 + 12n^2 + 6n + 1 - 2n$	(a) in the form in which it was printed
$=8n^{3}+12n^{2}+4n$	either forgot to sum the 2's to make
-6n + 12n + 4n	2 <i>n</i> or only partially divided by 24. A
$24\sum_{n=1}^{n} r^{2} - 4n(2n^{2} + 2n + 1) - 4n(2n + 1)(n + 1)$	small number of candidates used the
$24\sum_{n=1}^{\infty} r^2 = 4n(2n^2 + 3n + 1) = 4n(2n + 1)(n + 1)$	method of induction either through
	confusing the two methods of
$\sum_{n=1}^{n} r^{2} = \frac{1}{6} n(n+1)(2n+1)$	summation or by deliberately choosing
$\sum_{n=1}^{n} \frac{1}{6} = \frac{1}{6} \frac{n(n+1)(2n+1)}{6}$	an alternative method. Either way, no
	credit could be given.

Question 3:	Exam report
a)i) $\left -i-2\sqrt{3}-i\right = \left -2\sqrt{3}-2i\right = \sqrt{(-2\sqrt{3})^2 + (-2)^2} = \sqrt{12+4} = \sqrt{16} = 4$ The circle C passes through the point where $z = -i$ ii) The centre of C is the point where $z = 2\sqrt{3} + i$ $\arg(z+i) = \arg(2\sqrt{3}+i+i) = \arg(2\sqrt{3}+2i)$ $Tan^{-1}(\frac{2}{2\sqrt{3}}) = \frac{\pi}{6}$. The half-line L passes through the centre of C. b) c)	
Question 4:	Exam report
$z^{3} + iz^{2} + 3z - (1+i) = 0 \text{ has roots } \alpha, \beta, \gamma.$ $a)i)\alpha + \beta + \gamma = -i$ $ii)\alpha\beta + \alpha\gamma + \beta\gamma = 3$ $iii)\alpha\beta\gamma = 1+i$ $b)i)\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ $= (-i)^{2} - 2 \times 3$ $\alpha^{2} + \beta^{2} + \gamma^{2} = -7$ $ii)\alpha^{2}\beta^{2} + \alpha^{2}\gamma^{2} + \beta^{2}\gamma^{2} = (\alpha\beta + \alpha\gamma + \beta\gamma)^{2} - 2(\alpha^{2}\beta\gamma + \beta^{2}\alpha\gamma + \gamma^{2}\alpha\beta)$ $= (\alpha\beta + \alpha\gamma + \beta\gamma)^{2} - 2\alpha\beta\gamma(\alpha + \beta + \gamma)$ $= (3)^{2} - 2 \times (1+i)(-i) = 9 + 2i + 2i^{2}$	This question was probably the most popular question on this paper and certainly showed candidates well prepared to answer questions on this par of the specification. There were many full correct solutions or correct apart from th odd sign error, the most common of whic was to write down $(-i)^2$ as +1 instead of -1. If there was a major loss of marks, it was usually in the inability of a candidate to evaluate $\Sigma \alpha^2 \beta^2$ and in this case the candidate started by considering

 $= (3)^{2} - 2 \times (1+i)(-i) = 9 + 2i + 2i^{2}$ $\alpha^{2}\beta^{2} + \alpha^{2}\gamma^{2} + \beta^{2}\gamma^{2} = 7 + 2i$ $iii)\alpha^{2}\beta^{2}\gamma^{2} = (\alpha\beta\gamma)^{2} = (1+i)^{2} = \alpha^{2}\beta^{2}\gamma^{2} = 2i$ $c)z^{3} - (-7)z^{2} + (7+2i)z - 2i = 0$ $z^{3} + 7z^{3} + (7+2i)z - 2i = 0$

 $\left(\sum \alpha^2\right)^2$ only to find that the evaluation of $\Sigma \alpha^4$ posed a serious problem.

Question 5:	Exam report
The proposition P_n , for all $n \ge 1$, $\sum_{r=1}^{n} (r^2 + 1)(r!) = n(n+1)!$ is to be proven by induction Base case: $n = 1$, $\sum_{r=1}^{1} (r^2 + 1)(r!) = (1^2 + 1)(1!) = 2$ and $1(1+1)! = 2! = 2$ the proposition P_1 is true Let's suppose that P_k is true, ie $\sum_{r=1}^{k} (r^2 + 1)(r!) = k(k+1)!$ Let's show that P_{k+1} is true, Let's show that $\sum_{r=1}^{k+1} (r^2 + 1)(r!) = (k+1)(r!) = (k+1)(r!) = k(k+1)! + (k^2 + 2k + 2)(k+1)!$ $= k(k+1)! + (k^2 + 2k + 2)(k+1)!$ = (k+1)!(k+2)(k+1) = (k+2)!(k+1)	
<i>Conclusion</i> : If the proposition is true for $n = k$, then it is true for $n = k + 1$ and because it true for $n = 1$, we can conclude according to the induction principal that the proposition is true for all n . For all $n \ge 1$, $\sum_{r=1}^{n} (r^2 + 1)(r!) = n(n+1)!$	
Question 6:	Exam report
$(\alpha \alpha \alpha \alpha)^3 = \alpha \alpha \alpha \alpha \alpha$	Responses to this question were rather

Question 6:	Exam report
$a)i)(\cos\theta + i\sin\theta)^{3} = \cos 3\theta + i\sin 3\theta$	Responses to this question were rather
and also	disappointing. In part (a)(i), although most candidates correctly quoted $cos3\theta + i sin 3\theta = (cos\theta)$
$\left(\cos\theta + i\sin\theta\right)^3 = \cos^3\theta + 3i\cos^2\theta\sin\theta - 3\cos\theta\sin^2\theta - i\sin^3\theta$	+ i sin θ) ³ , some immediately went on to use the
$= (\cos^3\theta - 3\cos\theta\sin^2\theta) + i(3\cos^2\theta\sin\theta - \sin^3\theta)$	multiple angle formulae instead of expanding $(\cos\theta + i \sin\theta)^3$. Some of those candidates who expanded
By identifying the real and imaginary parts, we have	$(\cos\theta + i\sin\theta)^3$ did not seem to realise that the
$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	answers to parts (a)(i) and (a)(ii) were obtained by simply equating real and imaginary parts. Other
$ii) \qquad Sin3\theta = 3Cos^2\theta Sin\theta - Sin^3\theta$	candidates wrote i ³ as +i and so were unable to
$iii) Tan3\theta = \frac{Sin3\theta}{Cos3\theta} = \frac{3Cos^2\theta Sin\theta - Sin^3\theta}{Cos^3\theta - 3Cos\theta Sin^2\theta}$	reach the correct result of part (a)(ii) and the printed result in part (a)(iii). Even those candidates who worked parts (a)(i) and (a)(ii) correctly in terms of
Now divide the numerator and the denominator by $Cos^3\theta$ Sin $\theta = Sin^3\theta$	sinθ and cosθ , having written $\frac{Sin3θ}{Cos3θ}$, did not realise
$Tan3\theta = \frac{3\frac{Sin\theta}{Cos\theta} - \frac{Sin^{3}\theta}{Cos^{3}\theta}}{1 - 3\frac{Sin^{2}\theta}{Cos^{2}\theta}} = \frac{3Tan\theta - Tan^{3}\theta}{1 - 3Tan^{2}\theta} = \frac{Tan^{3}\theta - 3Tan\theta}{3Tan^{2}\theta - 1}$	that the division of numerator and denominator by – $\cos 3\theta$ would give the printed result, but rather chose to use $\sin^2\theta + \cos^2\theta = 1$ to express numerator and denominator in a different form, with no hope of reaching the printed result.

Question 7:	Exam report
$a) y = \ln\left(Tanh\frac{x}{2}\right) x > 0$ $\frac{dy}{dx} = \frac{\frac{1}{2}\left(\sec h^{2}\frac{x}{2}\right)}{Tanh\frac{x}{2}} = \frac{1}{2} \times \frac{1}{Cosh^{2}\frac{x}{2}} \times \frac{Cosh\frac{x}{2}}{Sinh\frac{x}{2}}$ $\frac{dy}{dx} = \frac{1}{2Cosh\frac{x}{2}Sinh\frac{x}{2}} = \frac{1}{Sinh(2 \times \frac{x}{2})} = \frac{1}{Sinhx}$ $\frac{dy}{dx} = \operatorname{Cosech} x$	Although many candidates were able to write down $\frac{1}{\tanh \frac{x}{2}}$ multiplied by $\frac{1}{2}\operatorname{sech}^2 \frac{x}{2}$, fewer were able to combine these results to obtain cosech x . Even those candidates who expressed $\frac{dy}{dx}$ entirely in terms of $\cosh \frac{x}{2}$ and $\sinh \frac{x}{2}$ seemed to baulk at the algebra which led to $\frac{1}{2\sinh \frac{x}{2}\cosh \frac{x}{2}}$.

Question 7:continues	Exam report
Question 7:continues $b)i)s = \int_{1}^{2} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{1}^{2} \sqrt{1 + \operatorname{Cosech}^{2} x} dx$ $1 + \operatorname{Cosech}^{2} x = 1 + \frac{1}{\operatorname{Sinh}^{2} x} = \frac{\operatorname{Sinh}^{2} x + 1}{\operatorname{Sinh}^{2} x} = \frac{\operatorname{Cosh}^{2} x}{\operatorname{Sinh}^{2} x} = \operatorname{Coth}^{2} x$ $s = \int_{1}^{2} \operatorname{Coth} x dx$ $ii)s = \int_{1}^{2} \operatorname{Coth} x dx = \int_{1}^{2} \frac{\operatorname{Cosh} x}{\operatorname{Sinh} x} dx = \left[\ln\left(\operatorname{Sinh} x\right)\right]_{1}^{2}$ $s = \ln(\sinh 2) - \ln(\sinh 1)$	Exam report Part (b)(i) was done well and many candidates were able to arrive at <i>s</i> = ln sinh 2 – ln sinh1 in part (b)(ii) but were unable to reach the printed answer. If the integral of coth <i>x</i> was performed
$s = \ln\left(\frac{Sinh2}{Sinh1}\right)$ using $Sinh2x = 2\sinh x \cosh x$, we have	incorrectly, it was often by $\operatorname{coth} x$ being replaced by $\frac{1}{\tanh x}$ followed by $\ln \tanh x$ or $\ln \cosh x$ as the integral.
$\sinh 2 = 2 \sinh 1 \cosh 1$	
$s = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$	
$s = \ln(2\cosh 1)$	

Grade boundaries

Compor	nent	Maximum		Scaled Ma	rk Grade B	oundaries	
Code	e Component Title	Scaled Mark	A	В	С	D	E
MFP2	GCE MATHEMATICS UNIT FP2	75	60	52	45	38	31

Ω
0
Ο
N
Φ
7

Answer all questions.

1 (a) Express

 (a) LAPICES (b) LapICES (c) Solve the equation (c) Solve t			(2 marks)			(4 marks)	
	(a) LAPICOS	$5 \sinh x + \cosh x$	in the form $Ae^{x} + Be^{-x}$, where A and B are integers.	(b) Solve the equation	$5 \sinh x + \cosh x + 5 = 0$	giving your answer in the form $\ln a$, where a is a rational number.	

2 (a) Given that

$$\frac{1}{r(r+1)(r+2)} = \frac{A}{r(r+1)} + \frac{B}{(r+1)(r+2)}$$

show that $A = \frac{1}{2}$ and find the value of *B*.

(b) Use the method of differences to find

$$\sum_{r=10}^{98} \frac{1}{r(r+1)(r+2)}$$

giving your answer as a rational number.

5

(3 marks)

(4 marks)

3 The cubic equation

 $z^3 + qz + (18 - 12i) = 0$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i) $\alpha\beta\gamma$; (ii) $\alpha+\beta+\gamma$. (b) Given that $\beta+\gamma=2$, find the value of: (i) α ;(1 mark)(ii) $\beta\gamma$;(2 marks)(iii) q.(3 marks)

(iii) q. (3 marks) (3 cm k is real, find β and γ . (4 marks) (c) Given that β is of the form ki, where k is real, find β and γ .

4 (a) A circle C in the Argand diagram has equation

 $|z+5-\mathbf{i}|=\sqrt{2}$

Write down its radius and the complex number representing its centre.

(b) A half-line L in the Argand diagram has equation

(2 marks)

 $\arg(z + 2i) = \frac{3\pi}{4}$ Show that $z_1 = -4 + 2i$ lies on *L*. (i) Show that $z_1 = -4 + 2i$ also lies on *C*. (i) Hence show that *L* touches *C*. (3 marks)

ં

(iii) Sketch L and C on one Argand diagram. (2 marks)
(d) The complex number z₂ lies on C and is such that arg(z₂ + 2i) has as great a value as possible.

Indicate the position of z_2 on your sketch. (2 marks)

Formulae Roots Complex De Moivre Proof by numbers theorem induction Finite series Inverse trig Hyperbolic Arc length Past functions functions
 Jan 2006
 Jun 2007
 Jan 2007
 Jan 2008
 Jun 2009
 Jun 2010
 Jun 2010

×	(a)	(i) Expand	
		$\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)$	(1 mark)
		(ii) Hence, or otherwise, expand	
		$\left(z+\frac{1}{z}\right)^4 \left(z-\frac{1}{z}\right)^2$	(3 marks)
	(q)	(i) Use De Moivre's theorem to show that if $z = \cos \theta + i \sin \theta$ then	
		$z^n + \frac{1}{z^n} = 2\cos n\theta$	(3 marks)
		(ii) Write down a corresponding result for $z^n - \frac{1}{z^n}$.	(1 mark)
	(c)	Hence express $\cos^4 \theta \sin^2 \theta$ in the form	
		$A\cos 6\theta + B\cos 4\theta + C\cos 2\theta + D$	
		where A , B , C and D are rational numbers.	(4 marks)
	(p)	(d) Find $\int \cos^4 \theta \sin^2 \theta d\theta$.	(2 marks)
		END OF QUESTIONS	

5 (a) Use the definition $\cosh x = \frac{1}{2}(e^x + e^{-x})$ to show that $\cosh 2x = 2\cosh^2 x - 1$. (2 marks) Ξ **9**

The arc of the curve $y = \cosh x$ between x = 0 and $x = \ln a$ is rotated through 2π radians about the x-axis. Show that S, the surface area generated, is given by

$$S = 2\pi \int_0^{\ln a} \cosh^2 x \, \mathrm{d}x \tag{3 marks}$$

(ii) Hence show that

$$S = \pi \left(\ln a + \frac{a^4 - 1}{4a^2} \right) \tag{5 marks}$$

6 By using the substitution u = x - 2, or otherwise, find the exact value of

$$5 \frac{dx}{-1\sqrt{32+4x-x^2}}$$

(5 marks)

- (1 mark) 7 (a) Explain why n(n+1) is a multiple of 2 when n is an integer.
- (i) Given that (q)

$$\mathbf{f}(n) = n(n^2 + 5)$$

show that
$$f(k + 1) - f(k)$$
, where k is a positive integer, is a multiple of 6.
(4 marks)

(4 marks) (ii) Prove by induction that f(n) is a multiple of 6 for all integers $n \ge 1$.

Q Solution	Marks	Total	Comments
1(a) $5\left(\frac{e^x-e^{-x}}{2}\right)+\left(\frac{e^x+e^{-x}}{2}\right)$	M1		M0 if no 2s in denominator
$=3e^{x}-2e^{-x}$	Al	2	
(b) $3e^x - 2e^{-x} + 5 = 0$			
$3e^{2x} + 5e^{x} - 2 = 0$	MI		ft if 2s missing in (a)
$(3e^x - 1)(e^x + 2) = 0$	A1F		
$e^x \neq -2$	E1		any indication of rejection
$e^x = \frac{1}{3} \qquad x = \ln \frac{1}{3}$	AIF	4	provided quadratic factorises into real factors
		9	
2(a) $1 = A(r+2) + Br$	IM		
$2A = 1$, $A = \frac{1}{2}$	AI		
$A+B=0, B=-\frac{1}{2}$	Al	ю	
(b) $r = 10 \qquad \frac{1}{2} \left(\frac{1}{10.11} - \frac{1}{11.12} \right)$			if (a) is incorrect but $A = \frac{1}{2}$ and $B = -\frac{1}{2}$
$r = 11$ $\frac{1}{2} \left(\frac{1}{11.12} - \frac{1}{12.13} \right)$			used, allow full marks for (b)
$r = 98 \qquad \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]$	MIAI		3 relevant rows seen
$S = \frac{1}{2} \left(\frac{1}{1011} - \frac{1}{00100} \right)$	ml		if split into $\frac{1}{2^r} - \frac{1}{r+1} + \frac{1}{2(r+2)}$, follow
(001.66 11.01) 2			mark scheme, in which case $\frac{1}{1} - \frac{1}{1} + \frac{1}{1} - \frac{1}{2}$ scores m1
			2.10 2.11 2.100 2.99
$=\frac{89}{19800}$	A1	4	
Total		7	

ق	
FP2	1
-	

MFP2 (cont)				
0	Solution	Marks	Total	Comments
3(a)(i)	$\alpha\beta\gamma = -18 + 12i$	B1	1	accept $-(18-12i)$
(ii)	(ii) $\alpha + \beta + \gamma = 0$	B1	1	
(j)(q)	$\alpha = -2$	BIF	1	
(jj)	(ii) $\beta \gamma = \frac{\alpha \beta \gamma}{\alpha} = 9 - 6i$	MI AIF	2	ft sign errors in (a) or (b)(i) or slips such as miscopy
(II)	$q = \sum \alpha \beta = \alpha(\beta + \gamma) + \beta \gamma$ = -2×2+9-6i = 5-6i	M1 A1F A1F	ю	ft incorrect $\beta\gamma$ or $lpha$
(c)	(c) $\beta = ki, \gamma = 2 - ki$ ki(2-ki) = 9 - 6i	B1 M1		
	$2k = -6 \begin{pmatrix} k^2 = 9 \end{pmatrix} k = -3$ $\beta = -3i, \gamma = 2+3i$	m1 A1	4	imaginary parts
	Total		12	

MFP2 (cont) O	Solution	Marks	Total	Comments
5(a)	5(a) $(e^x + e^{-x})^2$ expanded correctly	Bl		$e^{2x} + 2e^0 + e^{-2x}$ is acceptable
	Result	B1	2	AG
(i)(q)	$\frac{dy}{dx} = \sinh x$	B1		
	$\sqrt[4]{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \sinh^2 x}$			
	$= \cosh x$	M1		use of $\cosh^2 x - \sinh^2 x = 1$
	$S = 2\pi \int_0^{\ln \alpha} \cosh^2 x \mathrm{d}x$	A1	ю	AG (clearly derived)
())	(ii) Use of $\cosh^2 x = \frac{1}{2}(1 + \cosh 2x)$	IM		allow one slip in formula M0 if $\int \cosh^2 x dx$ is given as $\sinh^2 x$
	$S = \pi \left[x + \frac{1}{2} \sinh 2x \right]^{\ln a}$	Al		-
	$=\pi \left[\ln a + \frac{1}{2} \left(\frac{e^{2\ln a} - e^{-2\ln a}}{2} \right) \right]$	IM		
	$=\pi \left[\ln a + \frac{1}{4} \left(a^2 - a^{-2} \right) \right]$	AIF		
	$=\pi\left[\ln a + \frac{1}{4a^2}\left(a^4 - 1\right)\right]$	Al	5	AG
	Total		10	
9	u=x-2			
	$du = dx$ or $\frac{du}{dx} = 1$	Bl		clearly seen
	$32 + 4x - x^2 = 36 - u^2$	B1		if $32 + 4x - x^2$ is written as $36 - (x - 2)^2$, give B2
	$\int \frac{\mathrm{d}u}{\sqrt{36-u^2}} = \sin^{-1}\frac{u}{6}$	MI		allow if dx is used instead of du
	limits -3 and 3	A1		
	or substitute back to give $\sin^{-1}\frac{\infty}{6}$			
	$I = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$	A1	5	
	Total		S	

MFP2 (cont) 0) Solution	Marks	Total	Comments
8(a)(i)	8(a)(i) $\left[\left(z + \frac{1}{z} \right) \left(z - \frac{1}{z} \right) = z^2 - \frac{1}{z^2} \right]$	B1	-	
(ij)	(ii) $\left[\left[z^2 - \frac{1}{z^2} \right] \left[\left[z + \frac{1}{z} \right]^2 \right] = \left[z^4 - 2 + \frac{1}{z^4} \right] \left[z^2 + 2 + \frac{1}{z^2} \right]$	MIAI		Alternatives for M1A1: $ \left(z^4 + 4z^2 + 6 + \frac{4}{z^2} + \frac{1}{z^4}\right)\left(z^2 - 2 + \frac{1}{z^2}\right) \text{ or } $
	$= z^{6} + \frac{1}{z^{6}} + 2\left(z^{4} + \frac{1}{z^{4}}\right) - \left(z^{2} + \frac{1}{z^{2}}\right) - 4$	A1	m	$\left(z^{3} - \frac{1}{z^{3}}\right)^{2} - 2\left(z^{3} - \frac{1}{z^{3}}\right)\left(z - \frac{1}{z}\right) + \left(z - \frac{1}{z}\right)^{2}$ CAO (not necessarily in this form)
(b)(i)	$z^{n} + \frac{1}{z^{n}} = \cos n\theta + i\sin n\theta$ $+ \cos(-n\theta) + i\sin(-n\theta)$ $= 2\cos n\theta$	MIAI A1	n	AG SC: if solution is incomplete and
(ii)	$z^n - z^{-n} = 2i\sin n\theta$	B1	-	$(\cos\theta + i\sin\theta)^{-n}$ is written as $\cos n\theta - i\sin n\theta$, award MIA0A1
(c)	(c) RHS = $2\cos 6\theta + 4\cos 4\theta - 2\cos 2\theta - 4$ LHS = $-64\cos^4 \theta \sin^2 \theta$	MI AlF MI		ft incorrect values in (a)(ii) provided they are cosines
	$= -\frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta + \frac{1}{32}\cos 2\theta + \frac{1}{16}$	Al	4	
(p)	$-\frac{\sin 6\theta}{192} - \frac{\sin 4\theta}{64} + \frac{\sin 2\theta}{64} + \frac{\theta}{16}(+k)$	M1 A1F	2	ft incorrect coefficients but not letters A , B , C , D
	Total TOTAL		14 75	

MFP2 (cont)				
0	Solution	Marks Total	Total	Comments
7(a)	7(a) Clear reason given	E1	1	$Minimum \ O \times E = E$
(j)(q)	(b)(i) $ (k+1)((k+1)^{2}+5)-k(k^{2}+5) $	MI		
	$=3k^{2}+3k+6$	$\mathbf{A1}$		
	$k^{2} + k = k(k+1) = M(2)$	El		Must be shown
	$\mathbf{f}\left(k+1\right)-\mathbf{f}\left(k\right)=M\left(6\right)$	EI	4	
((ii) Assume true for $n = k$			
	$\mathbf{f}\left(k+1\right)-\mathbf{f}\left(k\right)=M\left(6\right)$	M1		Clear method
	$\therefore \mathbf{f}(k+1) = M(6) + \mathbf{f}(k)$			
	=M(6)+M(6)	AI		
	=M(6)			
	True for $n=1$	B1		
	$P(n) \rightarrow P(n+1)$ and $P(1)$ true	E1	4	Provided all other marks earned in (b)(ii)
	Total		6	

AQA – Further pure 2 – Jun 2008 – Answers

Question 1:	Exam report
a) $5\sinh x + \cosh x = \frac{5}{2}(e^x - e^{-x}) + \frac{1}{2}(e^x + e^{-x})$	
$=\frac{5}{2}e^{x}+\frac{1}{2}e^{x}-\frac{5}{2}e^{-x}+\frac{1}{2}e^{-x}$	
$5\sinh x + \cosh x = 3e^x - 2e^{-x}$	
b) $5\sinh x + \cosh x + 5 = 0$ becomes	
$3e^x - 2e^{-x} + 5 = 0 \qquad (\times e^x)$	
$3e^{2x} - 2 + 5e^{x} = 0$	
$3e^{2x} + 5e^{x} - 2 = 0$	
$(3e^x - 1)(e^x + 2) = 0$	
$e^x = \frac{1}{3}$ or $e^x = -2$ (no solution)	
$x = \ln\left(\frac{1}{3}\right)$	

Question 2:	Exam report
$A \qquad B \qquad A(r+2)+Br (A+B)r+2A$	
$\frac{A}{r(r+1)} + \frac{B}{(r+1)(r+2)} = \frac{A(r+2) + Br}{r(r+1)(r+2)} = \frac{(A+B)r + 2A}{r(r+1)(r+2)}$	
This expression is equal to $\frac{1}{r(r+1)(r+2)}$ for	
A + B = 0 and 2A = 1	
$A = \frac{1}{2} and B = -\frac{1}{2}$	
$b)\sum_{r=10}^{98} \frac{1}{r(r+1)(r+2)} = \sum_{r=10}^{98} \frac{1}{2r(r+1)} - \frac{1}{2(r+1)(r+2)}$	
$=\frac{1}{220}-\frac{1}{264}+\frac{1}{264}-\frac{1}{312}+\frac{1}{312}-\frac{1}{364}+$	
$\dots + \frac{1}{19012} - \frac{1}{19404} + \frac{1}{19404} - \frac{1}{19800}$	
All the terms cancel except $\frac{1}{220} - \frac{1}{19800} = \frac{89}{19800}$	

Question 3:	Exam report
$z^3 + qz + 18 - 12i = 0$ has roots α, β, γ	
$a)i)\alpha\beta\gamma = -18 + 12i$	
$ii)\alpha + \beta + \gamma = 0$	
$b)\beta + \gamma = 2$	
$i)\alpha + \beta + \gamma = 0$	
$\alpha + 2 = 0$	
$\alpha = -2$	
$ii) \alpha \beta \gamma = -18 + 12i$	
$-2\beta\gamma = -18 + 12i$	
$\beta \gamma = 9 - 6i$	
$iii) q = \alpha\beta + \alpha\gamma + \beta\gamma = \alpha(\beta + \gamma) + \beta\gamma$	
$q = -2 \times (2) + 9 - 6i = 5 - 6i$	
c) $\beta = ki$ and it is a root of $z^3 + qz + 18 - 12i = 0$	
so $(ki)^3 + (5-6i) \times (ki) + 18 - 12i = 0$	
$-ik^3 + 5ki + 6k + 18 - 12i = 0$	
$(6k+18) + i(-k^3 + 5k - 12) = 0$	
$6k + 18 = 0 and -k^3 + 5k - 12 = 0$	
$k = -3$ and $-(-3)^3 + 5 \times -3 - 12 = 27 - 15 - 12 = 27 - 27 = 0$	
so $\alpha = -2, \beta = -3i$, $\gamma = 2 - \beta = 2 + 3i$	

Question 4:	Exam report
$a) z+5-i = \sqrt{2}$	
Let $z_A = -5 + i$ and $A(z_A)$	
<i>C</i> is the circle centre A, radius $r = \sqrt{2}$	
b) $\arg(z+2i) = \arg(-4+2i+2i) = \arg(-4+4i)$	
$Tan^{-1}\left(\frac{4}{-4}\right) = Tan^{-1}(-1) = \frac{3\pi}{4}$	
$z_1 = -4 + 2i$ lies on L	
c)i) $ -4+2i+5-i = 1+i = \sqrt{(1)^2 + (1)^2} = \sqrt{2}$	
z_1 lies on C	
ii)L touches (is tangent to) C	
if L is perpendicular to the radius	
$\arg(z_1 - z_A) = \arg(1 + i) = \frac{\pi}{4}$	
$\arg\left(z_1+2i\right)=\frac{3\pi}{4}$	
$\arg(z_1+2i) - \arg(z_1-z_A) = \frac{3\pi}{4} - \frac{\pi}{4} = \frac{\pi}{2}$	
L is perpendicular to the radius,	
L is tangent to the circle C.	

Question 5:	Exam report
$a)\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$	
$\cosh^2 x = \frac{1}{4} (e^x + e^{-x})^2 = \frac{1}{4} (e^{2x} + e^{-2x} + 2)$	
$\cosh^2 x = \frac{1}{2} \times \frac{1}{2} (e^{2x} + e^{-2x}) + \frac{1}{2}$	
$\cosh^2 x = \frac{1}{2}\cosh 2x + \frac{1}{2}$	
$\cosh 2x = 2\cosh^2 x - 1$	
$b(i) S = 2\pi \int_0^{\ln a} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = 2\pi \int_0^{\ln a} \cosh x \times \sqrt{1 + \operatorname{sech}^2 x} dx$	
$S = 2\pi \int_0^{\ln a} \cosh x \times \cosh x dx = 2\pi \int_0^{\ln a} \cosh^2 x dx$	
<i>ii</i>) $S = 2\pi \int_0^{\ln a} \frac{1}{2} \cosh 2x + \frac{1}{2} dx = 2\pi \left[\frac{1}{4} \sinh 2x + \frac{1}{2}x\right]_0^{\ln a}$	
$= 2\pi \left(\frac{1}{4}\sinh(2\ln a) + \frac{1}{2}\ln a - 0\right)$	
$S = \pi \left(\frac{1}{2}\sinh(\ln a^2) + \ln a\right) = \pi \left(\frac{1}{2} \times \frac{1}{2} \left(e^{\ln a^2} - e^{-\ln a^2}\right) + \ln a\right)$	
$S = \pi \left(\frac{1}{4} \left(a^2 - \frac{1}{a^2} \right) + \ln a \right) = \pi \left(\frac{a^4 - 1}{4a^2} + \ln a \right)$	

Question 6:
 Exam report

$$I = \int_{-1}^{5} \frac{dx}{\sqrt{32 + 4x - x^2}}$$
 $32 + 4x - x^2 = -(x - 2)^2 + 4 + 32$

$$= 36 - (x - 2)^2$$
 $= 36 - (x - 2)^2$

$$I = \int_{-1}^{5} \frac{dx}{\sqrt{32 + 4x - x^2}} = \int_{-1}^{5} \frac{dx}{\sqrt{36 - (x - 2)^2}}$$
 $u = x - 2$ and $dx = du$

 when $x = -1, u = -3$
 when $x = 5, u = 3$

$$I = \int_{-3}^{3} \frac{du}{\sqrt{36 - u^2}} = \left[Sin^{-1}\left(\frac{u}{6}\right)\right]_{-3}^{3} = Sin^{-1}\left(\frac{1}{2}\right) - Sin^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$$

Question 7:	Exam report
a) n and $n+1$ are CONSECUTIVE numbers so one of them is EVEN	
therefore $n(n+1)$ is a multiple of 2	
$b(i) f(n) = n(n^2 + 5)$	
$f(k+1) - f(k) = (k+1)((k+1)^2 + 5) - k(k^2 + 5)$	
$= (k+1)(k^{2}+2k+1+5) - k(k^{2}+5)$	
$=(k+1)(k^{2}+2k+6)-k(k^{2}+5)$	
$=k^{3}+2k^{2}+6k+k^{2}+2k+6-k^{3}-5k$	
$= 3k^2 + 3k + 6 = 3(k+1)(k+2)$	
(k+1)(k+2) is a multiple of 2 as the product of two consecutive numbers	
so $f(k+1) - f(k)$ is a multiple of 6	
ii) Proposition P_n , for all $n \ge 1$, $f(n)$ is a multiple of 6 is to be	
proven by induction	
base case: $n = 1$	
$f(1) = 1 \times (1^2 + 5) = 6$ which is a multiple of 6.	
P_1 is true.	
Let's suppose that for $n = k, f(k)$ is a multiple of 6	
Let's sahow that $f(k+1)$ is then a multiple of 6.	
f(k+1) = 3(k+1)(k+2) - f(k)	
3(k+1)(k+2) is a multiple of 6	
f(k) is a multiple of 6 (by hypothesis)	
so $f(k+1)$ is a multiple of 6 (as the difference of two multiples of 6)	
Conclusion:	
If P_k is true then P_{k+1} is true, because P_1 is true,	
we can conclude according to the induction principle	
that the proposition is true for all $n \ge 1$.	

Question 8:	Exam report
a) i) $\left(z + \frac{1}{z}\right) \left(z - \frac{1}{z}\right) = z^2 - 1 + 1 - \frac{1}{z^2} = z^2 - \frac{1}{z^2}$	
$ii\left(z+\frac{1}{z}\right)^{4}\left(z-\frac{1}{z}\right)^{2} = \left(z+\frac{1}{z}\right)^{2} \times \left[\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)\right]^{2}$	
$= \left(z^{2} + \frac{1}{z^{2}} + 2\right) \left(z^{2} - \frac{1}{z^{2}}\right)^{2}$	
$= \left(z^{2} + \frac{1}{z^{2}} + 2\right) \left(z^{4} + \frac{1}{z^{4}} - 2\right)$	
$= z^{6} + \frac{1}{z^{2}} - 2z^{2} + z^{2} + \frac{1}{z^{6}} - \frac{2}{z^{2}} + 2z^{4} + \frac{2}{z^{4}} - 4$	
$= \left(z^{6} - \frac{1}{z^{6}}\right) - \left(z^{2} + \frac{1}{z^{2}}\right) + 2\left(z^{4} + \frac{1}{z^{4}}\right) - 4$	

Question 8:continues	Exam report
b)i) $z^n + \frac{1}{z^n} = (\cos n\theta + i\sin n\theta) + (\cos n\theta - i\sin n\theta) = 2\cos n\theta$	
$ii) z^{n} - \frac{1}{z^{n}} = \left(\cos n\theta + i\sin n\theta\right) - \left(\cos n\theta - i\sin n\theta\right) = 2i\sin n\theta$	
c) $\cos^4 \theta \sin^2 \theta = \left(\frac{1}{2^4}\left(z + \frac{1}{z}\right)^4\right)\left(\frac{1}{\left(2i\right)^2}\left(z - \frac{1}{z}\right)^2\right)$	
$= -\frac{1}{64} \left(z + \frac{1}{z}\right)^4 \left(z - \frac{1}{z}\right)^2$	
$= -\frac{1}{64} \left[\left(z^{6} - \frac{1}{z^{6}} \right) - \left(z^{2} + \frac{1}{z^{2}} \right) + 2 \left(z^{4} + \frac{1}{z^{4}} \right) - 4 \right]$	
$= -\frac{1}{64} \left(2\cos 6\theta - 2\cos 2\theta + 4\cos 4\theta - 4 \right)$	
$= -\frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta + \frac{1}{32}\cos 2\theta + \frac{1}{16}$	
$d)\int \cos^4\theta \sin^2\theta d\theta = \int -\frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta + \frac{1}{32}\cos 2\theta + \frac{1}{16}d\theta$	
$= -\frac{1}{192}\sin 6\theta - \frac{1}{64}\sin 4\theta + \frac{1}{64}\sin 2\theta + \frac{1}{16}\theta + c$	

Compone	nt	Maximum		Scaled I	Mark Grade	Boundarie	es
Code	Component Title	Scaled Mark	A	В	C	D	E
MFP2	GCE MATHEMATICS UNIT FP2	75	58	51	44	37	30

|--|

General Certificate of Education January 2009 Advanced Level Examination

AQA

MATHEMATICS Unit Further Pure 2

MFP2

Monday 19 January 2009 1.30 pm to 3.00 pm

For this paper you must have:

an 8-page answer book

the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
 Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP2.
- Answer all questions.
 Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

4 It is given that α , β and γ satisfy the equations		7 (a) Show that	
$\alpha + \beta + \gamma = 1$ $\alpha^2 + \beta^2 + \gamma^2 = -5$		$\frac{\mathrm{d}}{\mathrm{d}x}\left(\cosh^{-1}\frac{1}{x}\right) = \frac{-1}{x\sqrt{1-x^2}}$	(3 marks)
$\alpha^3 + \beta^3 + \gamma^3 = -23$		(b) A curve has equation	
(a) Show that $\alpha\beta + \beta\gamma + \gamma\alpha = 3$.	(3 marks)	$y = \sqrt{1 - x^2} - \cosh^{-1} \frac{1}{2}$ (0 < x < 1)	
(b) Use the identity			
$(\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) = \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$			
to find the value of $\alpha\beta\gamma$.	(2 marks)	(i) $\frac{1}{dx} = \frac{1}{x}$;	(4 marks)
(c) Write down a cubic equation, with integer coefficients, whose roots are α , β and γ . (2 marks)	nd y. (2 marks)	(ii) the length of the arc of the curve from the point where $x = \frac{1}{4}$ to the point where $x = \frac{3}{4}$ is $\ln 3$. (5 marks	it where (5 marks)
(d) Explain why this cubic equation has two non-real roots.	(2 marks)		
(e) Given that α is real, find the values of α , β and γ .	(4 marks)	8 (a) Show that	
		$(z^4 - e^{i\theta})(z^4 - e^{-i\theta}) = z^8 - 2z^4 \cos\theta + 1 $	(2 marks)
5 (a) Given that $u = \cosh^2 x$, show that $\frac{du}{dx} = \sinh 2x$.	(2 marks)	(b) Hence solve the equation	
(b) Hence show that		$z^8 - z^4 + 1 = 0$	
$\int_{0}^{1} \frac{\sinh 2x}{\sin h 2x} dx = \tan^{-1}(\cosh^{2} 1) - \frac{\pi}{2}$	(5 marks)	giving your answers in the form $e^{i\phi}$, where $-\pi < \phi \leqslant \pi$.	(6 marks)
$\int_0 1 + \cosh^4 x$ $(1 + \cosh^4 x) = 0$		(c) Indicate the roots on an Argand diagram.	(3 marks)
6 Prove by induction that			
$\frac{2 \times 1}{2 \times 3} + \frac{2^2 \times 2}{3 \times 4} + \frac{2^3 \times 3}{4 \times 5} + \dots + \frac{2^n \times n}{(n+1)(n+2)} = \frac{2^{n+1}}{n+2} - 1$		END OF QUESTIONS	

118

(7 marks)

for all integers $n \ge 1$.

Q Solution	u 0	Marks	Total	Comments	Q Solution	on	Marks	Total	
1(a) LHS = $1 + \frac{1}{2} \left(e^{2\theta} - 2 + e^{-2\theta} \right)$	- e ^{-2θ})	IM		Expansion of $\frac{1}{2}(e^{\theta} - e^{-\theta})^2$ correctly	$\overline{3}(\mathbf{a}) \mathbf{f}(r) - \mathbf{f}(r-1)$				
		Al		Any form ~	$= \frac{1}{4}r^{2}(r+1)^{2} - \frac{1}{4}(r-1)^{2}r^{2}$) ² r ²	M1		
$=\frac{1}{2}(e^{2\theta}+e^{-2\theta})=\cosh 2\theta$	cosh 20	Al	ю	AG	$=\frac{1}{4}r^2\left(r^2+2r+1-r^2+2r-1\right)$	-2r-1)	$\mathbf{A1}$		Correct exp
(b) $3+6\sinh^2\theta=2\sinh\theta+11$	11	MI			= 1,3		$\mathbf{A1}$	ю	AG
$3\sinh^2\theta - \sinh\theta - 4 = 0$		A1		OE	(h) 1 1	1, 1, 1,22	IM		For either /
$(3\sinh\theta - 4)(\sinh\theta + 1) = 0$	0 =	M1		Attempt to factorise or formula		$(1) -\frac{1}{4}(n-1) n^{2}$	AI		
$\sinh\theta = \frac{4}{3}$ or -1		AIF		ft if factorises or real roots found	r=2n:				
$\theta = \ln 3$		AlF			$\left (2n)^{2} = \frac{1}{4} (2n)^{2} (2n+1)^{2} - \frac{1}{4} (2n-1)^{2} (2n)^{2} \right $	$\left(1-\frac{1}{4}(2n-1)^{2}(2n)\right)^{2}$	AI		
$\theta = \ln(\sqrt{2} - 1)$		AIF	9			-			
	Total		6		$\sum_{n=1}^{\infty} r^3 = \frac{1}{4} \cdot 4n^2 (2n+1)^2 - \frac{1}{4} (n-1)^2 n^2$	$-\frac{1}{4}(n-1)^2 n^2$	MI		
2(a) y +		B1		Circle	$=\frac{3}{2}n^{2}(5n+1)(n+1)$	+1)	A1	s	AG
		B1		Correct centre					Altern
		B1		Correct radius					$\sum_{i=1}^{2n} r^3$ and
		BIF	4	Inside shading					Difference Answer
a						Total		8	
	≜ ×				4(a) Use of $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$	$+2\sum \alpha\beta$	MI		
_					$1 = -5 + 2\sum \alpha \beta$		AI		
(b) Correct points P_1 and P_2 indicated	² indicated	BIF		Possibly by tangents drawn ft mirror image of circle in x-axis	$\sum \alpha \beta = 3$		Al	m	AG
$\sin \alpha = \frac{2}{4}$		IM			(b) $1(-5-3) = -23 - 3\alpha\beta\gamma$	 、	IM		For use of 1
$\alpha = \frac{\pi}{2}$		Al			$\alpha\beta\gamma=-5$		Al	7	
$\begin{bmatrix} 6\\ \text{Range is } \frac{\pi}{3} \leqslant \arg z \leqslant \frac{2\pi}{3} \end{bmatrix}$	Sla	A1	4	Deduct 1 for angles in degrees	(c) $z^3 - z^2 + 3z + 5 = 0$		M1 A1F	7	For correct
	Total		×		(d) $\alpha^2 + \beta^2 + \gamma^2 < 0 \Rightarrow \text{non real roots}$ Coefficients real :: conjugate pair	n real roots jugate pair	B1 B1	3	
					(a) $f(-1)=0 \Longrightarrow z+1$ is a factor		1 V I V I		

MFP2 (cont)				
ð	Solution	Marks	Total	Comments
3(a)				
	$=\frac{1}{4}r^{2}(r+1)^{2}-\frac{1}{4}(r-1)^{2}r^{2}$	M1		
	$=\frac{1}{4}r^{2}\left(r^{2}+2r+1-r^{2}+2r-1\right)$	A1		Correct expansions of $(r + 1)^2$ and $(r - 1)^2$
		Al	б	AG
(q)	$r = n$: $n^3 = \frac{1}{4}n^2(n+1)^2 - \frac{1}{4}(n-1)^2n^2$	M1 A1		For either $r = n$ or $r = 2n$. PI
	r = 2n; (2n) ³ = $\frac{1}{4}(2n)^2 (2n+1)^2 - \frac{1}{4}(2n-1)^2 (2n)^2$	AI		
	$\sum_{j=n}^{2n} r^3 = \frac{1}{4} \cdot 4n^2 (2n+1)^2 - \frac{1}{4} (n-1)^2 n^2$	MI		
	$=rac{3}{4}n^{2}(5n+1)(n+1)$	A1	5	AG
				Alternatively $\sum_{i=1}^{2d} r^3$ and $\sum_{i=1}^{p-1} r^3$ stated MIAIA1
				Difference MI for either) Answer AI
	Total		8	
4(a)	Use of $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha\beta$ $1 = -5 + 2\sum \alpha\beta$	MI AI		
	$\sum \alpha \beta = 3$	Al	б	AG
(p)	$1(-5-3) = -23 - 3\alpha\beta\gamma$ $\alpha\beta\gamma = -5$	M1 A1	7	For use of identity
(2)	$z^3 - z^2 + 3z + 5 = 0$	M1 A1F	7	For correct signs and "= 0 "
(p)	$\alpha^2 + \beta^2 + \gamma^2 < 0 \Longrightarrow$ non real roots Coefficients real :: conjugate pair	B1 B1	2	
(e)	$\mathbf{f}(-1) = 0 \Longrightarrow z + 1 \text{ is a factor}$ $(z+1)(z^2 - 2z + 5) = 0$	MIA1 A1		
		AI	4	
	Total		13	

MFP2 (cont)				
0 0		Marks	Total	Comments
7(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\cosh^{-1}\frac{1}{x}\right) = \frac{1}{\left 1\right _{-1}}\left(-\frac{1}{x^2}\right)$	M1A1		M0 if $\frac{dy}{dx} = f(y)$ and no attempt to
	$\sqrt{\frac{x^2}{x^2}}$			substitute back to x
	$=\frac{-1}{x\sqrt{1-x^2}}$	Al	ю	AG
(j)(q)	$\frac{d}{d(\sqrt{1-x^2})} - \frac{-2x}{x}$	B1		For numerator
	$\frac{\mathrm{d}x}{\mathrm{d}x}\left(\sqrt{1-x}\right) - \frac{2\sqrt{1-x^2}}{2\sqrt{1-x^2}}$	B1		For denominator (not $(1-x^2)^{\frac{1}{2}}$)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x}{\sqrt{1-x^2}} + \frac{1}{x\sqrt{1-x^2}}$			
	$=\frac{1-x^2}{1-x^2}=\frac{\sqrt{1-x^2}}{1-x^2}$	IM		For attempt to put over a common denominator
	$x\sqrt{1-x^2}$ x	A1	4	AG
(ii)	$s = \int_{-\frac{3}{2}}^{\frac{3}{2}} \sqrt{1 + \frac{1 - x^2}{x^2}} dx = \int_{-\frac{3}{2}}^{\frac{3}{2}} dx$	IM		For use of $\sqrt{1+\left(\frac{dy}{dL}\right)^2}$
	$\frac{1}{4}$ $\frac{1}{4}$ x^2 $\frac{1}{4}$ x	AIAI		
	$= \left[\ln x \right]_{\frac{1}{4}}^{\frac{3}{4}}$	MI		
	$= \ln \frac{3}{4} - \ln \frac{1}{4} = \ln 3$	Al	5	AG
	Total		12	
8(a)	Correct multiplication of brackets	MI		
	$e^{i\theta} + e^{-i\theta} = 2\cos\theta$	Al	2	Clearly shown
(q)		IM		SC If 'hence' not used and, say,
	$\theta = \frac{\pi}{2}$	$\mathbf{A1}$		$z^{*}-z^{*}+1=0$ is solved by formula, lose π
	4 ر اسانا. 1. 1.	ĮM		MIA1, but then continue MIm1 etc if $\frac{1}{3}$
	$Z = \mathbf{C} \cdot 01 \cdot \mathbf{C}^{*}$ = $\frac{\pi i}{2!} + \frac{2kn}{4} = \frac{-\pi i}{2!} + \frac{2kn}{4}$, E		is obtained
	z = c 01 c $\pm \frac{m}{12}, e^{-\frac{7m}{12}}, e^{\frac{5m}{12}}, e^{\frac{11m}{12}}$	A2, 1, 0F	9	A1 if 3 roots correct
(c)		5		
	*			
	**	B2,1,0		B1 for 4 roots indicated correctly on a circle.
	Indication that $r = 1$	Bl	3	
	Total		11	
	IOIAL		<u>c/</u>	

MFP2 (cont)		W	1.4.11	
ວັ		Marks	lotal	Comments
(a) (a)	$\frac{du}{dx} = 2\cosh x \sinh x$	M1		Any correct method
	$= \sinh 2x$	$\mathbf{A1}$	2	AG
(e)	$I = \int_{x=0}^{x=1} \frac{du}{1+u^2}$	M1A1		Ignore limits here
	$= \left[\tan^{-1} u \right]_{x=0}^{x=1}$	A1		
	$= \left[\tan^{-1} \left(\cosh^2 x \right) \right]_0^1$	AI		Or A1 for change of limits
	$= \tan^{-1}(\cosh^2 1) - \tan^{-1}(\cosh^2 0)$			
	$=\tan^{-1}(\cosh^2 1) - \frac{\pi}{4}$	$\mathbf{A1}$	5	AG
	Total		7	
9	Assume result true for $n - k$			
	Then $\sum_{(r+1)}^{k+1} \frac{2^r \times r}{(r+1)(r+2)}$			SC If no series at all indicated on LHS, deduct 1 and over E0 at end
	r=1 (r+1)(r+2)			ucuuci 1 allu give du at cilu
	$=\frac{2^{r+k}}{k+2} + \frac{2^{r-k}(k+1)}{(k+2)(k+3)} - 1$	M1A1		
	$=\frac{2^{k+1}(k+3+k+1)}{(k+2)(k+3)}-1$	MI		Putting over common denominator (not including the -1 nulses senarated later)
	$=\frac{2^{k+1}2(k+2)}{2^{k+1}(k+2)}-1$	A 1		
	(k+2)(k+3)	ł		
	$=rac{2^{k+2}}{k+3}-1$	Al		
	$k = 1$: LHS $= \frac{1}{3}$, RHS $= \frac{2^2}{3} - 1$	B1		
	$P_k \Rightarrow P_{k+1}$ and P_1 true	El	٢	Must be completely correct
	Total		٢	

AQA – Further pure 2 – Jan 2009 – Answers

Question 1:Exam report
$$a)1+2\sinh^2\theta = 1+2 \times \frac{1}{4} \left(e^{\theta} - e^{-\theta}\right)^2 = 1 + \frac{1}{2} \left(e^{2\theta} + e^{-2\theta} - 2\right)$$
Fractional equation is the equation of the equation is the equatis the equation is the equation is the equat

Question 2:Exam report
$$a) |z - 4i| \le 2$$
 is the region inside the circle
centre A(0,4) and radius $r = 2$. $b)$ Draw the two tangents to the circle from the
originO. We call the points of contact $P_1(z_1)$ and $P_2(z_2)$.
Use trig.properties to work out the argument of z_1 and z_2 :
In the right-angle triangle OAP₁, $\sin \alpha = \frac{opp}{hyp} = \frac{2}{4} = \frac{1}{2}$
 $so \alpha = \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6}$
 $\arg(z_1) = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$ and $\arg(z_2) = \arg(z_1) + 2\alpha = \frac{2\pi}{3}$
 $\frac{\pi}{3} \le \arg(z) \le \frac{2\pi}{3}$ Part (a) was well done apart from a few candidates who
drew their circle at the mirror image of its correct
possible that the tangents needed to be drawn from the
origin to the circle in order to find the possible value of
arg z_1 for $\pi = \frac{\pi}{3}$ and $\arg(z_2) = \arg(z_1) + 2\alpha = \frac{2\pi}{3}$
 $\frac{\pi}{3} \le \arg(z) \le \frac{2\pi}{3}$ Part (a) was well done apart from a few candidates
we their circle at the mirror image of its correct
possible that the tangents needed to be drawn from the
origin to the circle in order to find the possible value of
arg z_1 few were able to manage the trigonometry
involved to reach the correct range, and it was not
uncommon to see $\tan^{-1}(\frac{4}{2})$ appearing, suggesting that
candidates thought that these points were in fact the
points of intersection of the circle with the line through
its centre parallel to the x-axis.

Question 3:	Exam report
a) $f(r) - f(r-1) = \frac{1}{4}r^2(r+1)^2 - \frac{1}{4}(r-1)^2r^2$	
$=\frac{1}{4}r^{2}\left[(r+1)^{2}-(r-1)^{2}\right]$	
$= \frac{1}{4}r^{2}\left(r^{2}+2r+1-r^{2}+2r-1\right)$	
$=\frac{1}{4}r^{2}\left(4r\right)$	
$f(r) - f(r-1) = r^3$	
$b)\sum_{r=n}^{2n}r^3 = \sum_{r=n}^{2n}f(r) - f(r-1) = f(n) - f(n-1) + $	
f(n+1) - f(n) +	
f(n+2) - f(n+1) +	There were many good and completely correct solutions to this question. Virtually all candidates completed part (a)
+	correctly, and in part (b), if an error occurred, it was usually
f(2n-1) - f(2n-2) +	in the selection of an incorrect value for <i>r</i> at one end. For $\frac{2n}{2}$
f(2n) - f(2n-1)	instance, $\sum_{r=n}^{n} r^3$ was taken to be f (2 <i>n</i>) – f (<i>n</i>) rather than
all the terms cancel except $f(2n) - f(n-1)$	f(2n) - f(n-1).
$\sum_{r=n}^{2n} r^3 = f(2n) - f(n-1)$	
$=\frac{1}{4}(2n)^{2}(2n+1)^{2}-\frac{1}{4}(n-1)^{2}n^{2}$	
$=\frac{1}{4}n^{2}\left[4(2n+1)^{2}-(n-1)^{2}\right]$	
$=\frac{1}{4}n^{2}\left(16n^{2}+4+16n-n^{2}+2n-1\right)$	
$=\frac{1}{4}n^{2}\left(15n^{2}+18n+3\right)=\frac{3}{4}n^{2}\left(5n^{2}+6n+1\right)$	
$\sum_{r=n}^{2n} r^3 = \frac{3}{4} n^2 (5n+1)(n+1)$	

Question 4:	Exam report
$a)(\alpha + \beta + \gamma)^{2} = \alpha^{2} + \beta^{2} + \gamma^{2} + 2(\alpha\beta + \alpha\gamma + \gamma\beta)$	
$1^2 = -5 + 2(\alpha\beta + \alpha\gamma + \gamma\beta)$	
so $\alpha\beta + \alpha\gamma + \gamma\beta = 3$	
$b)(\alpha+\beta+\gamma)(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha\beta-\alpha\gamma-\gamma\beta)=\alpha^{3}+\beta^$	$+\gamma^3 - 3\alpha\gamma\beta$ Parts (a), (b) and (c) of this question were
$1 \times (-5 - 3) = -23 - 3\alpha\beta\gamma$	well done apart from odd sign errors here and there. However, there was much
so $\alpha\beta\gamma = -5$	woolly thinking in part (d). For instance, it was not uncommon to see statements
$c) z^{3} - (\alpha + \beta + \gamma) z^{2} + (\alpha \beta + \alpha \gamma + \gamma \beta) z - \alpha \beta \gamma = 0$	such as 'the cubic equation has real
$z^3 - z^2 + 3z + 5 = 0$	coefficients so it must have one real root and a conjugate pair of non-real roots' or
$d(\alpha^2 + \beta^2 + \gamma^2) = -5 < 0$ so at least one of the root is co	$(2^{1} + 2^{2} + 2^{2} + 2^{2})$
And because the coefficients of the equation are REA	
its conjugate is also a root.	Part (e) was poorly answered: it just did not seem to occur to candidates to use the
e) $z^{3} - z^{2} + 3z + 5 = 0$ has an "obvious" root : $\alpha = -1$	factor theorem to find the real root.
<i>indeed</i> : $(-1)^3 - (-1)^2 + 3 \times (-1) + 5 = -1 - 1 - 3 + 5 = 0$	Instead they tried to use the symmetric relations between the roots in order to
Factorise the polynomial $(z+1)(z^2-2z+5) = 0$	find them. This in turn led to heavy algebra with final abandonment.
Discriminant of $z^2 - 2z + 5$: $(-2)^2 - 4 \times 1 \times 5 =$	$= -16 = (4i)^2$
$\beta = \frac{2+4i}{2}$ and $\gamma = \frac{2-4i}{2}$	
$\alpha = -1, \ \beta = 1 + 2i \ , \ \gamma = 1 - 2i$	
Question 5:	Exam report

Question 5:	Exam report
$a)u = \cosh^{2} x, \frac{du}{dx} = 2 \sinh x \cosh x = \sinh 2x$ $du = \sinh 2x \ dx$ $when \ x = 0, u = 1$ $x = 1, u = \cosh^{2} 1$ $I = \int_{0}^{1} \frac{\sinh 2x}{1 + \cosh^{4} x} dx = \int_{1}^{\cosh^{2} 1} \frac{du}{1 + u^{2}} = \left[\tan^{-1} u \right]_{1}^{\cosh^{2} 1}$ $I = \tan^{-1} \left(\cosh^{2} 1 \right) - \tan^{-1} (1)$ $I = \tan^{-1} \left(\cosh^{2} 1 \right) - \frac{\pi}{4}$	Part (a) was usually correctly done. However, responses to part (b) were mixed. It was clear that not all candidates were familiar with $\int \frac{du}{1+u^2}$, even though it is given on page 8 of the formulae booklet. A significant number of candidates gave this integral as ln(1+ cosh ⁴ x).

Question 6:

The proposition P_n : for $n \ge 1$, $\frac{2 \times 1}{2 \times 3} + \frac{2^2 \times 2}{3 \times 4} + \frac{2^3 \times 3}{4 \times 5} + \dots + \frac{2^n \times n}{(n+1) \times (n+2)} = \frac{2^{n+1}}{n+2} - 1$ is to be proven by induction Base case: n = 1LHS: $\frac{2 \times 1}{2 \times 3} = \frac{2}{6} = \frac{1}{3}$ and RHS: $\frac{2^{1+1}}{1+2} - 1 = \frac{4}{3} - 1 = \frac{1}{3}$ P_1 is true Suppose that for n = k the proposition P_k is true. Let's show that the proposition P_{k+1} is true ie let's show that $\frac{2 \times 1}{2 \times 2} + \frac{2^2 \times 2}{2 \times 2} + \frac{2^3 \times 3}{4 \times 5} + \dots + \frac{2^{k+1} \times (k+1)}{(k+2)} = \frac{2^{k+2}}{2 \times 2} - 1$

The let's show that
$$\frac{1}{2\times 3} + \frac{1}{3\times 4} + \frac{1}{4\times 5} + \dots + \frac{1}{(k+2)\times(k+3)} = \frac{1}{k+3}$$

 $\frac{2\times 1}{2\times 3} + \frac{2^2 \times 2}{3\times 4} + \frac{2^3 \times 3}{4\times 5} + \dots + \frac{2^{k+1} \times (k+1)}{(k+2)\times(k+3)}$
 $= \frac{2\times 1}{2\times 3} + \frac{2^2 \times 2}{3\times 4} + \frac{2^3 \times 3}{4\times 5} + \dots + \frac{2^k \times k}{(k+1)\times(k+2)} + \frac{2^{k+1} \times (k+1)}{(k+2)\times(k+3)}$
 $= \frac{2^{k+1}}{k+2} - 1 + \frac{2^{k+1} \times (k+1)}{(k+2)\times(k+3)}$
 $= \frac{2^{k+1}(k+3) + 2^{k+1}(k+1)}{(k+2)(k+3)} - 1 = \frac{2^{k+1}(k+3+k+1)}{(k+2)(k+3)} - 1$
 $= \frac{2^{k+1}(2k+4)}{(k+2)(k+3)} - 1 = \frac{2^{k+2}(k+2)}{(k+2)(k+3)} - 1 = \frac{2^{k+2}}{(k+3)} - 1$

the marking of this question was that although candidates were able to perform the mechanics of proof by induction they did not really understand the theory behind it. In a significant number of solutions not one reference to a series or the use of the Σ symbol occurred. Solutions started 'assume result true for n = k' followed by $\frac{2^{k+1}}{n+2} + 1 + \frac{2^{k+1}(k+1)}{(k+2)(k+3)}$ which was duly shown to be $\frac{2^{k+2}}{k+3} - 1$

Conclusion:

If the proposition is true for n = k, then it is true for n = k + 1. Because it is true for n = 1, according to the induction principal we can conclude that is true true for all $n \ge 1$. **Exam report**

Question 7:		Exam report
$d(1-1)$ 1 1 1 $\sqrt{x^2}$		candidates were able to supply a correct
$a)\frac{d}{dx}\left(\cosh^{-1}\frac{1}{x}\right) = -\frac{1}{x^{2}} \times \frac{1}{\sqrt{\left(\frac{1}{x}\right)^{2} - 1}} = -\frac{1}{x^{2}} \times \frac{\sqrt{x^{2}}}{\sqrt{x^{2}}}$	proof	f of part (a). The derivative of $\cosh^{-1}\left(rac{1}{x} ight)$
$\bigvee(x)$ $\bigvee x$	was a	almost invariably given as
$=-\frac{x}{x^2\sqrt{1-x^2}}$		almost invariably given as $\frac{1}{\sqrt{\left(\frac{1}{x}\right)^2 - 1}}$
d(1,-1) 1		wed by the correct answer after a small
$\frac{d}{dx}\left(\cosh^{-1}\frac{1}{x}\right) = -\frac{1}{x\sqrt{1-x^2}}$		Int of spurious algebra. idates fared better in part (b)(i), although it
		a little surprising how many candidates were
b) $y = \sqrt{1 - x^2} - \cosh^{-1} \frac{1}{x}$ (0 < x < 1)	unab	le to differentiate $\sqrt{1-x^2}$ correctly. Those
dv = 1 1 1 $-r = 1$		dates who continued and attempted part
$i)\frac{dy}{dx} = \frac{1}{2} \times -2x \times \frac{1}{\sqrt{1-x^2}} + \frac{1}{x\sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}} + \frac{1}{x\sqrt{1-x^2}}$		frequently produced a correct solution.
$\frac{dy}{dx} = \frac{1 - x^2}{x\sqrt{1 - x^2}} = \frac{\sqrt{1 - x^2}}{x}$	those	e in which candidates wrote $\sqrt{1 + \left(\frac{\sqrt{1 - x^2}}{x}\right)^2}$
<i>ii</i>) $s = \int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{1 + \frac{1 - x^2}{x^2}} dx = \int_{\frac{1}{4}}^{\frac{3}{4}} \sqrt{\frac{1}{x^2}}$	follov	wed by $\sqrt{1+rac{1-x}{x}}$ (which incidentally gave
$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1+1} \left(\frac{dx}{dx} \right) dx = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1+1} \int_{-1}^{1-1} \int_{-1}^{1} \int_{-$		orrect answer!), or in some cases where
$\int \frac{3}{4} \frac{1}{4} + \int \frac{3}{4} \frac{3}{4} + \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \end{pmatrix}$		idates
$s = \int_{\frac{1}{4}}^{\frac{3}{4}} \frac{1}{x} dx = \left[\ln x\right]_{\frac{1}{4}}^{\frac{3}{4}} = \ln\left(\frac{3}{4}\right) - \ln\left(\frac{1}{4}\right) = \ln(3)$	arrive	ed at $\sqrt{rac{1}{x^2}}$ or $\sqrt{x^{-2}}$ but were unable to
	take	the square root correctly.
Question 8:		Exam report
$a)(z^{4} - e^{i\theta})(z^{4} - e^{-i\theta}) = z^{8} - z^{4}e^{-i\theta} - z^{4}e^{i\theta} + 1 = z^{8} - z^{4}(e^{i\theta} + e^{-i\theta})$	⁹) ₁ 1	
] – 1	
$= z^8 - z^4 \times 2\cos\theta + 1$		
$\left(z^4 - e^{i\theta}\right)\left(z^4 - e^{-i\theta}\right) = z^8 - 2z^4\cos\theta + 1$		Part (a) was quite well done, although for some reason the multiplication of the
b) for $\cos \theta = \frac{1}{2} \left(\theta - \frac{\pi}{2} \right) = z^8 - 2z^4 \cos \theta + 1$ becomes $z^8 - z^4 + 1$	-0	brackets sometimes resulted in

b) for $\cos\theta = \frac{1}{2} \left(\theta = \frac{\pi}{3} \right)$, $z^8 - 2z^4 \cos\theta + 1$ becomes $z^8 - z^4 + 1 = 0$ We can factorise as $\left(z^4 - e^{i\frac{\pi}{3}} \right) \left(z^4 - e^{-i\frac{\pi}{3}} \right) = 0$

We need to solve $z^4 = e^{\pm i\frac{\pi}{3}}$

some reason the multiplication of the brackets sometimes resulted in $z^8 - 2(e^{i\theta} + e^{-i\theta})z^4 + 1$ followed by the printed result. In part (b), a number of candidates lost some marks through attempting to use an 'otherwise' method instead of the 'hence' method as directed.

Those candidates arriving at $z^4 = e^{i\frac{\pi}{3}}$ usually went on to solve the given equation correctly.

The Argand diagram, however, was poorly drawn. Frequently no circle was indicated and roots appeared at different distances from the origin, and in many cases candidates seemed to think that the eight roots were equally spaced round the origin

<i>c</i>)							
Component		Maximum		Scaled Mar	rk Grade B	oundaries	
Code	Component Title	Scaled Mark	A	В	С	D	E
MFP2	GCE MATHEMATICS UNIT FP2	75	60	52	44	36	29

		Answer all questions.	
General Certificate of Education June 2009 Advanced Level Examination	AQA	1 Given that $z = 2e^{\frac{\pi i}{12}}$ satisfies the equation $z^4 = a(1 + \sqrt{3}i)$	
MATHEMATICS Unit Further Pure 2	MFP2	where a is real:	12 months
Friday 5 June 2009 1.30 pm to 3.00 pm			form $re^{j\theta}$, $(5 marks)$
 For this paper you must have: an 8-page answer book the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. 		2 (a) Given that	
Time allowed: 1 hour 30 minutes		$\frac{1}{4r^2 - 1} = \frac{A}{2r - 1} + \frac{B}{2r + 1}$	
 Instructions Use black ink or black ball-point pen. Pencil should only Wisto the information scattered on the front of your menu 	be used for drawing.	find the values of A and B . (b) Use the method of differences to show that	(2 marks)
 write the information required on the properties MFP2. Answer all questions. Show all necessary working; otherwise marks for method may be lost. 	n voor. Ine tranning bour for this may be lost.		(3 marks)
InformationThe maximum mark for this paper is 75.The marks for questions are shown in brackets.		(c) Find the least value of <i>n</i> for which $\sum_{r=1}^{n} \frac{1}{4r^2 - 1}$ differs from 0.5 by less than 0.001.	ess than 0.001.
Advice Unless stated otherwise, you may quote formulae, without proof, from the booklet. 	t proof, from the booklet.		(5 marks)
		3 The cubic equation	
		$z^3 + pz^2 + 25z + q = 0$	
		where p and q are real, has a root $\alpha = 2 - 3i$.	
		(a) Write down another non-real root, β , of this equation.	(1 mark)
		(b) Find:	
		(i) the value of $\alpha\beta$;	(1 mark)
127		(ii) the third root, γ , of the equation;	(3 marks)
7		(iii) the values of p and q .	(3 marks)

- Instructions
 Use black ink or black ball-poin
 Write the information required paper is AQA. The *Paper Refe*Answer all questions.
 Show all necessary working; ot

- InformationThe maximum mark for this 1The marks for questions are s

Advice

4 (a) Sketch the graph of $y = \tanh x$.	(2 marks)	6 (a) Two points, A and B, on an Argand diagram are represented by the complex numbers 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +
(b) Given that $u = \tanh x$, use the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} to show that	s of e^x and e^{-x}	$z + 31$ and $-4 - 31$ respectively. Given that the points A and D are at the ends of a diameter of a circle C ₁ , express the equation of C ₁ in the form $ z - z_0 = k$. (4 marks)
$x = \frac{1}{2} \ln \left(\frac{1+u}{1-u} \right)$	(6 marks)	(b) A second circle, C_2 , is represented on the Argand diagram by the equation $ z-5+4i = 4$. Sketch on one Argand diagram both C_1 and C_2 . (3 marks)
(c) (i) Show that the equation		(c) The points representing the complex numbers z_1 and z_2 lie on C_1 and C_2 respectively and are each that $ z_2 = z_1$ has its maximum value. Find this maximum value of vision
$3 \operatorname{sech}^2 x + 7 \tanh x = 5$		and all short that $ z_1 - z_2 $ has its maximum value. This maximum value, giving your answer in the form $a + b\sqrt{5}$. (5 marks)
can be written as		
$3 \tanh^2 x - 7 \tanh x + 2 = 0$	(2 marks)	7 The diagram shows a curve which starts from the point A with coordinates $(0, 2)$. The curve is such that, at every point P on the curve,
(ii) Show that the equation		dy 1
$3 \tanh^2 x - 7 \tanh x + 2 = 0$		$\frac{dx}{dx} = \frac{2s}{2s}$
has only one solution for x .		where s is the length of the arc AP .
Find this solution in the form $\frac{1}{2}$ ln <i>a</i> , where <i>a</i> is an integer.	(5 marks)	
5 (a) Prove by induction that, if n is a positive integer,		$A(0,2) \xrightarrow{s} P(x,y)$
$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$	(5 marks)	
(b) Hence, given that		(a) (i) Show that
$z = \cos \theta + i \sin \theta$ show that		$\frac{\mathrm{d}s}{\mathrm{d}x} = \frac{1}{2}\sqrt{4+s^2} \tag{3 marks}$
$z^n + \frac{1}{z^n} = 2\cos n\theta$	(3 marks)	(ii) Hence show that
(c) Given further that $z + \frac{1}{z} = \sqrt{2}$ find the value of		$s = 2\sinh\frac{x}{2} \tag{4 marks}$
		(iii) Hence find the cartesian equation of the curve. (3 marks)
$z^{10} + \frac{1}{z^{10}}$	(4 marks)	(b) Show that
		$y^2 = 4 + s^2 \tag{2 marks}$

END OF QUESTIONS

-
면
.=
·🗖
Ŧ
12
- 22
Ξ
Е.
-
포
ž
SI
_
œ
- 8
<u> </u>
-12
ंद
• 🗮
- 55
2
- 2
-
-
6
70
Ē
8
<u>۳</u>
Ξ
ම
_
ా
Ō
- 14
Ξ
8
÷
mar
•
4
2
- 67
Š
1

	nd is for method	r accuracy	or method and accuracy			C mis-copy	R mis-read	required accuracy	V further work	W ignore subsequent work	W from incorrect work	BOD given benefit of doubt	R work replaced by candidate	formulae book	NOS not on scheme	graph	candidate	significant figure(s)	decimal place(s)
mark is for method	mark is dependent on one or more M marks and is for method	mark is dependent on M or m marks and is for accuracy	mark is independent of M or m marks and is for method and accuracy	mark is for explanation	follow through from previous	incorrect result MC	correct answer only MR	correct solution only RA	anything which falls within FW	anything which rounds to ISW	any correct form FIW	answer given B(special case WR	or equivalent FB	2 or 1 (or 0) accuracy marks N(deduct <i>x</i> marks for each error G	no method shown c	possibly implied sf	substantially correct approach dp
Μ	m or dM	А	В	ы	√or ft or F		CAO	cso	AWFW	AWRT	ACF	AG	SC	OE	A2,1	−x EE	NMS	PI	SCA

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

I(a) $z^4 = I6e^{1/3}$ MII AII AI $= I6\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ AI 3 $= 16\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ AI 3 $e = \frac{\pi}{12} + \frac{24\pi}{4}$ MIAI 3 $\theta = \frac{\pi}{12} + \frac{24\pi}{4}$ MIAI 3 $\theta = \frac{\pi}{12} + \frac{24\pi}{4}$ MIAI 3 $Roots are 2e^{12}, 2e^{12}, 2e^{12} ROI 3 2(2) A = \frac{1}{2} BI A_2 Roots are 2e^{12}, 2e^{12}, 2e^{12} ROI A_2 Roots are 2e^{12}, B = -\frac{1}{2} BI A_2 Sum = \frac{1}{2}(1 - \frac{2n+1}{2n+1}) A_1 A_1 Sum = \frac{1}{2}(1 - 2n+1) A_1 A_1 Sum = \frac{1}{2}(2n+1) A_1 A_1 f = \frac{n}{2004} e^{0.001} o^{0.098} A_1 f = \frac{n}$	MFP2		Marles	T_{a4a1}	
$z^{4} = l6e^{\frac{4\pi i}{12}} Ml = l6 \left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right) Al = l6 \left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right) Al = l6 \left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right) Al = 3$ $= 8 + 8\sqrt{3}i; a = 8 Al = 2$ For other roots, $r = 2$ Bl = Al = 3 For other roots, $r = 2$ Bl = NIAI = 3 $\theta = \frac{\pi}{12} + \frac{2\pi i}{4} MIAI = \frac{1}{2}, \theta = \frac{-1\pi i}{2}, 2e^{\frac{-1\pi i}{12}}, 2e^{\frac{-1\pi i}{12}} = \frac{1}{0} + \frac{2\pi i}{2}, 2e^{\frac{-1\pi i}{12}}, 2e^{\frac{-1\pi i}{12}} = \frac{1}{2} + \frac{2\pi i}{2} + 2$	כ	Solution	Marks	1 otal	Comments
$= 16 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \qquad AI = 16 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \qquad AI = 3$ For other roots, $r = 2$ For other	1(a)		IM		Allow M1 if $z^4 = 2e^{\frac{4\pi i}{12}}$
$= 10\left(\cos\frac{3}{3} + 1\sin\frac{3}{3}\right) \qquad AI = 10\left(\cos\frac{3}{3} + 1\sin\frac{3}{3}\right) \qquad AI = 10\left(\cos\frac{3}{3} + 1\sin\frac{3}{3}\right) \qquad AI = 3$ For other roots, $r = 2$ BI $AIF = 3$ For other roots, $r = 2$ BI $AII = 3$ Roots are $2e^{\frac{7\pi}{12}} + \frac{-2\pi}{4}$ $AII = 3$ Roots are $2e^{\frac{7\pi}{12}} + \frac{-2\pi}{4}$ $AII = 3$ $A = \frac{1}{2}, B = -\frac{1}{2}$ $BIF = 2$ Method of differences clearly shown MI MI $AI = 3$ $A = \frac{1}{2}, B = -\frac{1}{2}$ $AI = 3$ $A = \frac{1}{2(n+1)} < 0.001 \text{ or } \frac{n}{2n+1} > 0.499$ $MI = 1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $MI = 1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $MI = 1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $MI = 1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $MI = 1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $MI = 1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $MI = 1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $MI = 250$ $n > 0.004n > 0.998$ $AI = 3$		$(\pi \cdot \pi)$			后
$= 8 + 8\sqrt{5}i; a = 8$ For other roots, $r = 2$		$= 16 \left[\cos \frac{1}{3} + 1811 + 1$	-		
$= 8 + 8\sqrt{3}i; \ a = 8$ For other roots, $r = 2$ For other roots, $r = 2$ $\theta = \frac{\pi}{12} + \frac{2t\pi}{4}$ MIAI $\theta = \frac{\pi}{12} + \frac{2t\pi}{4}$ Roots are $2e^{12}, 2e^{-\frac{2\pi i}{12}}, 2e^{-\frac{11\pi i}{12}}$ Roots are $2e^{12}, 2e^{-\frac{2\pi i}{12}}, 2e^{-\frac{11\pi i}{12}}$ Roots are $2e^{12}, 2e^{-\frac{2\pi i}{12}}, 2e^{-\frac{11\pi i}{12}}$ Roots are $2e^{12}, 2e^{-\frac{11\pi i}{12}}$ Roots $2n+1$ Roots $2n+$			AI		$2a\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)$
$= 8 + 8\sqrt{3}i; \ a = 8$ For other roots, $r = 2$ BI For other roots, $r = 2$ For other roots, $r = 2$ For other roots, $r = 2$ BI $\theta = \frac{\pi}{12} + \frac{24\pi}{4}$ MIAI Roots are $2e^{12} + \frac{24\pi}{4}$ Roots are $2e^{12} + 2e^{12}$ Roots are $2e^{12} + $					
For other roots, $r = 2$ $\theta = \frac{\pi}{12} + \frac{2i\pi}{4}$ $Roots are 2e^{\frac{\pi}{12}}, 2e^{\frac{-i\pi}{12}}, 2e^{-\frac{-i\pi}{12}}$ $Roots are 2e^{\frac{\pi}{12}}, 2e^{-\frac{-i\pi}{12}}, 2e^{-\frac{1}{12}}$ $Roots are 2e^{\frac{\pi}{12}}, 2e^{-\frac{1}{12}}, 2e^{-\frac{\pi}{12}}, 2e$		$= 8 + 8\sqrt{3}i; \ a = 8$	A1F	3	ft errors in 2^4
$\theta = \frac{\pi}{12} + \frac{2k\pi}{4}$ MIAI $\theta = \frac{\pi}{12} + \frac{2k\pi}{4}$ Roots are $2e^{\frac{\pi}{12}}, 2e^{\frac{-\pi}{12}}, 2e^{\frac{-1\pi}{12}}$ Roots are $2e^{\frac{\pi}{12}}, 2e^{\frac{-\pi}{12}}, 2e^{\frac{-1\pi}{12}}$ Roots are $2e^{\frac{\pi}{12}}, 2e^{\frac{-\pi}{12}}, 2e^{\frac{-1\pi}{12}}$ Roots are $2e^{\frac{\pi}{12}}, 2e^{\frac{-\pi}{12}}, 2e^{\frac{-\pi}{12}}$ Roots $\frac{1}{2(2n+1)}, 2e^{\frac{\pi}{12}}, 2e^{\frac{\pi}{12}}$ Roots $\frac{\pi}{2(2n+1)}, 2e^{\frac{\pi}{12}}, 2e^{\frac{\pi}{12}}, 2e^{\frac{\pi}{12}}$ Roots $\frac{\pi}{2(2n+1)}, 2e^{\frac{\pi}{12}}, 2e^{\frac{\pi}{12}}, 2e^{\frac{\pi}{12}}$ Roots $\frac{\pi}{2(2n+1)}, 2e^{\frac{\pi}{12}}, 2e^{\frac$	4	For other mode $= -3$	Ē		
$\theta = \frac{n}{12} + \frac{2M}{4}$ MIAI Roots are $2e^{\frac{2M}{12}}$, $2e^{\frac{-2M}{12}}$, $2e^{\frac{-1M}{12}}$, $2e^{\frac{-1M}{12}}$ Roots are $2e^{\frac{2M}{12}}$, $2e^{\frac{-2M}{12}}$, $2e^{\frac{-1M}{12}}$ Roots are $2e^{\frac{2M}{12}}$, $2e^{\frac{-2M}{12}}$, $2e^{\frac{1}{12}}$, $2e^{\frac{2M}{12}}$ Roots are $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$ Roots are $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}{12}}$ Roots are $2e^{\frac{2M}{12}}$, $2e^{\frac{2M}$		$\pi - 2l_{\pi}$	q		for realising roots are of form $2 \times 6^{\circ}$ M1 for strictly correct θ
Roots are $2e^{\frac{7\pi}{12}}$, $2e^{\frac{-5\pi}{12}}$, $2e^{\frac{-11\pi}{12}}$, $2e^{\frac{-1\pi}{12}}$, $2e^{\frac$		$\theta = \frac{\eta}{12} + \frac{\zeta \eta}{2}$	1 A 1 A 1		(π)
Roots are $2e^{\frac{7\pi}{12}}$, $2e^{\frac{-3\pi}{12}}$, $2e^{\frac{-11\pi}{12}}$ A2.1, 5 $A = \frac{1}{2}$, $B = -\frac{1}{2}$ Total 8 $A = \frac{1}{2}$, $B = -\frac{1}{2}$ B11, 2 8 Method of differences clearly shown M1 3 Sum = $\frac{1}{2}(1 - \frac{1}{2n+1})$ A1 3 $= \frac{1}{2n+1}$ A1 3 $= \frac{1}{2n+1}$ A1 3 $= \frac{1}{2n+1}$ 0.001 or $\frac{n}{2n+1}$ 0.499 $n = \frac{0.098}{0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ M1 $n = 250$ $n = 250$ A1		t 71			i.e must be $\left(\text{their } \frac{\pi}{3} + 2k\pi \right) \times \frac{\pi}{4}$
Accors are 2^{-2} , 2^{-2} , 2^{-2} , 2^{-2} A21, 5 A21, 2		$\frac{7\pi i}{12} - \frac{5\pi i}{2} - \frac{5\pi i}{2} - \frac{5\pi i}{2} - \frac{12\pi i}{2} - \frac{11\pi i}{2}$			$\frac{1}{2}$ error in $\frac{\pi}{2}$ or r
$A = \frac{1}{2}, B = -\frac{1}{2}$ Total 8 $A = \frac{1}{2}, B = -\frac{1}{2}$ Total 8 Method of differences clearly shown MI 8 Sum $= \frac{1}{2} (1 - \frac{1}{2n+1})$ BIF 2 $B = \frac{n}{2n+1}$ A1 3 $= \frac{n}{2n+1}$ A1 3 $= \frac{n}{2(2n+1)} < 0.001$ or $\frac{n}{2n+1} > 0.499$ MI $1 < 0.004n + 0.002$ or $n > 0.998n + 0.499$ MI $n > \frac{0.998}{0.004}$ or $0.004n > 0.998$ A1 $n > \frac{0.998}{0.004}$ or $0.004n > 0.998$ A1 $n = 250$ A1 3			A2.1.		
$A = \frac{1}{2}, B = -\frac{1}{2}$ $A = \frac{1}{2}, B = -\frac{1}{2}$ $A = \frac{1}{2}, B = -\frac{1}{2}$ $B = \frac{1}{2}$ $B = \frac{1}{2}$ $B = \frac{1}{2}$ $A = \frac{1}{2}$			ΟF	n	
$A = \frac{1}{2}, B = -\frac{1}{2}$ $B = \frac{1}{2}, B = \frac{1}$		E		G	
$A = \frac{1}{2}, B = -\frac{1}{2}$ $BIF = 2$ $Method of differences clearly shown MI = \frac{1}{2} \left(1 - \frac{1}{2n+1}\right)$ $Sum = \frac{1}{2} \left(1 - \frac{1}{2n+1}\right)$ $AI = \frac{1}{2n+1}$ $AI = 3$ $MI = 250$ $AI = 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $AI = 250$ $AI = 250$ $AI = 3$				ð	
MI A1 A1 A1 3 A1 3 A1 3 A1 3 A1 3 A1 3 A1	2(a)	$A = \frac{1}{2}, B = -\frac{1}{2}$	B1, B1F	2	For either A or B For the other
A1 3 A1 3 M1 3 A1 3 A1 3 A1F 3 A1F 3 Fotal 8	(q)	Method of differences clearly shown	IM		
$2(-2n+1) = \frac{2(-2n+1)}{2n+1} = \frac{n}{2n+1} = \frac{n}{2n+1} = \frac{n}{2n+1} = \frac{n}{2(2n+1)} < 0.001 \text{ or } \frac{n}{2n+1} > 0.499 = \frac{n}{2(2n+1)} < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499 = \frac{n}{2004} = \frac{n}{0.004} = \frac{n}{0.004n} = \frac{n}{0.004n} = \frac{n}{0.004n} = \frac{n}{0.004} = \frac{n}{0.004n} = \frac{n}{0.004} = \frac{n}{0.004n} = \frac{n}{0.$		$Sum = \frac{1}{2} \left(1 - \frac{1}{2} \right)$	A1		
$= \frac{n}{2n+1}$ $= \frac{1}{2(2n+1)} < 0.001 \text{ or } \frac{n}{2n+1} > 0.499$ NII $1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499$ $n > \frac{0.998}{0.004} \text{ or } 0.004n > 0.998$ AI $n = 250$ AIF 3 $Total$		2(2n+1)			
$\frac{1}{2(2n+1)} < 0.001 \text{ or } \frac{n}{2n+1} > 0.499 \qquad \text{MI}$ $1 < 0.004n + 0.002 \text{ or } n > 0.998n + 0.499 \qquad \text{AI}$ $n > \frac{0.998}{0.004} \text{ or } 0.004n > 0.998 \qquad \text{AI}$ $n = 250 \qquad \text{AIF} \qquad 3$ $\text{Total} \qquad 8$		$=\frac{n}{2n+1}$	Al	ю	AG
-0.002 or n > 0.998n + 0.499 or $0.004n > 0.998$ A1 A1 A1 A1F 3 A1F 3 Total B	(c)		MI		Condone use of equals sign
or 0.004 <i>n</i> > 0.998 A1 A1 3 A1F 3 A1F 3		1 < 0.004n + 0.002 or $n > 0.998n + 0.499$			
AIF 3 Total 8		$n > \frac{0.998}{0.004}$ or $0.004n > 0.998$	Al		OE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		n = 250	A1F	ю	ft if say 0.4999 used
œ					If method of trial and improvement used, award full marks for a completely correct solution showing working
		Total		8	ginviou ginuona nonnica

0	Solution	Marks	Total	Comments
4(c)(i)	4(c)(i) Use of $\tanh^2 x = 1 - \operatorname{sech}^2 x$	III		
	Printed answer	A1	2	
(ii)	$(3 \tanh x - 1)(\tanh x - 2) = 0$	MI		Attempt to factorise
	$\tan x \neq 2$	E1		Accept tanh $x\neq 2$ written down but not ignored or just crossed out
	t 1	14		
	141111 A - 3	R		
	$x = \frac{1}{2} \ln 2$	M1 A1F	Ŷ	H
	Total		15	
5(a)	$(\cos\theta + i\sin\theta)^{k+1} =$			
	$(\cos k\theta + i \sin k\theta)(\cos \theta + i \sin \theta)$	MI		
	Multiply out	A1		Any form
	$= \cos(k+1)\theta + 1\sin(k+1)\theta$ True for $n = 1$ shows	Al		Clearly shown
	$P(k) \Rightarrow P(k+1)$ and $P(1)$ true	ΕI	5	provided previous 4 marks earned
	$\frac{1}{1} = \frac{1}{1} = \cos n\theta - i\sin n\theta$			or $z^{-n} = \cos(-n\theta) + i\sin(-n\theta)$
(q)	$z^n \cos n\theta + i \sin n\theta$	MIAI		$\operatorname{SC}(\cos\theta + i\sin\theta)^{-n}$
~				quoted as $\cos n\theta - i \sin n\theta$
	$z^n + \frac{1}{z^n} = 2\cos n\theta$	A1	ю	carns MITAL Only AG
	٩			
(c)	$z + \frac{1}{z} = \sqrt{2}$			
	$2\cos\theta = \sqrt{2}$	M1		
	$\theta = \frac{\pi}{\lambda}$	A1		
	$z^{10} + \frac{1}{10} = 2\cos\left(\frac{10\pi}{4}\right)$	IJŊ		M0 for merely writing
		TIM		$z^{10} + \frac{1}{z^{10}} = 2\cos 10\theta$
	=0	AlF	4	
	Total		12	

MFP2 (cont)				
ð	Solution	Marks	Total	Comments
3(a)	2+3i	B1	1	
(i)(q)	$\alpha\beta$ = 13	B1	1	
(II)	$\alpha\beta + \beta\gamma + \gamma\alpha = 25$	MI		M1A0 for -25 (no ft)
	$\gamma(\alpha + \beta) = 12$ $\gamma = 3$	AIF AIF	ю	ft error in $\alpha\beta$
(11)	$p = -\sum \alpha = -7$	MI		MI for a correct method for either <i>p</i> or <i>q</i>
к. 7	$q = -\alpha\beta\gamma = -39$	AIF	3	ft from previous errors
	Alternative for (b)(ii) and (iii):			p and $q$ must be real for sign errors in $p$ and $q$ allow MI but A0
(i)	Attempt at $(z-2+3i)(z-2-3i)$	(IM1)		
		(A1)		
	cubic is $(z^2 - 4z + 13)(z - 3) :: \gamma = 3$	(A1)	(3)	
(iii)	Multiply out or pick out coefficients	(IMI)		
	p = -7, q = -39	(IA) AI)	(3)	
	Total		8	
4(a)	Sketch, approximately correct shape	B1		B0 if curve touches asymptotes
	Asymptotes at $y = \pm 1$	B1	2	lines of answer booklet could be used for asymptotes be strict with sketch
(q)	Use of $u = \frac{\sinh x}{\cosh x}$	IMI		
	$= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ or $\frac{e^{2x} - 1}{e^{2x} + 1}$	Al		
	$u(e^x + e^{-x}) = e^x - e^{-x}$	IM		M1 for multiplying up
	$\mathbf{e}^{-\mathbf{x}}\left(1+u\right)=\mathbf{e}^{\mathbf{x}}\left(1-u\right)$	A1		Al for factorizing out e's or Ml for attempt at $1+u$ and $1-u$ in terms of $e^x$
	$e^{2x} = \frac{1+\mu}{1-\mu}$	ml		
	$x = \frac{1}{2} \ln \left( \frac{1+u}{1-u} \right)$	Al	6	AG

MFP2 (cont)				
0	Solution	Marks	Total	Comments
7(a)(i)	7(a)(i) $\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(\frac{s}{2}\right)^2}$	MIAI		Allow M1 for $s = \int \sqrt{1 + \left(\frac{s}{2}\right)^2} dx$
				then A1 for $\frac{dy}{dx}$
	$=\frac{1}{2}\sqrt{4+s^2}$	A1	3	AG
(ij)	$\int \frac{\mathrm{d}s}{\sqrt{4+s^2}} = \int \frac{1}{2} \mathrm{d}x$	IM		For separation of variables; allow without integral sign
	$\sinh^{-1}\frac{s}{2} = \frac{1}{2}x + C$	A1		Allow if $C$ is missing
	C = 0 $C = 0$	Al		5 · · · · · · · · · · · · · · · · · · ·
	s - 2500 - 2			SC incomplete proof of (a)(ii),
		A1	4	differentiating $s = 2\sinh \frac{x}{2}$ to arrive at $\frac{ds}{dx} = \frac{1}{2}\sqrt{4+s^2}$
				allow M1A1 only $(2/4)$
(II)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh \frac{1}{2}x$	IM		
	$y = 2\cosh\frac{1}{2}x + C$	$\mathbf{A1}$		Allow if $C$ is missing
	C = 0	A1	3	Must be shown to be zero and CAO
( <b>p</b> )	$\mathbf{(b)}  y^2 = 4\left(1 + \sinh^2 \frac{x}{2}\right)$	IM		Use of $\cosh^2 = 1 + \sinh^2$
	$= 4 + s^2$	Al	2	AG
	Total		12	
	TOTAL		75	



#### AQA – Further pure 2 – Jun 2009 – Answers

#### **Question 1:**

a) 
$$z = 2e^{i\frac{\pi}{12}}$$
 so  $z^4 = \left(2e^{i\frac{\pi}{12}}\right)^4 = 16e^{i\frac{\pi}{3}}$   
 $z^4 = 16\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 16\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$   
 $z^4 = 8(1 + i\sqrt{3})$   $a = 8$   
b) let's write  $z = re^{i\theta}$ ,  $z^4 = r^4e^{i4\theta}$   
 $z$  is a solution of this equation when  
 $r^4 = 16$  and  $4\theta = \frac{\pi}{3} + k2\pi$   
 $r = 2$  and  $\theta = \frac{\pi}{12} + k\frac{\pi}{2}$   $k = -2, -1, 0, 1$   
Solutions are  $: 2e^{i\frac{\pi}{12}}$ ,  $2e^{-i\frac{5\pi}{12}}$ ,  $2e^{-i\frac{11\pi}{12}}, 2e^{i\frac{7\pi}{12}}$ 

**Exam report** 

This question proved to be slightly more demanding for candidates than had been anticipated.

The main difficulty in part (a) was that, having written down

 $2^4 e^{i\frac{\pi}{3}}$  (or frequently incorrectly  $2e^{i\frac{\pi}{3}}$ ), candidates were unsure about how to proceed, and they either abandoned this part of the question at that point or then tried to manipulate  $a(1+i\sqrt{3})$  with little success.

Question 2:	Exam report
$a)\frac{A}{2r-1} + \frac{B}{2r+1} = \frac{A(2r-1) + B(2r+1)}{(2r+1)(2r-1)}$	
$=\frac{(2A+2B)r+A-B}{4r^2-1}$	
$=\frac{4r^2-1}{4r^2-1}$	
this is equal to $\frac{1}{4r^2-1}$ when $A-B=1$ and $2A+2B=0$	
$A = \frac{1}{2} and B = -\frac{1}{2}$	
$b)\sum_{r=1}^{n}\frac{1}{4r^{2}-1} = \sum_{r=1}^{n}\frac{1}{2(2r-1)} - \frac{1}{2(2r+1)} = \frac{1}{2} - \frac{1}{6} + \frac{1}{6} - \frac{1}{10} + \frac{1}{10} $	Almost all candidates produced correct solutions to parts (a) and (b), apart from the odd arithmetical slip.
$\frac{1}{10} - \frac{1}{14} + \dots +$	There was, however, less success with part (c). Few
$\frac{1}{4n-6} - \frac{1}{4n-2} +$	candidates worked with inequalities (although the use of the equals sign was condoned) and the lack of ability
	to solve an equation in <i>n</i> with decimals involved led to the solutions for <i>n</i> which common sense should have
$\frac{1}{4n-2} - \frac{1}{4n+2}$	told candidates was impossible. It was not infrequent to see <i>n</i> as a decimal less than unity and, even when
All the terms cancel except $\frac{1}{2} - \frac{1}{4n+2}$	candidates, using equalities, arrived at 249.5, they left it as their final answer, not considering that <i>n</i> had to be
$\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{1}{2} - \frac{1}{4n + 2} = \frac{4n + 2 - 2}{2(4n + 2)} = \frac{4n}{4(2n + 1)} = \frac{n}{2n + 1}$	integral.
$c)\frac{1}{2} - \sum_{r=1}^{n} \frac{1}{4r^2 - 1} < 0.001$	
$\frac{1}{2} - \left(\frac{1}{2} - \frac{1}{4n+2}\right) < 0.001 \qquad \frac{1}{4n+2} < 0.001$	
$4n+2 > \frac{1}{0.001}$ $4n > 998$	
n > 249.5 $n = 250$	

Question 3:	Exam report
$z^3 + pz^2 + 25z + q = 0$ has roots $\alpha, \beta, \gamma$	
p and q are real numbers.	
a) $\alpha = 2 - 3i$ . Because the coefficients of the equation are REAL numbers $\alpha^*$ is also a root : $\beta = 2 + 3i$ b)i) $\alpha\beta = (2 - 3i)(2 + 3i) = 4 + 9 = 13$ ii) $\alpha\beta + \alpha\gamma + \beta\gamma = 25$ $\alpha\beta + \gamma(\alpha + \beta) = 25$	S, Responses to this question were good, and the vast majority of candidates produced a completely correct solution. If errors did occur they were usually arithmetic, although occasionally $p$ and $q$ were given as Σα and αβγ respectively with no consideration being given to their sign.
$a\beta + \gamma (\alpha + \beta) = 23$ $13 + \gamma \times 4 = 25 \qquad \gamma = 3$ $iii) \alpha\beta\gamma = -q = 13 \times 3 = 39 \qquad q = -39$ $\alpha + \beta + \gamma = -p = 4 + 3 = 7 \qquad p = -7$	
Question 4:	Exam report
a) $y = \tanh x$ b) $u = \tanh x = \frac{\sinh x}{\cosh x} = \frac{\frac{1}{2}(e^x - e^{-x})}{\frac{1}{2}(e^x + e^{-x})} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	
Factorise num. and den. by $e^{-x}$	
$u = \tanh x = \frac{e^{-x}(e^{2x} - 1)}{e^{-x}(e^{2x} + 1)} = \frac{e^{2x} - 1}{e^{2x} + 1} = u$ Now make $e^{2x}$ the subject of the expression $e^{2x} - 1 = u(e^{2x} + 1)$ $e^{2x} - ue^{2x} = u + 1$	Sketches were poor in part (a). Sometimes asymptotes were not drawn and even when they were sketches crossed or mingled with their asymptotes. It was not uncommon to see $\frac{\pi}{2}$ or $\pi$ on candidates' diagrams

 $\operatorname{sech}^2 x = \frac{1}{\cosh^2 x} = 1 - \tanh^2 x$ 

see  $\frac{\pi}{2}$  or  $\pi$  on candidates' diagrams showing some confusion with the graph of

 $y = \tan x$ .

In part (b), provided that candidates knew what to do when they reached  $u = \frac{e^{2x} - 1}{e^{2x} + 1}$ 

, they almost always went on to complete this part correctly, but a substantial number of solutions petered out at this point.

Part (c) was well done apart from the rejection of tanh x = 2 where lack of adequate reasoning for its rejection was often apparent.

$$3-3 \tanh^{2} x + 7 \tanh x - 5 = 0$$
  

$$3 \tanh^{2} x - 7 \tanh x + 2 = 0$$
  
ii)  $3 \tanh^{2} x - 7 \tanh x + 2 = 0$   
 $(3 \tanh x - 1)(\tanh x - 2) = 0$   
 $\tanh x = \frac{1}{3} \text{ or } \tanh x = 2 \text{ (no solution for all } x, -1 \le \tanh x \le 1)$   

$$x = \frac{1}{2} \ln \left( \frac{1+\frac{1}{3}}{1-\frac{1}{3}} \right) = x = \frac{1}{2} \ln(2)$$

 $x = \frac{1}{2} \ln \left( \frac{1+u}{1-u} \right)$ 

 $e^{2x}(1-u) = 1+u$ 

 $c)i)3\mathrm{sech}^2x + 7\tanh x = 5$ 

 $3(1 - \tanh^2 x) + 7 \tanh x = 5$ 

 $e^{2x} = \frac{1+u}{1-u}$  so  $2x = \ln\left(\frac{1+u}{1-u}\right)$ 

Question 5:	Exam report
a) The proposition $P_n$ : for $n \ge 0$ , $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$	
is to be proven by induction	
base case: $n = 0$	
LHS: $(\cos\theta + i\sin\theta)^0 = 1$	
$RHS:\cos 0 + i\sin 0 = 1$	
$P_1$ is true	
Let's suppose that for $n = k$ the proposition is true	
Let's show that the proposition is true for $n = k + 1$	
<i>i.e</i> , Let's show that $(\cos \theta + i \sin \theta)^{k+1} = \cos(k+1)\theta + i \sin(k+1)\theta$	
$(\cos\theta + i\sin\theta)^{k+1} = (\cos\theta + i\sin\theta)^k \times (\cos\theta + i\sin\theta)$ = $(\cos k\theta + i\sin k\theta) \times (\cos\theta + i\sin\theta)$ = $(\cos k\theta \cos\theta - \sin k\theta \sin\theta) + i(\sin k\theta \cos\theta + \cos k\theta \sin\theta)$ Using the formulae $\cos(A+B) = \cos A \cos B - \sin A \sin B$ and $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $(\cos\theta + i\sin\theta)^{k+1} = \cos(k\theta + \theta) + i\sin(k\theta + \theta)$ = $\cos(k+1)\theta + i\sin(k+1)\theta$ Q.E.D	The general rules applicable to proof by induction in part (a) were usually understood, but because candidates realised that the product of $\cos\theta + i \sin\theta$ with $\cos k\theta + i \sin k\theta$ had to result in $\cos (k + 1)\theta + i \sin (k + 1)\theta$ , many lost marks through omitting some of the intermediate steps.
Conclusion: If the proposition is true for n=k, then it is true for n=k+1. Because it is true for n=0, we can conclude, according to the induction principal that it is true for all $n \ge 0$ . for all $n \ge 0$ . for all $n \ge 0$ . $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ $b) z = \cos \theta + i \sin \theta$ so $z^n = \cos n\theta + i \sin n\theta$ $\frac{1}{z} = \cos(-\theta) + i \sin(-\theta)$ so $\frac{1}{z^n} = \frac{1}{\cos(n\theta) + i \sin(n\theta)} = \frac{\cos(n\theta) - i \sin(n\theta)}{\cos^2(n\theta) + \sin^2(n\theta)}$ $= \cos(n\theta) - i \sin(n\theta)$ $z^n + \frac{1}{z^n} = 2\cos n\theta$ $c) z + \frac{1}{z} = \sqrt{2} = 2 \times \frac{\sqrt{2}}{2} = 2\cos \theta$ with $\theta = \frac{\pi}{4}$ so $z^n + \frac{1}{z^n} = 2\cos 10 \times \frac{\pi}{4} = 2\cos \frac{5\pi}{2} = 2\cos \frac{\pi}{2} = 0$	In part (b), many candidates lost a mark by assuming that (cos θ i sinθ) ⁻ⁿ was equal to cos nθ – i sin nθ without any justification. Part (c) was almost invariably correctly done.

Exam report
The coordinates of the centre of the circle in part (a) were usually obtained, but the notation was often poor and it was not uncommon to see the centre of the circle $C_1$ written as (-1,-i) and, on the diagram, the scale on the <i>y</i> - axis written as i, 2i, 3i and so on. Also, radius and diameter were commonly confused. Sketches in part (b) varied considerably, the best being those who used compasses for their circles. These were generally readable with centre and radius indicated. However, some candidates chose to draw their circles by plotting points and joining up by freehand. These sketches turned out to be very poor. The circle $C_2$ was sometimes mistakenly drawn in the incorrect quadrant through choice of centre as (-5, 4) whilst others either failed to realise that the circle $C_2$ touched the <i>x</i> -axis or drew a circle touching both axes. In part (c), although many candidates placed $z_1$ and $z_2$ on their diagram in the approximately correct positions, not all realised that these points were at the intersections of $C_1$ and $C_2$ and the line $O_1O_2$ , proved to be beyond many.

a

	Γ
Question 7:	Exam report
$a(i)\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(\frac{s}{2}\right)^2} = \sqrt{\frac{4 + s^2}{4}}$	
$\frac{ds}{dx} = \frac{1}{2}\sqrt{4+s^2}$	
$ii)\frac{1}{\sqrt{4+s^2}}\frac{ds}{dx} = \frac{1}{2}$	
$\int \frac{1}{\sqrt{4+s^2}} ds = \int \frac{1}{2} dx$	Responses to part (a)(i) of this question were reasonable, although candidates starting with
$\sin h^{-1}\left(\frac{s}{2}\right) = \frac{1}{2}x + c$	$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$ tended to flounder.
When $x = 0, s = 0$ so $c = 0$	Part (a)(ii) was very poorly attempted with the majority of candidates failing to realise that the way forward was to
$\frac{s}{2} = \sinh \frac{x}{2} \qquad \qquad s = 2\sinh \frac{x}{2}$	separate the variables in order to integrate. It was very common to see attempts at $\int \sqrt{4+s^2} dx$ treated as if it were
$iii)\frac{dy}{dx} = \frac{1}{2}s = \sinh\frac{x}{2}$	$\int \sqrt{4+s^2} ds$ . Of the few that did manage to separate the variables, virtually
$y = 2\cosh\frac{x}{2} + k$	no one considered the boundary conditions but merely assumed that the constant of integration was zero.
A(0,2) belongs to the curve so	Candidates were more successful with part (a)(iii) and, although the constant of integration was omitted in many
$2 = 2\cosh 0 + k \qquad k = 0$ $w = 2\cosh \frac{x}{2}$	cases, more candidates considered the boundary conditions than in part (a)(ii).
$y = 2\cosh\frac{x}{2}$	Those candidates who managed part (a)(iii) usually went on to work part (b) correctly.
b) $y^2 = 4\cosh^2 \frac{x}{2} = 4(1 + \sinh^2 \frac{x}{2})$	
from a)ii) we know that $\sinh \frac{x}{2} = \frac{s}{2}$	
$y^2 = 4(1 + \frac{s^2}{4})$	
$y^2 = 4 + s^2$	

		Grade boundaries					
Componer	nt	Maximum		Scaled Ma	rk Grade B	oundaries	
Code	Component Title	Scaled Mark	A	в	C	D	E
MFP2	MATHEMATICS UNIT MFP2	75	59	51	43	36	29

				(1 mark)	(3 marks)	(3 marks)	(2 marks)		(2 marks)			(3 marks)					(6 marks)	the <i>x</i> -axis.		(2 marks)	(2 marks)
<b>3</b> The cubic equation	$2z^3 + pz^2 + qz + 16 = 0$	where p and q are real, has roots $\alpha$ , $\beta$ and $\gamma$ .	It is given that $\alpha = 2 + 2\sqrt{3}i$ .	(a) (i) Write down another root, $\beta$ , of the equation.	(ii) Find the third root, $\gamma$ .	(iii) Find the values of $p$ and $q$ .	(b) (i) Express $\alpha$ in the form $re^{i\theta}$ , where $r > 0$ and $-\pi < 0 \leq \pi$ .	(ii) Show that	$(2+2\sqrt{3}i)^n = 4^n \left(\cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3}\right)$	(iii) Show that	$\alpha^{n} + \beta^{n} + \gamma^{n} = 2^{2n+1}\cos\frac{n\pi}{3} + \left(-\frac{1}{2}\right)^{n}$	where $n$ is an integer.	4 A curve $C$ is given parametrically by the equations	$x = \frac{1}{2} \cosh 2t$ , $y = 2 \sinh t$	(a) Express	$\left(\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}\right)^2 + \left(\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}\right)^2$	in terms of cosht.	(b) The arc of C from $t = 0$ to $t = 1$ is rotated through $2\pi$ radians about the x-axis.	(i) Show that $S$ , the area of the curved surface generated, is given by	$S = 8\pi \int_0^1 \sinh t \cosh^2 t  dt$	(ii) Find the exact value of $S$ .
		) to show that	(3 marks)			(1 mark)	(1 mark)			(4 marks)		(3 marks)	(3 marks)		() marks)	(oumi 7)					
Answer all questions.		(a) Use the definitions $\cosh x = \frac{1}{2}(e^x + e^{-x})$ and $\sinh x = \frac{1}{2}(e^x - e^{-x})$ to show that	$\cosh^2 x - \sinh^2 x = 1$	(i) Express	$5 \cosh^2 x + 3 \sinh^2 x$	in terms of $\cosh x$ .	Sketch the curve $y = \cosh x$ .	(iii) Hence solve the equation	$5 \cosh^2 x + 3 \sinh^2 x = 9.5$	giving your answers in logarithmic form.	(a) On the same Areand diagram, draw:	(i) the locus of points satisfying $ z-4+2i  = 4$ ;	(ii) the locus of points satisfying $ z  =  z - 2i $ .	(b) Indicate on your sketch the set of points satisfying both $ z = A + 2i  < A$							

2

January 2010

1

137

Formulae Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length Past functions

Jan 2006 Jun 2006 Jan 2007 Jun 2007 Jan 2008 Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

# **5** The sum to r terms, $S_r$ , of a series is given by

$$S_r = r^2(r+1)(r+2)$$

œ

Given that  $u_r$  is the *r*th term of the series whose sum is  $S_r$ , show that:

(a) (i) 
$$u_1 = 6$$
; (1 mark)  
(i)  $u_2 = 42$ ; (1 mark)  
(ii)  $u_n = n(n+1)(4n-1)$ . (3 marks)

(b) Show that

$$\sum_{r=n+1}^{2n} u_r = 3n^2(n+1)(5n+2)$$

(3 marks)

6 (a) Show that the substitution  $t = \tan \theta$  transforms the integral

$$\int \frac{\mathrm{d}\theta}{9\cos^2\theta + \sin^2\theta}$$
$$\int \frac{\mathrm{d}t}{9 + t^2}$$

(3 marks)

into

(b) Hence show that

$$\frac{3}{0}\frac{d\theta}{9\cos^2\theta + \sin^2\theta} = \frac{\pi}{18}$$

(3 marks)

7 The sequence  $u_1, u_2, u_3, \dots$  is defined by

$$u_1 = 2$$
,  $u_{k+1} = 2u_k + 1$ 

(a) Prove by induction that, for all  $n \ge 1$ ,

$$u_n = 3 \times 2^{n-1} - 1 \tag{5 marks}$$

(b) Show that

$$\sum_{r=1}^{n} u_r = u_{n+1} - (n+2)$$

(3 marks)

(a) (i) Show that 
$$\omega = e^{\frac{2\pi i}{7}}$$
 is a root of the equation  $z^7 = 1$ . (1 mark)  
(ii) Write down the five other non-real roots in terms of  $\omega$ . (2 marks)  
(b) Show that  
 $1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0$  (2 marks)  
(c) Show that:  
(i)  $\omega^2 + \omega^5 = 2\cos\frac{4\pi}{7}$ ;  
(i)  $\omega^2 + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = -\frac{1}{2}$ . (3 marks)

# END OF QUESTIONS

0.0
n
1
5
13
ш
l in mar
•=
p
s used
n
ŝ
iation
.е
at
÷.
5
abbre
q
ab
_
and
al
ā
E I
Ē
ŝ
÷
a
Ξ
Key to mark scheme
$\geq$
e.
$\mathbf{A}$

mark is for method

M m or dM

mark is dependent on one or more M marks and is for method

# No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

	Solution	Marks	Total	Comments
1(a)	LHS = $\frac{1}{4}(e^{x} + e^{-x})^{2} - \frac{1}{4}(e^{x} - e^{-x})^{2}$	MI		
	Correct expansion of either square Shown equal to 1	A1 A1	б	AG
(j)(q)	$8\cosh^2 x - 3$	B1	1	
(ii)	Sketch of $y = \cosh x$	B1	1	Must cross y-axis above x-axis
(iii)	$\cosh x = (\pm) 1.25$	BIF		OE; ft errors in (b)(i); allow $\pm$ missing
	$x = \ln \left(1.25 + \sqrt{1.25^2 - 1}\right)$ = $\ln 2$	M1 A1F		
	$\ln \frac{1}{2}$ by symmetry	AIF	4	Accept -In 2 written straight down
	J			Alternatively, if solved by using $e^{2x} - 2.5e^x + 1 = 0$ , allow M1 for $x = \ln\left(\frac{2.5 \pm \sqrt{2.5^2 - 4}}{2}\right)$
	Total		9	
1				
(i)(i)	Circle	B1		
	Correct centre	B1		x-coordinate $\approx -2 \times y$ -coordinate in correct quadrant, condone $(4, -2i)$
	Touching <i>y</i> -axis	B1	ю	
(ii)	Straight line parallel to <i>x</i> -axis	B1 B1		
	through (0, 1)	B1	б	Assume (0, 1) if distance up y-axis is half distance to top of circle; no other shading outside circle
(q)	Shading: inside circle above line	B1F B1F	2	Whole ansetion reflected in varie loca
	E		c	2 marks

	o Solution	Marks	Total	Comments
4(a)		B1		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 2\cosh t$	BI		
	$\left(\frac{\mathrm{d} x}{\mathrm{d} t}\right)^2 + \left(\frac{\mathrm{d} y}{\mathrm{d} t}\right)^2 = \sinh^2 2t + 4\cosh^2 t$	IM		
	Use of $\sinh 2t = 2\sinh t\cosh t$	ml		Or other correct formula for double angle
	$=4\cosh^2 t \left(\sinh^2 t + 1\right)$	A1		For taking out factor
	$=4\cosh^4 t$	AIF	9	ft errors of sign in $\frac{dx}{dt}$ or $\frac{dy}{dt}$
(b)(i)	$S = 2\pi \int_0^1 2\sinh t \cdot 2\cosh^2 t  dt$	IM		Using the value obtained in (a)
	$= 8\pi \int_0^1 \sinh t \cdot \cosh^2 t  dt$	Al	2	AG
	(ii) $S = \Re \left[ \frac{\cosh^3 t}{3} \right]_0^1$	MI		
	$=\frac{8\pi}{3}\left[\cosh^3 1 - 1\right]$	Al	2	OE eg $\frac{\pi}{3}\left(e+\frac{1}{e}\right)^3-8$
	Total		10	
5(a)(i)	$u_1 = S_1 = 1^2 \cdot 2.3 = 6$	B1	1	AG
(ii)	$u_2 = S_2 - S_1 = 42$	B1	1	AG
(iii)	(iii) $u_n = S_n - S_{n-1}$	MI		
	$=n^{2}(n+1)(n+2)-(n-1)^{2}n(n+1)$	Al		
	=n(n+1)(4n-1)	Al	б	AG
(q)	$\sum_{r=n+1}^{2n}u_r=S_{2n}-S_n$	MI		
	$= (2n)^{2} (2n+1)(2n+2) - n^{2} (n+1)(n+2)$	A1		
	$=3n^{2}(n+1)(5n+2)$	A1	3	AG
	Total		8	

QSolutionMart $3(a)(i)$ $\beta = 2 - 2\sqrt{3}i$ B1 $3(a)(i)$ $\beta = 2 - 2\sqrt{3}i$ B1 $\alpha\beta = 16$ A1 $\alpha = 2\beta = \alpha + \beta + \gamma$ M1 $\alpha = 2\beta = \alpha + \beta + \gamma$ M1 $\alpha = 2, b = +1, \gamma = -\frac{1}{2}$ (M1 $\alpha\beta = 16$ B1 $\alpha\beta = 16$ B1 $\alpha\beta = 16$ $\alpha = 1^{2}$ $\alpha\beta = 16$ $\alpha = 1^{2}$ $\alpha\beta = 16$ $\alpha = 1^{2}$ $\alpha = 2, b = +1, \gamma = -\frac{1}{2}$ (M1 $\beta = -7$ $\alpha = 1^{2}$ $\alpha = 2, b = +1, \gamma = -\frac{1}{2}$ (M1 $\beta = -7$ $\alpha = 1^{2}$ $\alpha = 2, b = +1, \gamma = -\frac{1}{2}$ (M1 $\beta = -7$ $\alpha = 1^{2}$ $\alpha = 2, b = +1, \gamma = -\frac{1}{2}$ (M1 $\beta = -7$ $\alpha = 1^{2}$ $\alpha = 2, \beta = +1, \gamma = -\frac{1}{2}$ (M1 $\beta = -7$ $\alpha = 2^{2}$ (ii) $(2 - 2\sqrt{3}i)^{n} = 4^{n}(\cos \frac{n\pi}{3} - i\sin \frac{\pi}{3})$ (iii) $(2 - 2\sqrt{3}i)^{n} = 4^{n}(\cos \frac{\pi}{3} - i\sin \frac{\pi}{3}) + (-\frac{1}{2})^{n}$ $\alpha^{n} + \beta^{n} + \gamma^{n} = 4^{n}(\cos \frac{\pi}{3} - i\sin \frac{\pi}{3}) + (-\frac{1}{2})^{n}$ $\alpha^{n} + \beta^{n} + \alpha^{n} \cos \frac{\pi}{3} - i\sin \frac{\pi}{3}) + (-\frac{1}{2})^{n}$ $\alpha^{n} + \beta^{n} + \gamma^{n} = \cos \frac{\pi}{3} - i\sin \frac{\pi}{3}) + (-\frac{1}{2})^{n}$	ks Total Comments		Allow for +8 but not $\pm 16$	ω	SC if failure to divide by 2 throughout, allow MIA1 for either $p$ or $q$ correct ft	$\frac{1}{3}$ 3 ft incorrect $\gamma$		81 2		2 AG		3 AG
	Solution N	$\beta = 2 - 2\sqrt{3}1$		$\gamma = -\frac{1}{2}$ A1	Either $\frac{-p}{2} = \alpha + \beta + \gamma$ or $\frac{q}{2} = \alpha\beta + \beta\gamma + \gamma\alpha$ M1	p = -7, $q = 28$ A1F, A1F,	Alternative to (a)(ii) and (a)(iii): $\begin{pmatrix} z^2 - 4z + 16 \end{pmatrix} (az + b)$ (M1) $a\beta = 16$ (B1) $a = 2, b = +1, \gamma = -\frac{1}{2}$ (A1) Equating coefficients p = -7 (M1) q = 28 (A1F)	$r=4, \ \theta=\frac{\pi}{3}$ B1,B1	$\left(2+2\sqrt{3}\mathrm{i}\right)^n = \left(4\mathrm{e}^{\frac{\mathrm{i}}{3}}\right)^n \qquad \qquad$	$=4^{n}\left(\cos\frac{n\pi}{3}+i\sin\frac{n\pi}{3}\right)$ A1	$\alpha^{n} + \beta^{n} + \gamma^{n} = 4^{n} \left(\cos\frac{1}{3} + 1\sin\frac{1}{3}\right) + 4^{n} \left(\cos\frac{n\pi}{3} - 1\sin\frac{n\pi}{3}\right) + \left(-\frac{1}{2}\right)^{n} MI$	$=2^{2n+1}\cos\frac{n\pi}{3} + \left(-\frac{1}{2}\right)^n$ A1

(TFP2 (cont) Q	() Solution	Marks	Total	Comments	MFP2 (cont) Q	() Solution	Marks	Total	Comments
6(a)	$6(\mathbf{a})  t = \tan \theta  \mathrm{d}t = \sec^2 \theta  \mathrm{d}\theta$	B1		OE	8(a)(i)	$\left(e^{\frac{2\pi i}{7}}\right)^7 = e^{2\pi i} = 1$	B1	1	Or $z^7 = e^{2k\pi i}$ $z = e^{\frac{2k\pi i}{7}}$ $k = 1$
	$I = \int \frac{\mathrm{d}t}{(9\cos^2 \theta + \sin^2 \theta) \sec^2 \theta}$	MI		OE	(ii)	Roots are $\omega^2, \omega^3, \omega^4, \omega^5, \omega^6$	MIAI	5	OE; M1A0 for incomplete set
	$=\int \frac{\mathrm{d}t}{t^2+9}$	A1	ю	AG					ac bit for a set of correct roots in terms of $e^{i\theta}$
(q)	(b) $I = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}_0^{\sqrt{3}}$	MI		M1 for tan ⁻¹	(q)	(b) Sum of roots considered =0	M1 A1	2	$\left\{ \operatorname{or} \sum_{j=0}^{6} \omega^{6} = \frac{\omega^{7} - 1}{\omega - 1} = 0 \right.$
	$\frac{1}{3}$ tan ⁻¹ $\frac{\sqrt{3}}{3}$ or $\frac{1}{3}$ tan ⁻¹ $\frac{1}{\sqrt{3}}$	Al			(6)	(c)(i) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1		Or $\cos \frac{4\pi}{7} + i\sin \frac{4\pi}{7} + \cos \frac{4\pi}{7} - i\sin \frac{4\pi}{7}$
	= 18	Al	ю	AG		$=2\cos\frac{4\pi}{7}$	Al	ю	AG A A A A A A A A A A A A A A A A A A
	Total		9			с 2 <del>л</del> , 6 <del>л</del>			. н.
7(a)	7(a) Assume true for $n = k$				(ii)	$\omega + \omega^{\alpha} = 2\cos\frac{\alpha}{7}$ ; $\omega^{\alpha} + \omega^{\alpha} = 2\cos\frac{\alpha}{7}$	B1,B1		Allow these marks if seen earlier in the solution
	$u_{k+1} = 2\left(3 \times 2^{k-1} - 1\right) + 1$	MIAI				Using part (b) Result	M1 A1	4	AG
								12	
	$=3 \times 2^k - 1$	A1		$2^{(k-1)+1}$ not necessarily seen		TOTAL		75	
	True for $n=1$ shown	B1							
	Method of induction clearly expressed	El	5	Provided all 4 previous marks carned					
(q)	(b) $\sum_{r=1}^{n} u_r = \sum_{r=1}^{n} 3 \times 2^{r-1} - n$								
	$=3(2^n-1)-n$	MIA1		M1 for summation, ie recognition of a GP					

MFP2 (cont) 0

141

AG

Al

 $= u_{n+1} - (n+2)$ 

Total

3 8

#### AQA – Further pure 2 – Jan 2010 – Answers

Question 1:	Exam report
$=\frac{1}{4}(e^{2x} + e^{-2x} + 2) - \frac{1}{4}(e^{2x} + e^{-2x} - 2)$ $=\frac{2}{4} + \frac{2}{4} = 1$ b)i)5 cosh ² x + 3 sinh ² x = 5 cosh ² x + 3(cosh ² x - 1) = 8 cosh ² x - 3 ii) y = cosh x graph iii) 5 cosh ² x + 3 sinh ² x = 9.5 8 cosh ² x - 3 = 9.5 cosh ² x = 1.5625 cosh x = 1.25 or cosh x = -1.25 (no solution) x = cosh ⁻¹ (1.25) or x = -cosh ⁻¹ (1.25)	Part (a) was generally well done apart from a few candidates who were unable to square $\frac{1}{2}(e^x + e^{-x})$ successfully. Parts (b)(i) and (b)(ii) likewise were well done although $\pm \frac{1}{2}$ did appear on the <i>x</i> -axis of some sketches in part (b)(i). However in part (b)(iii), those candidates using the logarithmic formula for $\cosh^{-1} x$ from the formulae booklet arrived at a single value of <i>x</i> , namely ln2, but failed to realise that the sketch in part (b)(ii) was intended to give them a hint that – ln 2 was also a solution of the equation. On the other hand, candidates who used the exponential form of either $\cosh x$ or $\cosh 2 x$ automatically produced both answers provided their working was correct, but some of these candidates were unable to handle the algebra leading to a quadratic equation in either $e^x$ or $e^{2x}$ .

Question 2:	Exam report
a(i) z-4+2i  = 4	
this is the circle centre $A(z_A)$ with $z_A = 4 - 2i$	
and radius $r = 4$	
ii) z  =  z - 2i	
This is the perpendicular bisector of the line OB	
with $z_B = 2i$ and $z_O = 0$	
b) The region is the intersection of the inside of the circle	This question was well done overall and many
and the half-plane containing B.	candidates scored all of the eight available marks. Those candidates using mathematical instruments, i.e. ruler
31	and compasses, produced superior solutions. Errors,
2 ^Z 8	when they did occur, were either the misplotting of the centre of the circle, or more commonly, the misplotting
	of the line. The commonest mistakes were either to



draw the line through the point (0, 2) or more frequently through (0, -1). If serious errors were made in the plotting of the line, loss of marks in the shading were almost inevitable.

$2z^{3} + pz^{2} + qz + 16 = 0 \text{ has roots } \alpha, \beta, \gamma.$ $p \text{ and } q \text{ are REAL numbers}$ $\alpha = 2 + 2i\sqrt{3}$	
$\alpha = 2 + 2i\sqrt{2}$	
$\alpha = 2 + 2i\sqrt{3}$	
<i>a</i> ) <i>i</i> ) Since the coefficients of the equation are real numbers,	
$\alpha^*$ is also a root so $\beta = 2 - 2i\sqrt{3}$	
$ii)\alpha\beta\gamma = -\frac{16}{2} = -8$	
$\alpha\beta\gamma = (2+2i\sqrt{3})(2-2i\sqrt{3})\gamma = (4+12)\gamma = 16\gamma$ $so \gamma = -\frac{1}{2}$ $iii) -\frac{p}{2} = \alpha + \beta + \gamma = 2 + 2i\sqrt{3} + 2 - 2i\sqrt{3} - \frac{1}{2}$ $p = -2(4-\frac{1}{2}) = p = -7$ $\frac{q}{2} = \alpha\beta + \alpha\gamma + \beta\gamma = \alpha\beta + \gamma(\alpha + \beta) = 16 - \frac{1}{2} \times 4$ $q = 28$ $b)i)\alpha = 2 + 2i\sqrt{3} = 4\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ $\alpha = 4e^{i\frac{\pi}{3}}$	This question provided a good source of marks for many candidates. The commonest error in part(a) was to write $\alpha\beta\gamma$ as -16, overlooking the fact that the coefficient of $x^3$ was not unity and, of course, leading to an incorrect value for $\gamma$ . This error perpetuated in part (a)(ii) with $\alpha + \beta + \gamma$ written as <i>p</i> or $-p$ and the same for <i>q</i> . Parts (b)(i) and (b)(ii) were generally well done, although it should be stated that when answers are printed, candidates are expected to provide sufficient detail to show clearly how their answers are arrived at. Part (b)(iii) was also quite well done and it was pleasing to note that in some cases where candidates had not arrived at $\gamma = -\frac{1}{2}$ , they went back to part (a)(ii) to identify their error. Just occasionally in part (b)(iii), some candidates made blatant errors in their attempt to convert $4^n \cos \frac{n\pi}{3} + 4^n \cos \frac{n\pi}{3}$ into $2^{2n+1} \cos \frac{n\pi}{3}$

Question 4:	Exam report
$x = \frac{1}{2} \cosh 2t  and  y = 2\sinh t$ $a) \frac{dx}{dt} = \sinh 2t  and  \frac{dy}{dt} = 2\cosh t$ $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = (\sinh^2 2t + 4\cosh^2 t)$ $= \cosh^2 2t - 1 + 4\cosh^2 t$ Using the identity $\cosh t = 2\cosh^2 t - 1$ , we have $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \left(2\cosh^2 t - 1\right)^2 - 1 + 4\cosh^2 t$ $= 4\cosh^4 t - 4\cosh^2 t + 1 - 1 + 4\cosh^2 t$ $= 4\cosh^4 t$ $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 4\cosh^4 t$ $b)i) S = 2\pi \int_0^1 y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$ $S = 2\pi \int_0^1 2\sinh t \times (2\cosh^2 t) dt$ $S = 8\pi \int_0^1 \sinh t \times \cosh^2 t dt$ $ii) S = 8\pi \left[\frac{1}{3}\cosh^3 t\right]_0^1 = \frac{8\pi}{3} (\cosh^3 1 - 1)$	Although a good number of candidates answered part (a) correctly, quite a few stalled at the handling of sinh ² 2 <i>t</i> either by misquoting a formula for the double angle or by using long winded algebraic methods in which they lost direction. Consequently these candidates were unable to score full marks in part (b)(i). Part (b)(ii) proved to be beyond the abilities of the majority of candidates. The usual attempts were either to express replace cosh ² <i>t</i> by 1+sinh ² <i>t</i> or to express cosh ² <i>t</i> in terms of cosh 2 <i>t</i> , thereby making no progress. Few thought of using a simple substitution.

Question 5:	Exam report
$S_r = r^2(r+1)(r+2)$	
$a)i)S_{r} = u_{1} + u_{2} + u_{3} + \dots + u_{r-1} + u_{r}$	
so for $r = 1$ , $S_1 = u_1$	
$u_1 = 1^2 \times (2) \times (3) = u_1 = 6$	
$ii) S_2 = u_1 + u_2 = 6 + u_2$	This question proved to be quite discriminating. Either candidates realised what they were asked to do and scored
and $S_2 = 2^2 \times (3) \times (4) = 48$	full marks, or the notation puzzled them and they were
$u_2 = 48 - 6 =$	unable to proceed beyond part (a)(ii), thinking that the answer to this part should be 48 rather than 42. Some of the
$u_2 = 42$	weaker candidates, whilst realising what to do, failed to take
$iii)u_n = S_n - S_{n-1}$	out common factors in their algebraic manipulation in parts (a)(iii) and (b) with the result that correct answers were
$= n^{2}(n+1)(n+2) - (n-1)^{2}(n)(n+1)$	written down after incorrect algebra.
$= n(n+1) [n(n+2) - (n-1)^{2}]$	
$= n(n+1)(n^{2}+2n-n^{2}-1+2n)$	
$u_n = n(n+1)(4n-1)$	

Question 5:continues
 Exam report

 b) 
$$\sum_{r=n+1}^{2n} u_r = \sum_{r=n+1}^{2n} S_r - S_{r-1} = S_{n+1} - S_n +$$
 $S_{n+2} - S_{n+1} +$ 
 $S_{n+2} - S_{n+2} + \dots$ 
 $+S_{2n} - S_{2n-1}$ 
 $\sum_{r=n+1}^{2n} u_r = S_{2n} - S_n = (2n)^2 (2n+1)(2n+2) - n^2 (n+1)(n+2)$ 
 $= 8n^2 (2n+1)(n+1) - n^2 (n+1)(n+2)$ 
 $= n^2 (n+1) [8(2n+1) - (n+2)]$ 
 $= n^2 (n+1) [8(2n+1) - (n+2)]$ 

Question 6:	Exam report
a) $t = \tan \theta$ so $\frac{dt}{d\theta} = 1 + \tan^2 \theta = 1 + t^2$	
$\frac{dt}{1+t^2} = d\theta$	
$\bullet \cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = \frac{1}{1 + t^2}$	dt dt dt
• $\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{1}{1 + t^2} = \frac{t^2}{1 + t^2}$	In part (a), whilst $\frac{dt}{d\theta}$ was expressed correctly, the manipulation required to obtain the integral in terms of t
$\int \frac{d\theta}{9\cos^2\theta + \sin^2\theta} = \int \frac{1}{\frac{9}{1+t^2} + \frac{t^2}{1+t^2}} \times \frac{dt}{1+t^2} = \int \frac{dt}{9+t^2}$	was frequently faulty. Also in part (b), whilst many candidates were able to write down the correct definite integral $\frac{1}{3} \tan^{-1} \frac{t}{3}$ , full marks were not awarded unless it was
b) when $\theta = 0, t = \tan 0 = 0$	$3 \qquad 3$ clear how the answer $\frac{\pi}{18}$ was arrived at, as this answer was
$\theta = \frac{\pi}{3}, t = \tan\frac{\pi}{3} = \sqrt{3}$	given in the question.
$I = \int_0^{\frac{\pi}{3}} \frac{d\theta}{9\cos^2\theta + \sin^2\theta} = \int_0^{\sqrt{3}} \frac{dt}{9 + t^2} = \left[\frac{1}{3}\tan^{-1}\left(\frac{t}{3}\right)\right]_0^{\sqrt{3}}$	
$I = \frac{1}{3} \times \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) - \frac{1}{3}\tan^{-1}(0) = \frac{1}{3} \times \frac{\pi}{6} = \frac{\pi}{18}$	

Question 7		Exam report			
$u_1 = 2$ , $u_{k+1} = 2u_k + 1$					
<i>a</i> ) the proposition $P_n$ : for all $n \ge 1, u_n = 3 \times 2^{n-1} - 1$					
is to be proven by induction					
Base case: $n = 1$					
LHS: $u_1 = 2$					
$RHS: 3 \times 2^{1-1} - 1 = 3 \times 2^0 - 1 = 3 - 1 = 2$					
$P_1$ is true.		Candidates generally had difficulty in using the			
Let's suppose that for $n = k$ , the propostion is true.		recurrence relationship in their proof by induction, so that responses to this question were rather			
Let's show that it is true for $n = k + 1$ .		poor. Proper detail is essential in the proof by			
<i>i.e.</i> Let's show that $u_{k+1} = 3 \times 2^k - 1$		induction using a sequence and a sequence relationship so that relatively few candidates scored full marks for part (a).			
$u_{k+1} = 2u_k + 1 = 2(3 \times 2^{k-1} - 1) + 1 = 3 \times 2^k - 2 + 1$		Very few candidates indeed were successful in part			
$u_{k+1} = 3 \times 2^k - 1 \qquad Q.E.D$		(b). Only a handful of candidates recognised that a Geometric Progression was involved. If they did,			
	they usually went on to obtain a correct solution. It				
Conclusion:	should perhaps be added that one method of providing an excellent solution was to rewrite $y_{1} = 2y_{1} + 1$ and then				
If the proposition is true for $n = k$ , then it is true for $n = k$	$u_{k+1} = 2u_k + 1$ as $u_{k+1} - u_k = u_k + 1$ and then				
Because it is true for $n = 1$ , we can conclude,	to use the method of differences to sum the series;				
according to the induction principle that it is true for a	but this method of solution was extremely rare.				
b) $\sum_{r=1}^{n} u_r = \sum_{r=1}^{n} 3 \times 2^{r-1} - 1 = 3 \sum_{r=1}^{n} 2^{r-1} - n = 3 \times \frac{2^n - 1}{2 - 1} - n$ remember core 2?: $\sum_{r=1}^{n} 2^{r-1} = 1 + 2 + 4 + 8 + + 2^{n-1} = 1^{\frac{2^n}{2}}$ $\sum_{r=1}^{n} u_r = 3 \times 2^n - 3 - n = (3 \times 2^n - 1) - (n+2) = u_{n+1} - (n+2)$					
r = 1	,				
Question 8:		Exam report			
$(a)i)\omega = e^{i\frac{2\pi}{7}}$					
so $\omega^7 = \left(e^{i\frac{2\pi}{7}}\right)^7 = e^{2i\pi} = \cos 2\pi + i \sin 2\pi = 1$					
$\omega$ is a solution of $z^7 = 1$					
$ii) 7\theta = k \times 2\pi \qquad \theta = k \times \frac{2\pi}{7}$	part (a) was generally well done, relatively few ates expressed the other roots in terms of $\omega$ , but gave them in the form $re^{i\theta}$				
the other non – real solutions are		gave them in the form <i>r</i> e ⁱ⁰			
for $k = 2$ , $e^{i\frac{4\pi}{7}} = \omega^2$ for $k = 3$ , $e^{i\frac{6\pi}{7}} = \omega^3$					
for $k = 4$ , $e^{i\frac{8\pi}{7}} = \omega^4$ for $k = 5$ , $e^{i\frac{10\pi}{7}} = \omega^5$					
for $k = 6$ , $e^{i\frac{12\pi}{7}} = \omega^6$					

Question 8:continues	Exam report
$b)1+\omega+\omega^2+\omega^3+\omega^4+\omega^5+\omega^6$	
is a geometric series with common ration $\omega$	
$1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} + \omega^{5} + \omega^{6} = \frac{1 - \omega^{7}}{1 - \omega} = \frac{1 - 1}{1 - \omega} = 0$ $c)i)\omega^{2} + \omega^{5} = \omega^{2} + \omega^{-2} = e^{i\frac{4\pi}{7}} + e^{-\frac{4\pi}{7}} = 2\cos\frac{4\pi}{7}$ $ii)1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} + \omega^{5} + \omega^{6} = 0$ $\omega + \omega^{2} + \omega^{3} + \omega^{-3} + \omega^{-2} + \omega^{-1} = -1$ $\omega + \omega^{-1} + \omega^{2} + \omega^{-2} + \omega^{3} + \omega^{-3} = -1$ $2\cos\frac{2\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{6\pi}{7} = -1$ $\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} = -\frac{1}{2}$	Few, also, were able to complete part (b). The relation $1+\omega + \omega^2 = 0$ appeared with regularity. Part (c) was poorly answered. Although correct answers were written down as they were given in the question, few responses were convincing and as has already been stated earlier, if answers are given, it is the responsibility of the candidates to supply sufficient working to convince the examiner that they understand the methods involved

Grad	le b	ound	laries

Compone	nt	Maximum		Scaled Ma	ark Grade B	oundaries	
Code	Component Title	Scaled Mark	A	В	С	D	E
MFP2	GCE MATHEMATICS UNIT FP2	75	61	53	45	38	31

	1 (a)		Show that	
			$9\sinh x - \cosh x = 4e^x - 5e^{-x} \qquad (2 marks)$	narks)
	a)	9 (q)	Given that	
A C A General Certificate of Education	ion		$9 \sinh x - \cosh x = 8$	
AUVANCE Level Examination		fi	find the exact value of $tanh x$ . (7 $marks$ )	narks)
Mathematics	MFP2			(and the
Unit Further Pure 2	(e) 7		Express $r(r+2)$ in partial fractions.	nurksj
Wednesday 9 June 2010 1.30 pm to 3.00 pm	<b>q</b> )	in (q)	Use the method of differences to find	
<ul> <li>For this paper you must have:</li> <li>the blue AQA booklet of formulae and statistical tables.</li> </ul>			$\sum_{r=1}^{48} r(r+2)$	
You may use a graphics calculator.		.20	giving your answer as a rational number. $(5 marks)$	narks)
Time allowed <ul> <li>1 hour 30 minutes</li> </ul>				
Instructions     Use black ink or black ball-point pen. Pencil should only be used for	be used for	Ţ	Two loci, $L_1$ and $L_2$ , in an Argand diagram are given by	
<ul> <li>Fill in the boxes at the top of this page.</li> </ul>			$L_1:  z+1+3i  =  z-5-7i $	
<ul> <li>Answer all questions.</li> <li>Write the question part reference (eg (a), (b)(i) etc) in the left-hand</li> </ul>	e left-hand		$L_2$ : $\arg z = \frac{\pi}{4}$	
<ul> <li>You must answer the questions in the spaces provided. Do not write</li> <li>You must answer the questions of the space and the box around each page.</li> <li>Show all necessary working: otherwise marks for method may be</li> </ul>	rite	(a) V ₍	Verify that the point represented by the complex number $2 + 2i$ is a point of intersection of $L_1$ and $L_2$ . (2 marks)	narks)
<ul> <li>Do all rough work in this book. Cross through any work that you do</li> </ul>		(p) Sł	Sketch $L_1$ and $L_2$ on one Argand diagram. (5 marks)	narks)
not want to be marked.		(c) Sł	Shade on your Argand diagram the region satisfying	
Information The marks for questions are shown in brackets.		both	th $ z+1+3i  \leq  z-5-7i $	
<ul> <li>The maximum mark for this paper is 75.</li> </ul>		and	$\frac{\pi}{4} \leqslant \arg z \leqslant \frac{\pi}{2} \tag{2 marks}$	narks)
<ul> <li>Advice</li> <li>Unless stated otherwise, you may quote formulae, without proof, from the booklet.</li> </ul>	ut proof,		۹ t	

Formulae

Roots

Complex De Moivre Proof by numbers theorem induction

Finite series

Inverse trig Hyperbolic Arc length functions

Past Papers

 Jan 2006
 Jun 2007
 Jun 2007
 Jan 2008
 Jun 2008
 Jan 2009
 Jun 2010
 Jun 2010

4	The roots of the cubic equation		<b>6</b> (a) Show that $\frac{1}{2}, \frac{k+1}{2}, \frac{2}{2}, \frac{2}{2}$ .	(2 marks)
	$z^3 - 2z^2 + pz + 10 = 0$			
			(b) Prove by induction that, for all positive integers $n$ ,	
	are $\alpha$ , $\beta$ and $\gamma$ .			
	It is given that $\alpha^3 + \beta^3 + \gamma^3 = -4$ .		$\sum_{r=1}^{T \times Z} \frac{T \times Z}{(T+2)!} = 1 - \frac{Z^{T/2}}{(T+2)!}$	(6 marks)
(a)	Write down the value of $\alpha + \beta + \gamma$ .	(1 mark)		
) (q)	(b) (i) Explain why $x^3 - 2x^2 + px + 10 = 0$ .	(1 mark)		
)	(ii) Hence show that		7 (a) (i) Express each of the numbers $1 + \sqrt{3}i$ and $1 - i$ in the form $re^{i\theta}$ , where $r > 0$ .	> 0.
	$\alpha^2 + \beta^2 + \gamma^2 = p + 13$	(4 marks)		(synarks)
)	(iii) Deduce that $p = -3$ .	(2 marks)	(II) Hence express	
) (c)	(c) (i) Find the real root $\alpha$ of the cubic equation $z^3 - 2z^2 - 3z + 10 = 0$ .	(2 marks)	$(1 + \sqrt{3}i)^8(1 - i)^3$	
	(ii) Find the values of $\beta$ and $\gamma$ .	(3 marks)	in the form $re^{i\theta}$ , where $r > 0$ . (b) Solve the conversion	(3 marks)
5 (a)	Using the identities		$z^{2} = (1 + \sqrt{3}1)^{0}(1 - 1)^{2}$	
	$\cosh^2 t - \sinh^2 t = 1$ , $\tanh t = \frac{\sinh t}{\cosh t}$ and $\operatorname{sech} t = \frac{1}{\cosh t}$		giving your answers in the form $a\sqrt{2}e^{i\theta}$ , where a is a positive integer and $-\pi < \theta \leqslant \pi$ .	(4 marks)

END OF QUESTIONS

(2 marks)

(3 marks)

(3 marks)

150

(ii) Using the substitution  $u = e^{t}$ , find the exact value of *s*.

 $s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t \, \mathrm{d}t$ 

(4 marks)

(i) Show that the arc length, *s*, of *C* between the points where t = 0 and  $t = \frac{1}{2} \ln 3$  is

given by

 $x = \operatorname{sech} t, \ y = 4 - \tanh t$ 

(b) A curve *C* is given parametrically by

(iii)  $\frac{\mathrm{d}}{\mathrm{d}t}(\operatorname{sech} t) = -\operatorname{sech} t \tanh t$ .

(i)  $\tanh^2 t + \operatorname{sech}^2 t = 1;$ (ii)  $\frac{\mathrm{d}}{\mathrm{d}t}(\tanh t) = \operatorname{sech}^2 t;$ 

show that:

(6 marks)

MFP2 (cont) Q	Solution	Marks	Total	Comments
σ	Im r r r r r r r r r r r r r r r r r r r			
(a)	2+2i+1+3i = 2+2i-5-7i	B1		Clearly shown do not allow $ 3+5i  =  -3-5i $ without comment
	$\arg(2+2i) = \frac{\pi}{4}$	B1	7	Clearly shown
(q)	$L_1$ : straight line with negative gradient perpendicular to line joining	B1		
	(-1,-3) to (5,7) through (2,2)	B1 B1		The point $(2,2)$ must be shown either by $(2,2)$ or $2+2i$ or with numbered avec
	$L_2$ : half line through $O$ through $(2, 2)$	B1 B1	5	
(c)	Shading between $\frac{\pi}{4}$ and $\frac{\pi}{2}$ Below $L_4$	B1 B1	7	No marks for shading if circles drawn in (b)
<i>A</i> (a)	$\frac{1}{\alpha + \beta + \nu = 2}$	١a	6	
(p)(l)	$\alpha$ is a root and so satisfies the equation	EI		
(ii)	$\sum \alpha^{3} - 2\sum \alpha^{2} + p \sum \alpha + 30 = 0$ Substitution for $\sum \alpha^{3}$ and $\sum \alpha$ $\sum \alpha^{2} = p+13$	MIA1 ml A1	4	AG
(iii)	$\left(\sum \alpha\right)^2 = \sum \alpha^2 + 2 \sum \alpha \beta$ used	III		do not allow this M mark if used in (b)(ii)
(c)(j)	p = -5 f(-2) = 0 $\alpha = -2$	A1 M1 A1	5 5	AG
(ii)	$(z+2)(z^2-4z+5)=0$	MI		For attempting to find quadratic factor
	$z = \frac{4\pm\sqrt{-4}}{2}$	ml		Use of formula or completing the square m0 if roots are not complex
		Al	с, ;	CAO
	Total		٤I	

Comments	M0 if $cosh x$ mixed up with $sinh x$	AG			It provided quadratic factorises (or use of formula)	PI but not ignored		M1 PI for attempt to use $\tanh x = \frac{\sinh x}{\cosh x}$	or equivalent fraction			$\mathfrak{R}$ incorrect $A$			3 rows (PI) numerical values only	Last row – could be implied		Allow if the $\frac{1}{2}$ is missing only	CAO (or equivalent fraction)	
Total		2						r	-	6		m							2	×
Marks	IM	A1	MI	A1	MI	E1F	AlF	MI	AIF		IM	A1, A1F			M1	AlF	IM	AIF	Al	
MFPZ Solution	$\frac{1}{2} \left[ \frac{9\left(e^x - e^{-x}\right)}{2} - \frac{e^x + e^{-x}}{2} \right]$	$=4e^{x}-5e^{-x}$	(b) Attempt to multiply by $e^x$	$4e^{2x} - 8e^x - 5 = 0$	$\left(2e^{x}-5\right)\left(2e^{x}+1\right)=0$	$e^x \neq -\frac{1}{2}$	$e^{t} = \frac{5}{2}$	$\tanh x = \frac{5}{5} - \frac{3}{5} = \frac{21}{20}$	$\frac{2}{2} + \frac{5}{5} - 29$	Total	<b>2(a)</b> $\frac{1}{r(r+2)} = \frac{A}{r} + \frac{B}{r+2}$	$A = \frac{1}{2}, B = -\frac{1}{2}$	(b) $r=1$ $\frac{1}{1.3} = \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3}\right)$	$r=2$ $\frac{1}{2.4}=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)$	$r=3$ $\frac{1}{3.5}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)$	$r = 48  \frac{1}{48.50} = \frac{1}{2} \left( \frac{1}{48} - \frac{1}{50} \right)$	Cancelling appropriate pairs	$Sum = \frac{1}{2} \left( \frac{1}{1} + \frac{1}{2} - \frac{1}{49} - \frac{1}{50} \right)$	$=\frac{894}{1225}$	Total

MFP2 (cont) Q	t) Solution	Marks	Total	Comments
5(a)(i)	Divide $\cosh^2 t - \sinh^2 t = 1$ by $\cosh^2 t$	M1		Or $\frac{\sinh^2 t}{\cosh^2 t} + \frac{1}{\cosh^2 t}$
	Rearrange	A1	2	AG If solved back to front with no conclusion ending $\cosh^2 t - \sinh^2 t = 1$ B 1 only.
(ii)	$\frac{d}{dt} \left( \frac{\sinh t}{\cosh t} \right) = \frac{\cosh^2 t - \sinh^2 t}{\cosh^2 t}$ $= \operatorname{sech}^2 t$	MIAI AI	n	AG
(iii)	$\frac{d}{dt}(\operatorname{sech} t) = -(\cosh t)^2 \sinh t$ $= -\operatorname{sech} t \tanh t$	MIAI Al	ŝ	Allow Al if negative sign missing AG
(I)(q)	$\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)^2 + \left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)^2 = \operatorname{sech}^4 t + \operatorname{sech}^2 t \tanh^2 t$ Use of $\tanh^2 t + \operatorname{sech}^2 t = 1$ = $\operatorname{sech}^2 t$	M1 m1 A1		Allow slips of sign before squaring for this M1 Correct formula only for m1
	$\therefore s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t  dt$	$\mathbf{A1}$	4	AG (including limits)
())		B1		CAO MI for nutting integrand
	$\left  \operatorname{secn} t  \mathrm{d} t = J \frac{1}{u^2 + 1}  \mathrm{d} u \right $ $\left[ 2  \tan^{-1} u \right]$	MIAI A1		in terms of $u$ ( <u>no</u> sech (lnu)) Or $2 \tan^{-1} e^{t}$
	Change limits correctly or change back	ml		At some stage
	$     \text{to } t \\     = \frac{2\pi}{3} - \frac{2\pi}{4} = \frac{\pi}{6} $	Al	9	CAO
			18	
6(a)	$\frac{1}{(k+2)!} = \frac{k+3}{(k+3)!}$ Result	M1 A1	2	
(q)	Assume true for $n = k$ For $n - k + 1$ $\sum_{r=1}^{k+1} \frac{r \times 2^r}{(r+2)!} = 1 - \frac{2^{k+1}}{(k+2)!} + \frac{(k+1)2^{k+1}}{(k+3)!}$	M1A1		If no LHS of equation, M1A0
	$=1-2^{k+1}\left(\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}\right)$	m1		m1 for a suitable combination clearly shown
	$=1 - \frac{2^{k+2}}{(k+3)!}$	$\mathbf{A1}$		clearly shown or stated true for $n - k + 1$
	uction set out properly	B1 E1	9	Shown Provided previous 5 marks all earned
	Total		×	

0	Solution	Marks	Total	Comments
7(a)(i)	7(a)(i) $1 + \sqrt{3}i = 2e^{\frac{\pi i}{3}}$	BI		B1 both correct
	$1-i=\sqrt{2}e^{\frac{\pi i}{4}}$	BIBI	т	OE
(ii)	<ul> <li>(ii) 2²¹ or equivalent single expression</li> <li>Raising and adding nonversion of a</li> </ul>	BIF MI		No decimals; must include fractional powers
	$\frac{17\pi}{12}$ or equivalent angle	AIF	m	Denominators of angles must be different
(q)	$z = \sqrt[3]{2^{10}\sqrt{2}} e^{\frac{17\pi}{36} + \frac{26\pi}{3}}$	IM		
	$\sqrt[3]{2^{10}\sqrt{2}} = 8\sqrt{2}$	B1		CAO
	$\theta = \frac{17\pi}{36}, -\frac{7\pi}{36}, -\frac{31\pi}{36}$	A2,1F	4	Correct answers outside range: deduct 1 mark only
	Total		10	
	TOTAL		75	

## AQA – Further pure 2 – Jun 2010 – Answers

Question 1:	Evam rapart
	Exam report
a) 9 sinh x - cosh x = $\frac{9}{2}(e^x - e^{-x}) - \frac{1}{2}(e^x + e^{-x})$ = $\frac{8}{2}e^x - \frac{10}{2}e^{-x}$ = $4e^x - 5e^{-x}$ b) 9 sinh x - cosh x = 8 is equivalent to $4e^x - 5e^{-x} = 8$ (× $e^x$ ) $4e^{2x} - 5 - 8e^x = 0$ $4(e^x)^2 - 8e^x - 5 = 0$ $(2e^x - 5)(2e^x + 1) = 0$ $e^x = \frac{5}{2}$ or $e^x = -\frac{1}{2}(no \ solution)$ tanh $x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\frac{5}{2} - \frac{2}{5}}{\frac{5}{2} + \frac{2}{5}} = \frac{25 - 4}{25 + 4} = \frac{21}{29}$ tanh $x = \frac{21}{29}$	Almost all candidates scored the two available marks in part (a). However in part (b) a number of candidates did not draw on the hint of part (a) but instead tried to manipulate the equation given in part (b). A few of these candidates expressed the given equation in tanh <i>x</i> and sech <i>x</i> and then squared, obtaining a quadratic in tanh <i>x</i> . When factorised these candidates obtained two values for tanh <i>x</i> , only one of which was the correct one. However, virtually no one rejected the incorrect solution so that it was almost impossible to award full marks when this method was used.
27	
Question 2:	Exam report
$a)\frac{1}{r(r+2)} = \frac{A}{r} + \frac{B}{(r+2)} \times r(r+2)$ $1 = A(r+2) + Br$ $r = 0 \text{ gives } 2A = 1 \qquad A = \frac{1}{2}$ $r = -2 \text{ gives } -2B = 1 \qquad B = -\frac{1}{2}$ $\frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{2(r+2)}$ $b)\sum_{r=1}^{48} \frac{1}{r(r+2)} = \sum_{r=1}^{48} \frac{1}{2r} - \frac{1}{2(r+2)}$ $= \frac{1}{2} - \frac{1}{6} + \frac{1}{4} - \frac{1}{8} + \frac{1}{6} - \frac{1}{10} + \dots$ $\frac{1}{92} - \frac{1}{96} + \frac{1}{94} - \frac{1}{98} + \frac{1}{96} - \frac{1}{100}$ $\sum_{r=1}^{48} \frac{1}{r(r+2)} = \frac{1}{2} + \frac{1}{4} - \frac{1}{98} - \frac{1}{100} = \frac{894}{1225}$	This question was generally well done, with many candidates scoring full marks. When errors did occur they were usually in the omission of one of the four fractions that made up the sum, notably $\frac{1}{98}$

Question 3:	Exam report
z = 2 + 2i and $M(z)$	
Does M belong to $L_1$ ?	
$ z+1+3i  =  2+2i+1+3i  =  3+5i  = \sqrt{9+25} = \sqrt{34}$	
$ z-5-7i  =  2+2i-5-7i  =  -3-5i  = \sqrt{9+25} = \sqrt{34}$	
M(z=2+2i) belongs to L ₁	
Does M belong to $L_2$ ?	
$\arg(z) = \arg(2+2i) = \tan^{-1}\left(\frac{2}{2}\right) = \frac{\pi}{4}$	
$M(z=2+2i)$ belongs to $L_2$	
$M(z)$ is a point of the intersection between $L_1$ and $L_2$	
$b)L_1$ is the perpendicular bisector of the line AB	
with $A(z_A = -1 - 3i)$ and $B(z_B = 5 + 7i)$	The verifications in part (a) were not always convincing, especially the verification that the point representing the
$L_2$ is the half line from O with gradient $\tan \frac{\pi}{4} = 1$ .	complex number 2 + 2i lay on the line $L_1$ . The sketches in part (b) varied considerably. Those candidates who made a
c) 6-	reasonably careful drawing generally scored higher marks as they were able to clearly show that the point representing 2 + 2i lay on both $L_1$ and $L_2$ . Careful sketches also improved a candidate's chance of scoring full marks in part (c).
4- 2- ZM	

Question 4:	Exam report
a) $z^3 - 2z^2 + pz + 10 = 0$ has roots $\alpha, \beta, \gamma$	
$\alpha^3 + \beta^3 + \gamma^3 = -4$	
$a)\alpha + \beta + \gamma = 2$	
b)i) $\alpha$ is a root so it satifies the equation	
$\alpha^3 - 2\alpha^2 + p\alpha + 10 = 0$	
<i>ii</i> ) The same applies to $\beta$ and $\gamma$	
$\alpha^3 - 2\alpha^2 + p\alpha + 10 = 0$	
$\beta^3 - 2\beta^2 + p\beta + 10 = 0$	
$\gamma^3 - 2\gamma^2 + p\gamma + 10 = 0  by adding$	
$(\alpha^3 + \beta^3 + \gamma^3) - 2(\alpha^2 + \beta^2 + \gamma^2) + p(\alpha + \beta + \gamma) + 30 = 0$	Whilst parts (a) and (b)(i) were well done, few
$-4 - 2(\alpha^{2} + \beta^{2} + \gamma^{2}) + 2p + 30 = 0$	candidates were able to complete part (b)(ii) correctly through not taking note of the hint given
$-2\left(\alpha^2+\beta^2+\gamma^2\right)=-2p-26$	in part (b)(i). Those candidates attempting to work out ( $\alpha + \theta + \gamma$ ) ³ were inevitably doomed to failure.
$\alpha^2 + \beta^2 + \gamma^2 = p + 13$	Part (b)(iii) was usually attempted by assuming the
$iii)\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \gamma\beta)$	result of part (b)(ii). There were many correct solutions to part(c) although slips of sign often led
$=2^{2}-2p=4-2p$	to a solution with three real roots, contrary to the
so $4-2p = p+13$	statement of part (c)(i).
-3p = 9	
p = -3	
<i>c</i> ) <i>i</i> ) Test the values $-2, -1, 0, 1, \text{ or } 2$ for $\alpha$ .	
here, $\alpha = -2$ indeed $(-2)^3 - 2 \times (-2)^2 - 3 \times (-2) + 10 =$	
-8-8+6+10=0	
<i>ii</i> ) $z^{3} - 2z^{2} - 3z + 10 = (z+2)(z^{2} - 4z + 5)$	
$z^{2} - 4z + 5$ discriminant = $(-4)^{2} - 4 \times 1 \times 5 = -4 = (2i)^{2}$	
$\beta = \frac{4+2i}{2} = \beta = 2+i \text{ and } \gamma = 2-i$	

Question 5:	Exam report
<i>i</i> ) $\tanh^2 t + \operatorname{sech}^2 t = \frac{\sinh^2 t}{\cosh^2 t} + \frac{1}{\cosh^2 t} = \frac{\sinh^2 t + 1}{\cosh^2 t} = \frac{\cosh^2 t}{\cosh^2 t} = 1$	
$ii)\frac{d}{dt}(\tanh t) = \frac{d}{dt}\left(\frac{\sinh t}{\cosh t} = \frac{u}{v}\right) = \left(\frac{u'v - uv'}{v^2}\right) = \frac{\cosh t \times \cosh t - \sinh t \times \sinh t}{\cosh^2 t}$	
$=\frac{\cosh^2 t - \sinh^2 t}{\cosh^2 t} = \frac{1}{\cosh^2 t} = \operatorname{sech}^2 t$	
$iii)\frac{d}{dt}(\operatorname{sech} t) = \frac{d}{dt}\left(\frac{1}{\cosh t} = \frac{1}{u}\right) = \left(-\frac{u'}{u^2}\right) = -\frac{\sinh t}{\cosh^2 t}$	
$= -\frac{\sinh t}{\cosh t} \times \frac{1}{\cosh t} = -\operatorname{sech} t \tanh t$	

Question 5:continues	Exam report
$b$ ) $x = \operatorname{sech} t  and  y = 4 - \tanh t$	
$i)\frac{dx}{dt} = -\operatorname{sech} t \times \tanh t \text{ and } \frac{dy}{dx} = -\operatorname{sech}^2 t$	
$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dx}\right)^2 = \operatorname{sech}^2 t \times \tanh^2 t + \operatorname{sech}^4 t$	
$= \operatorname{sech}^{2} t \left( \tanh^{2} t + \operatorname{sec} h^{2} t \right) = \operatorname{sech}^{2} t$	
$s = \int_0^{\frac{1}{2}\ln 3} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dx}\right)^2} dt = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t  dt$	Part (a) was a source of good marks for almost all candidates. If errors did occur they were usually errors of sign. Part (b) was also generally well done
$(ii)u = e^t$ $\frac{du}{dt} = e^t = u$ $\frac{du}{u} = dt$	although it was disappointing to see the square root of sech ² t tanh ² t + sech ⁴ t written as sech t tanh t + sech ² t a significant number of times. Responses to
when $t = 0, u = 1$	part (b)(ii) were mixed. Poor algebraic manipulation in the handling of sech <i>t</i> when expressed in terms of <i>u</i>
$t = \frac{1}{2} \ln 3 = \ln \sqrt{3},  u = \sqrt{3}$	let many candidates down badly so that they ended up with a polynomial in <i>u</i> to integrate.
$s = \int_{0}^{\frac{1}{2}\ln 3} \operatorname{sech} t  dt = \int_{1}^{\sqrt{3}} \frac{2}{e^{x} + e^{-x}}  dx = \int_{1}^{\sqrt{3}} \frac{2}{u + \frac{1}{u}} \times \frac{du}{u}$	
$s = \int_{1}^{\sqrt{3}} \frac{2}{u^{2} + 1} du = \left[ 2 \tan^{-1} u \right]_{1}^{\sqrt{3}} = 2 \tan^{-1} \sqrt{3} - 2 \tan^{-1} 1$	
$s = 2 \times \frac{\pi}{3} - 2 \times \frac{\pi}{4} = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{\pi}{6}$	

Because it is true for n = 1, we can conclude, according to the induction principal that it is true for all  $n \ge 1$ .

	_
Question 7:	Exam report
$a(i) + i\sqrt{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{\pi}{3}}$	
$1 - i = \sqrt{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) = \sqrt{2} e^{-i\frac{\pi}{4}}$	
$ii)\left(1+i\sqrt{3}\right)^{8}\left(1-i\right)^{5} = \left(2e^{i\frac{\pi}{3}}\right)^{8} \times \left(\sqrt{2}e^{-i\frac{\pi}{4}}\right)^{5}$	Part (a)(i) was generally well done. The less successful candidates usually wrote the argument of $1 - i$ as $3\pi/4$ instead of $-\pi/4$ . In part (a)(ii) there was
$= 2^{8} e^{i\frac{8\pi}{3}} \times \sqrt{2}^{5} e^{-i\frac{5\pi}{4}} = 2^{8} e^{i\frac{2\pi}{3}} \times \sqrt{2}^{5} e^{i\frac{3\pi}{4}}$	some poor handling of fractions in the argument of the product of the two complex numbers, and also some omission of raising the moduli of the two
$= 2^8 \times 2^{\frac{5}{2}} \times e^{i\left(\frac{2\pi}{3} + \frac{3\pi}{4}\right)} = 2^{\frac{21}{2}} e^{i\frac{17\pi}{12}} = 1024\sqrt{2} e^{i\frac{17\pi}{12}}$	complex numbers to their respective powers. Many of the candidates who had been successful in part
$b) z^{3} = (re^{i\theta})^{3} = r^{3}e^{i3\theta} = 2^{\frac{21}{2}}e^{i\frac{17\pi}{12}}$	<ul> <li>(a) often went on to complete part (b) correctly,</li> <li>although some candidates lost marks either through</li> <li>not giving z in the form asked for or by giving values</li> </ul>
so $r^3 = 2^{\frac{21}{2}}$ and $3\theta = \frac{17\pi}{12} + k \times 2\pi$	for $\vartheta$ outside the specified range.
$r = 2^{\frac{7}{2}} = 8\sqrt{2}$ and $\theta = \frac{17\pi}{36} + k \times \frac{2\pi}{3}$ $k = -2, -1, 0$	
solutions: $z = 8\sqrt{2}e^{i\frac{17\pi}{36}}$ or $z = 8\sqrt{2}e^{-i\frac{7\pi}{36}}$ or $z = 8\sqrt{2}e^{-i\frac{31\pi}{36}}$	

## Grade boundaries

		Max.	Scaled Mark Grade Boundaries and A* Conversion Points					
Code	Title	Scaled Mark	<b>A</b> *	A	в	С	D	E
MFP2	GCE MATHEMATICS UNIT FP2	75	70	65	57	49	41	33

