AQA - Core 1 - Revision booklet

Key dates

Core 1 exam: $13^{\text {th }}$ May 2013 am

Term dates:

Term 1: Monday 3 September 2012 - Wednesday 24 October 2012 (38 teaching days)

Term 2: Monday 5 November 2012 - Friday 21 December 2012 (35 teaching days)

Term 3: Monday 7 January 2013 - Friday 8 February 2013 (25 teaching days)

Term 4: Monday 18 February 2013 - Friday 22 March 2013 (25 teaching days)

Term 5: Monday 8 April 2013 - Friday 24 May 2013 (34 teaching days)

Term 6: Monday 3 June 2013 - Wednesday 24 July 2013 (38 teaching days)

Scheme of Assessment Mathematics Advanced Subsidiary (AS) Advanced Level (AS + A2)

The Scheme of Assessment has a modular structure. The A Level award comprises four compulsory Core units, one optional Applied unit from the AS scheme of assessment, and one optional Applied unit either from the AS scheme of assessment or from the A2 scheme of assessment.
For the written papers, each candidate will require a copy of the AQA Booklet of formulae and statistical tables issued for this specification.

All the units count for $33_{1} / 3 \%$ of the total AS marks
$16_{2} / 3 \%$ of the total A level marks

Written Paper 1hour 30 minutes 75 marks

Grading System

The AS qualifications will be graded on a five-point scale: A, B, C, D and E. The full A level qualifications will be graded on a six-point scale: A*, A, B, C, D and E.
To be awarded an A^{*} in Further Mathematics, candidates will need to achieve grade A on the full A level qualification and 90% of the maximum uniform mark on the aggregate of the best three of the A2 units which contributed towards Further Mathematics. For all qualifications, candidates who fail to reach the minimum standard for grade E will be recorded as U (unclassified) and will not receive a qualification certificate.

CORE 1 subject content Algebra
 Coordinates geometry Differentiation Integration

Candidates will be required to demonstrate:
a) construction and presentation of mathematical arguments through appropriate use of logical deduction and precise statements involving correct use of symbols and appropriate connecting language;
b) correct understanding and use of mathematical language and grammar in respect of terms such as "equals", "identically equals", "therefore", "because", "implies", "is implied by", "necessary", "sufficient" and notation such as \therefore, \Rightarrow, \Leftarrow and \Leftrightarrow.

Candidates are not allowed to use a calculator in the assessment unit for this module.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

Quadratic equations	$a x^{2}+b x+c=0$ has roots $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ Circles Differentiation if $y=a x^{n}$ then $\frac{d y}{d x}=a n x^{n-1}$ if $y=f(x)+g(x)$ then $\frac{d y}{d x}=f^{\prime}(x)+g^{\prime}(x)$
Integration	if $\frac{d y}{d x}=a x^{n} \quad$ then $y=\frac{a}{n+1} x^{n+1}+c$ if $\frac{d y}{d x}=f^{\prime}(x)=g^{\prime}(x)$ then $\quad y=f(x)+g(x)+c$
Area	Area under a curve $=\int_{a}^{b} y d x \quad(y \geq 0)$

Algebra	
Use and manipulation of surds.	To include simplification and rationalisation of the denominator of a fraction. e.g. $\sqrt{12}+2 \sqrt{27}=8 \sqrt{3} ; \frac{1}{1-\sqrt{2}}=\sqrt{2}+1 ; \frac{2 \sqrt{3}+\sqrt{2}}{3 \sqrt{2}+\sqrt{3}}=\frac{\sqrt{6}}{3}$
Quadratic functions and their graphs.	To include reference to the vertex and line of symmetry of the graph.
The discriminant of a quadratic function.	To include the conditions for equal roots, for distinct real roots and for no real roots
Factorisation of quadratic polynomials.	E.g. factorisation of $2 x^{2}+x-6$
Completing the square.	e.g. $x^{2}+6 x-1=(x+3)^{2}-10 ; 2 x^{2}-6 x+2=2(x-1.5)^{2}-2.5$
Solution of quadratic equations.	Use of any factorisation, $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ or completing the square will be accepted.
Simultaneous equations, e.g. one linear and one quadratic, analytical solution by substitution.	
Solution of linear and quadratic inequalities.	e.g. $2 x^{2}+x \geq 6$
Algebraic manipulation of polynomials, including expanding brackets and collecting like terms.	
Simple algebraic division.	Applied to a quadratic or a cubic polynomial divided by a linear term of the form $(x+a)$ or $(x-a)$ where a is a small whole number. Any method will be accepted, e.g. by inspection, by equating coefficients or by formal division e.g. $\frac{x^{3}-x^{2}-5 x+2}{x+2}$.
Use of the Remainder Theorem.	Knowledge that when a quadratic or cubic polynomial $f(x)$ is divided by $(x-a)$ the remainder is $f(a)$ and, that when $f(a)=0$, then $(x-a)$ is a factor and vice versa.
Use of the Factor Theorem.	Greatest level of difficulty as indicated by $x^{3}-5 x^{2}+7 x-3$, i.e. a cubic always with a factor $(x+a)$ or $(x-a)$ where a is a small whole number but including the cases of three distinct linear factors, repeated linear factors or a quadratic factor which cannot be factorized in the real numbers.
Graphs of functions; sketching curves defined by simple equations.	Linear, quadratic and cubic functions. The $f(x)$ notation may be used but only a very general idea of the concept of a function is required. Domain and range are not included. Graphs of circles are included.
Geometrical interpretation of algebraic solution of equations and use of intersection points of graphs of functions to solve equations.	Interpreting the solutions of equations as the intersection points of graphs and vice versa.
Knowledge of the effect of translations on graphs and their equations.	Applied to quadratic graphs and circles, i.e. $\mathrm{y}=(\mathrm{x}-\mathrm{a})^{2}+\mathrm{b}$ as a translation of $y=x^{2}$ and $(x-a)^{2}+(y-b)^{2}=r^{2}$ as a translation of $x^{2}+y^{2}=r^{2}$.

Coordinates geometry

Equation of a straight line, including \quad To include problems using gradients, mid-points and the distance the forms
$y-y_{1}=m\left(x-x_{1}\right)$ and $a x+b y+c=0$
Conditions for two straight
lines to be parallel or perpendicular to each other.
Coordinate geometry of the circle.
Knowledge that the product of the gradients of two perpendicular lines is -1 .

Candidates will be expected to complete the square to find the centre and radius of a circle where the equation of the circle is for example given as $x^{2}+4 x+y^{2}-6 y-12=0$.
The equation of a circle in the \quad The use of the following circle properties is required: form
(i) the angle in a semicircle is a right angle;
$(x-a)^{2}+(y-b)^{2}=r^{2}$.
(ii) the perpendicular from the centre to a chord bisects the chord;
(iii) the tangent to a circle is perpendicular to the radius at its point of contact.
The equation of the tangent and normal at a given point to a circle.
The intersection of a straight line and a curve.

Implicit differentiation is not required. Candidates will be expected to use the coordinates of the centre and a point on the circle or of other appropriate points to find relevant gradients.
Using algebraic methods. Candidates will be expected to interpret the geometrical implication of equal roots, distinct real roots or no real roots. Applications will be to either circles or graphs of quadratic functions.

Differentiation

The derivative of $\mathrm{f}(x)$ as the gradient of the tangent to the graph of $y=$ $\mathrm{f}(x)$ at a point; the gradient of the tangent as a limit; interpretation as a rate of change.
Differentiation of polynomials.
Applications of differentiation to gradients, tangents and normals, maxima and minima and stationary points, increasing and decreasing functions
Second order derivatives.

The notations $\mathrm{f}^{\prime}(x)$ or $\frac{d y}{d x}$ will be used.
A general appreciation only of the derivative when interpreting it is required. Differentiation from first principles will not be tested.

Questions will not be set requiring the determination of or knowledge of points of inflection. Questions may be set in the form of a practical problem where a function of a single variable has to be optimised.

Integration

Indefinite integration as the reverse of differentiation Integration of polynomials.
Evaluation of definite integrals. Interpretation of the definite integral as the area under a curve.

Integration to determine the area of a region between a curve and the x-axis. To include regions wholly below the x-axis, i.e. knowledge that the integral will give a negative value. Questions involving regions partially above and below the x-axis will not be set. Questions may involve finding the area of a region bounded by a straight line and a curve, or by two curves.

Mensuration

Surface area of sphere $=4 \pi r^{2}$
Area of curved surface of cone $=\pi r \times$ slant height

Arithmetic series

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n[2 a+(n-1) d]
\end{aligned}
$$

Geometric series

$$
\begin{aligned}
& u_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& S_{\infty}=\frac{a}{1-r} \text { for }|r|<1
\end{aligned}
$$

Summations

$$
\begin{aligned}
& \sum_{r=1}^{n} r=\frac{1}{2} n(n+1) \\
& \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& \sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
\end{aligned}
$$

Trigonometry - the Cosine rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Binomial Series

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N})
$$

$$
\text { where }\binom{n}{r}={ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}
$$

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{1.2} x^{2}+\ldots+\frac{n(n-1) \ldots(n-r+1)}{1.2 \ldots r} x^{r}+\ldots \quad(|x|<1, n \in \mathbb{R})
$$

Logarithms and exponentials

$$
a^{x}=\mathrm{e}^{x \ln a}
$$

Complex numbers

$$
\{r(\cos \theta+\mathrm{i} \sin \theta)\}^{n}=r^{n}(\cos n \theta+\mathrm{i} \sin n \theta)
$$

$$
\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta
$$

The roots of $z^{n}=1$ are given by $z=\mathrm{e}^{\frac{2 \pi k i}{n}}$, for $k=0,1,2, \ldots, n-1$

Maclaurin's series

$$
\begin{aligned}
& \mathrm{f}(x)=\mathrm{f}(0)+x \mathrm{f}^{\prime}(0)+\frac{x^{2}}{2!} \mathrm{f}^{\prime \prime}(0)+\ldots+\frac{x^{r}}{r!} \mathrm{f}^{(r)}(0)+\ldots \\
& \mathrm{e}^{x}=\exp (x)=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{r}}{r!}+\ldots \quad \text { for all } x \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{r+1} \frac{x^{r}}{r}+\ldots \quad(-1<x \leqslant 1) \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!}+\ldots \quad \text { for all } x \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\ldots \quad \text { for all } x
\end{aligned}
$$

Hyperbolic functions

$$
\begin{aligned}
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& \sinh 2 x=2 \sinh x \cosh x \\
& \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x \\
& \cosh ^{-1} x=\ln \left\{x+\sqrt{x^{2}-1}\right\} \quad(x \geqslant 1) \\
& \sinh ^{-1} x=\ln \left\{x+\sqrt{x^{2}+1}\right\} \\
& \tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \quad(|x|<1)
\end{aligned}
$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular hyperbola
Standard form	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$y^{2}=4 a x$	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$x y=c^{2}$
Asymptotes	none	none	$\frac{x}{a}= \pm \frac{y}{b}$	$x=0, y=0$

Trigonometric identities

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad\left(A \pm B \neq\left(k+\frac{1}{2}\right) \pi\right) \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}
\end{aligned}
$$

Differentiation

Integration

(+ constant; $a>0$ where relevant)
$f(x)$
$\int f(x) d x$
$\tan x$
$\ln |\sec x|$
$\cot x$
$\ln |\sin x|$
$\operatorname{cosec} x$
$-\ln |\operatorname{cosec} x+\cot x|=\ln \left|\tan \left(\frac{1}{2} x\right)\right|$
$\sec x$
$\ln |\sec x+\tan x|=\ln \left|\tan \left(\frac{1}{2} x+\frac{1}{4} \pi\right)\right|$
$\sec ^{2} k x \quad \frac{1}{k} \tan k x$
$\sinh x$
$\cosh x$
$\cosh x$
$\sinh x$
$\tanh x$ $\ln \cosh x$
$\frac{1}{\sqrt{a^{2}-x^{2}}} \quad \sin ^{-1}\left(\frac{x}{a}\right) \quad(|x|<a)$
$\frac{1}{a^{2}+x^{2}}$
$\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
$\frac{1}{\sqrt{x^{2}-a^{2}}}$
$\cosh ^{-1}\left(\frac{x}{a}\right)$ or $\ln \left\{x+\sqrt{x^{2}-a^{2}}\right\} \quad(x>a)$
$\frac{1}{\sqrt{a^{2}+x^{2}}} \quad \sinh ^{-1}\left(\frac{x}{a}\right)$ or $\ln \left\{x+\sqrt{x^{2}+a^{2}}\right\}$
$\frac{1}{a^{2}-x^{2}}$
$\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|=\frac{1}{a} \tanh ^{-1}\left(\frac{x}{a}\right) \quad(|x|<a)$
$\frac{1}{x^{2}-a^{2}}$
$\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|$
$\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$

Area of a sector

$$
A=\frac{1}{2} \int r^{2} \mathrm{~d} \theta \quad \text { (polar coordinates) }
$$

Arc length

$s=\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \quad$ (cartesian coordinates)
$s=\int \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \quad$ (parametric form)

Surface area of revolution

$S_{x}=2 \pi \int y \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \quad$ (cartesian coordinates)
$S_{x}=2 \pi \int y \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \quad$ (parametric form)

Numerical integration

The trapezium rule: $\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right\}$, where $h=\frac{b-a}{n}$
The mid-ordinate rule: $\int_{a}^{b} y \mathrm{~d} x \approx h\left(y_{\frac{1}{2}}+y_{\frac{3}{2}}+\ldots+y_{n-\frac{3}{2}}+y_{n-\frac{1}{2}}\right)$, where $h=\frac{b-a}{n}$
Simpson's rule: $\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{3} h\left\{\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\ldots+y_{n-1}\right)+2\left(y_{2}+y_{4}+\ldots+y_{n-2}\right)\right\}$ where $h=\frac{b-a}{n}$ and n is even

Content

Algebra 12
Indices and surds 12
Quadratic functions 15
Quadratic inequalities 18
Simultaneous equations 21
Polynomials 24
Coordinates geometry 27
Straight lines 27
Circles 30
Transformations of graphs 33
Calculus 36
Differentiation 36
Using differentiation 39
Integration 42
Integration and area 45
Past Papers 49

Algebra

Indices and surds

KEY POINTS

Definition: for ninteger and $a \neq 0, a^{n}=a \times a \times a \ldots \times a$ (n factors)

$$
a^{1}=a \quad \text { and } \quad a^{0}=1
$$

(a is called the base)
Multiplication

$$
: a^{n} \times a^{p}=a^{n+p}
$$

Division

$$
: a^{n} \div a^{p}=\frac{a^{n}}{a^{p}}=a^{n-p}
$$

Negative index

$$
: a^{-n}=\frac{1}{a^{n}} \text { and }\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}
$$

Power of a power $:\left(a^{n}\right)^{p}=a^{n \times p}$
Fractional index $\quad: a^{\frac{1}{n}}=\sqrt[n]{a} \quad$ and $\quad a^{\frac{n}{p}}=\sqrt[p]{a^{n}}=(\sqrt[p]{a})^{n}$
Different bases $\quad: a^{n} \times b^{n}=(a b)^{n}$ and $\frac{a^{n}}{b^{n}}=\left(\frac{a}{b}\right)^{n}$

KEY POINTS

Definition
: for $a \geq 0, \sqrt{a}$ is the positive number so that $(\sqrt{a})^{2}=a$
Multiplication

$$
: \sqrt{a b}=\sqrt{a} \times \sqrt{b}
$$

in particular $\quad \sqrt{a^{2}}=\sqrt{a} \times \sqrt{a}=(\sqrt{a})^{2}=a \quad($ for $a \geq 0)$
Division $\quad: \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \quad($ for $a \geq 0, b>0)$
Difference of squares: $(x+y)(x-y)=x^{2}-y^{2}$

$$
\text { hence }(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b
$$

$$
\sqrt{a} \pm \sqrt{b} \text { is called the conjugate (expression) to } \sqrt{a} \mp \sqrt{b}
$$

Rationalise the denominator:

- $\frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b}$
- $\frac{1}{\sqrt{a} \pm \sqrt{b}}=\frac{1}{\sqrt{a} \pm \sqrt{b}} \times \frac{\sqrt{a} \mp \sqrt{b}}{\sqrt{a} \mp \sqrt{b}}=\frac{\sqrt{a} \mp \sqrt{b}}{a-b}$
(Multiple numerator and denominator by the conjugate expression)

Question 1:

Simplify the following as far as possible
a) $\sqrt{28}$
b) $\sqrt{63}$
c) $\sqrt{32}$
d) $\sqrt{150}$

Question 2:
Expand and simplify
a) $\sqrt{2}(\sqrt{8}-2 \sqrt{3})$
b) $\sqrt{3}(\sqrt{6}-\sqrt{27})$
c) $\left.(\sqrt{5}-1)^{2} \quad d\right)(\sqrt{3}+\sqrt{6})^{2}$
e) $(\sqrt{5}+2)(\sqrt{5}-2)$

Question 3:
Rationalise the denominator and simplify
a) $\frac{10}{\sqrt{5}}$
b) $\frac{2}{\sqrt{3}+1}$
c) $\frac{1}{\sqrt{5}-2}$
d) $\frac{\sqrt{2}}{\sqrt{8}-\sqrt{6}}$
e) $\frac{39}{4-\sqrt{3}} \quad$ f) $\frac{1-\sqrt{2}}{2 \sqrt{2}-3}$
g) $\frac{\sqrt{6} \times \sqrt{12}}{\sqrt{2}+\sqrt{8}} \quad$ h) $\frac{3-2 \sqrt{2}}{(1+\sqrt{2})^{2}} \quad$ i) $\frac{\sqrt{300}-\sqrt{75}}{\sqrt{12}+\sqrt{3}}$

Question 4: Exam June 2006
a) Express $(4 \sqrt{5}-1)(\sqrt{5}+3)$ in the form $p+q \sqrt{5}$, where p and q are integers. (3marks)
b) Show that $\frac{\sqrt{75}-\sqrt{27}}{\sqrt{3}}$ is an integer and find its value.

Question 5: Exam Jan 2006
a) Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$.
b) Express $\sqrt{8}+\sqrt{18}$ in the form $n \sqrt{2}$, where n is an integer

Question 6: Exam June 2007
a) Express $\frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}}$ in the form $n \sqrt{7}$, where n is an integer.
b) Express $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ in the form $p \sqrt{7}+q$, where p and q are integers.

Question 7: Exam Jan 2007
a) Express $\frac{\sqrt{5}+3}{\sqrt{5}-2}$ in the form $p \sqrt{5}+q$, where p and q are integers.
b)i) Express $\sqrt{45}$ in the form $n \sqrt{5}$, where n is an integer.
ii) Solve the equation $x \sqrt{20}=7 \sqrt{5}-\sqrt{45}$ giving your answer in its simplest form.

Surds - exercises' answers

Question 1:

a) $\sqrt{28}=\sqrt{4 \times 7}=\sqrt{4} \times \sqrt{7}=2 \sqrt{7}$
b) $\sqrt{63}=\sqrt{9 \times 7}=\sqrt{9} \times \sqrt{7}=3 \sqrt{7}$
c) $\sqrt{32}=\sqrt{16 \times 2}=4 \sqrt{2}$
d) $\sqrt{150}=\sqrt{25 \times 6}=5 \sqrt{6}$

Question 2:

a) $\sqrt{2}(\sqrt{8}-2 \sqrt{3})=\sqrt{16}-2 \sqrt{6}=4-2 \sqrt{6}$
b) $\sqrt{3}(\sqrt{6}-\sqrt{27})=\sqrt{18}-\sqrt{81}=3 \sqrt{2}-9$
c) $(\sqrt{5}-1)^{2}=(\sqrt{5}-1)(\sqrt{5}-1)=5-\sqrt{5}-\sqrt{5}+1=6-2 \sqrt{5}$
d) $(\sqrt{3}+\sqrt{6})^{2}=(\sqrt{3}+\sqrt{6})(\sqrt{3}+\sqrt{6})=3+\sqrt{18}+\sqrt{18}+6=9+2 \sqrt{18}$
e) $(\sqrt{5}+2)(\sqrt{5}-2)=5-2 \sqrt{5}+2 \sqrt{5}-4=1$

Question 3:

a) $\frac{10}{\sqrt{5}}=\frac{10}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{10 \sqrt{5}}{5}=2 \sqrt{5}$
b) $\frac{2}{\sqrt{3}+1}=\frac{2}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{2(\sqrt{3}-1)}{3-1}=\sqrt{3}-1$
c) $\frac{1}{\sqrt{5}-2}=\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{\sqrt{5}+2}{5-2}=\sqrt{5}+2$
d) $\frac{\sqrt{2}}{\sqrt{8}-\sqrt{6}}=\frac{\sqrt{2}}{\sqrt{8}-\sqrt{6}} \times \frac{\sqrt{8}+\sqrt{6}}{\sqrt{8}-\sqrt{6}}=\frac{\sqrt{16}-\sqrt{12}}{8-6}=\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3}$
e) $\frac{39}{4-\sqrt{3}}=\frac{39}{4-\sqrt{3}} \times \frac{4+\sqrt{3}}{4+\sqrt{3}}=\frac{156+39 \sqrt{3}}{16-3}=12+3 \sqrt{3}$
f) $\frac{1-\sqrt{2}}{2 \sqrt{2}-3}=\frac{1-\sqrt{2}}{2 \sqrt{2}-3} \times \frac{2 \sqrt{2}+3}{2 \sqrt{2}+3}=\frac{2 \sqrt{2}+3-4-3 \sqrt{2}}{8-9}=\sqrt{2}+1$
g) $\frac{\sqrt{6} \times \sqrt{12}}{\sqrt{2}+\sqrt{8}}=\frac{6 \sqrt{2}}{\sqrt{2}+2 \sqrt{2}}=\frac{6 \sqrt{2}}{3 \sqrt{2}}=2$
h) $\frac{3-2 \sqrt{2}}{(1+\sqrt{2})^{2}}=\frac{3-2 \sqrt{2}}{3+2 \sqrt{2}}=\frac{(3-2 \sqrt{2})^{2}}{(3+2 \sqrt{2})(3-2 \sqrt{2})}=\frac{9+8-12 \sqrt{2}}{9-8}=17-12 \sqrt{2}$
i) $\frac{\sqrt{300}-\sqrt{75}}{\sqrt{12}+\sqrt{3}}=\frac{10 \sqrt{3}-5 \sqrt{3}}{2 \sqrt{3}+\sqrt{3}}=\frac{5 \sqrt{3}}{3 \sqrt{3}}=\frac{5}{3}$

Question 4: June 2006

a) $(4 \sqrt{5}-1)(\sqrt{5}+3)=4 \times 5+12 \sqrt{5}-\sqrt{5}-3$

$$
\begin{aligned}
& =20-3+12 \sqrt{5}-\sqrt{5} \\
& =17+11 \sqrt{5}
\end{aligned}
$$

b) $\frac{\sqrt{75}-\sqrt{27}}{\sqrt{3}}=\frac{\sqrt{25 \times 3}-\sqrt{9 \times 3}}{\sqrt{3}}$

$$
=\frac{5 \sqrt{3}-3 \sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{3}}=2
$$

Question 5: Jan 2006
a) $(\sqrt{5}+2)(\sqrt{5}-2)=5-2 \sqrt{5}+2 \sqrt{5}-4=1$
b) $\sqrt{8}+\sqrt{18}=\sqrt{4 \times 2}+\sqrt{9 \times 2}=2 \sqrt{2}+3 \sqrt{2}=5 \sqrt{2}$

Question 6: June 2007
a) $\frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}}=\frac{\sqrt{9 \times 7}}{3}+\frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{3 \sqrt{7}}{3}+\frac{14 \sqrt{7}}{7}$

$$
=\sqrt{7}+2 \sqrt{7}=3 \sqrt{7}
$$

b) $\frac{\sqrt{7}+1}{\sqrt{7}-2}=\frac{\sqrt{7}+1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2}=\frac{7+2 \sqrt{7}+\sqrt{7}+2}{7-4}$

$$
=\frac{9+3 \sqrt{7}}{3}
$$

Question 7: Jan 2007

a) $\frac{\sqrt{5}+3}{\sqrt{5}-2}=\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{5+2 \sqrt{5}+3 \sqrt{5}+6}{5-4}=11+5 \sqrt{5}$
b) i) $\sqrt{45}=\sqrt{9 \times 5}=3 \sqrt{5}$
ii) $x \sqrt{20}=7 \sqrt{5}-\sqrt{45}$

$$
\begin{aligned}
& x \times 2 \sqrt{5}=7 \sqrt{5}-3 \sqrt{5} \\
& x=\frac{4 \sqrt{5}}{2 \sqrt{5}}=\frac{4}{2}=2
\end{aligned}
$$

Quadratic functions

VOCABULARY

- A quadratic function can be written $f(x)=a x^{2}+b x+c$, where a, b, and c are 3 real numbers.
- The graph of a quadratic function is called a PARABOLA
if $a>0$, the parabola is \cup-shaped
if $a<0$, the parabola is \cap-shaped
- The maximum or minimum point of the parabola is called the VERTEX.
- The parabola is symmetrical around the 'vertical' line going through the vertex.

COMPLETED SQUARE FORM

$-a x^{2}+b x+c$ can be re-arrange into $a(x+p)^{2}+q$.
This is the completed square form

- The vertex of the parabola is $V(-p, q)$.
- The axis of symmetry of the parabola has equation $x=-p$.
-Transformation: $y=x^{2}$ is mapped onto $y=(x+p)^{2}+q$ by a translation with vector $\left[\begin{array}{l}-p \\ q\end{array}\right]$

QUADRATIC EQUATIONS

A quadratic equation can be written $a x^{2}+b x+c=0$

- The discriminant is the value of the expression $b^{2}-4 a c$.
if $b^{2}-4 a c<0$, there is no solution.
if $b^{2}-4 a c=0$, there is a repeated/double root.
if $b^{2}-4 a c>0$, there are two solutions/roots: $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- The roots are the values of x, where the parabola crosses the x-axis.
$b^{2}-4 a c>0$
$f(x)=a x^{2}+b x+c$
$f(x)=a(x-\alpha)(x-\beta)$

$$
\begin{gathered}
b^{2}-4 a c=0 \\
f(x)=a x^{2}+b x+c \\
f(x)=a(x-\alpha)^{2}
\end{gathered}
$$

The parabola is TANGENT
to the x-axis

$b^{2}-4 a c<0$
$f(x)=a x^{2}+b x+c$
$f(x)$ can't be factorised
The parabola does not cross the x-axis.

Quadratic functions - exercises

Question 1:
Find the coordinates of the points where the curve with equation $y=x^{2}-6 x+5$
intersects the coordinate axes.

Question 2:

The curve with equation $y=x^{2}-2 x-8$ cuts the x-axis at the point A and B .
Calculate the distance AB .

Question 3:

a)Find the coordinates of the points where the parabola with equation $y=4 x^{2}-8 x$ crosses the x-axis.
b)i) Write $4 x^{2}-8 x$ in the form $a(x+p)^{2}+q$ where a, p and q are integers
ii) Hence, work out the coordinates of the vertex.
iii) and give the equation of the axis of symmetry of this parabola.

Question 4:
a) Write $x^{2}-4 x+6$ in the form $(x-p)^{2}+q$ where p and q are integers.
b) Hence find
i) the vertex of the parabola $y=x^{2}-4 x+6$,
$i i)$ the equation of the axis of symmetry of this parabola.

Question 5:

The equation $k x^{2}+8 x+(k-6)=0$ has equal roots.
Work out the possible values of k.

Question 6:

Calculate the possible values of k, if $(k+1) x^{2}+k x+k+1=0$ has equal roots.

Question 7:

a) Factorise $7 x^{2}-12 x-64$
b) The equation $k x^{2}-(k+8) x+2 k+1=0$ has a repeated root. Find the possible values of k.

Question 8:

a) Write $x^{2}-6 x+8$ in the form $(x-p)^{2}+q$.
$b)$ Describe the geometric transformation that maps the graph $y=x^{2}$ onto the graph of $y=x^{2}-4 x+8$.

Question 9:

Find the equation of the graph of $y=x^{2}$ after it has been translated by the given vectors. Give your answer in the form $y=x^{2}+b x+c$.
a) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
b) $\left[\begin{array}{l}0 \\ 3\end{array}\right]$
c) $\left[\begin{array}{l}2 \\ 5\end{array}\right]$
d) $\left[\begin{array}{l}-3 \\ -6\end{array}\right]$

Quadratic functions - exercises' answers

Question 1:

Intersection with the y-axis.

$$
\begin{equation*}
\text { Substitute } x \text { by } 0: \quad y=0^{2}-6 \times 0+5=5 \tag{0,5}
\end{equation*}
$$

Intersection with the x-axis.

$$
\text { Solve the equation } y=0: \quad \begin{align*}
& x^{2}-6 x+5=0 \\
& \tag{5,0}\\
& (x-5)(x-1)=0
\end{align*}
$$

Question 2:

Solve the equation $y=x^{2}-2 x-8=0$

$$
(x-4)(x+2)=0 \quad x=4 \text { or } x=-2
$$

$A(4,0)$ and $B(-2,0)$ The distance $A B=6$.

Question 3:

a) $4 x^{2}-8 x=0$

$$
4 x(x-2)=0 \quad x=0 \text { and } x=2
$$

The parabola crosses the x-axis at $(0,0)$ and $(2,0)$.
b) i) $4 x^{2}-8 x=4\left(x^{2}-2 x\right)=4\left((x-1)^{2}-1\right)=4(x-1)^{2}-4$
ii) the vertex is $V(1,-4)$ and the axis of symmetry of the parabola is $x=1$.

Question 4:
a) $x^{2}-4 x+6=(x-2)^{2}-4+6=(x-2)^{2}+2$
b)i) The vertex $V(2,2)$
ii) The axis of symmetry has equation $x=2$.

Question 5:

$k x^{2}+8 x+(k-6)=0$ has equal roots
means the discriminant $=0$

$$
\begin{aligned}
& 8^{2}-4 \times k \times(k-6)=0 \\
& k^{2}-6 k-16=0 \\
& k=8 \text { or } k=-2
\end{aligned}
$$

Question 6:

$(k+1) x^{2}+k x+(k+1)=0$ has equal roots
means the discriminant $=0$

$$
\begin{array}{lr}
k^{2}-4 \times(k+1) \times(k+1)=0 & k^{2}-4 k^{2}-8 k-4=0 \\
3 k^{2}+8 k+4=0 & (3 k+2)(k+2)=0 \\
k=-\frac{2}{3} \text { or } k=-2 &
\end{array}
$$

Question 7:

a) $7 x^{2}-12 x-64=(7 x+16)(x-4)$
b) $k x^{2}-(k+8) x+2 k+1=0$ has repeated root so
the discriminant $=0$

$$
\begin{aligned}
& (-(k+8))^{2}-4 \times k \times(2 k+1)=0 \\
& k^{2}+16 k+64-8 k^{2}-4 k=0 \\
& 7 k^{2}-12 k-64=0
\end{aligned}
$$

$$
-7 k^{2}+12 k+64=0
$$

$$
(7 k+16)(k-4)=0
$$

$$
k=-\frac{16}{7} \text { or } k=4
$$

Question 8:
a) $x^{2}-6 x+8=(x-3)^{2}-9+8=(x-3)^{2}-1$
b) The transformation is a translation of vector $\binom{3}{-1}$

Question 9:

a) $y-0=(x-1)^{2} \quad y=x^{2}-2 x+1$
b) $y-3=(x-0)^{2} \quad y=x^{2}+3$
c) $y-5=(x-2)^{2} \quad y=x^{2}-4 x+9$
d) $y+6=(x+3)^{2} \quad y=x^{2}+6 x+3$

	The purpose of this part is to solve inequalities of the form$a x^{2}+b x+c>0(\geq 0) \text { or } a x^{2}+b x+c<0(\leq 0)$		
	$\begin{gathered} b^{2}-4 a c>0 \\ f(x)=a x^{2}+b x+c \\ f(x)=a(x-\alpha)(x-\beta) \end{gathered}$	$\begin{gathered} b^{2}-4 a c=0 \\ f(x)=a x^{2}+b x+c \\ f(x)=a(x-\alpha)^{2} \end{gathered}$ The parabola is TANGENT to the x-axis	$\begin{aligned} & \quad b^{2}-4 a c<0 \\ & f(x)=a x^{2}+b x+c \\ & f(x) \text { can't be factorised } \\ & \text { The parabola does not } \\ & \text { cross the } x \text {-axis. } \end{aligned}$
	$a>0$		
			$y=0$ $y<0$
		$a<0$	

Question 1:

Solve the following inequalities for x.
(In each case, support your answer with a sketch).
a) $(x-3)(x+4)<0$
b) $(x-1)(x+3) \geq 0$
c) $(3-x)(x+1) \leq 0$
d) $x^{2}+3 x+2>0$
e) $2 x^{2}-3 x-2<0$
f) $6-4 x-2 x^{2}<0$

Question 2:

Find the range of values for k that give each of these equations no real roots
a) $x^{2}-2 x+k$
b) $3 x^{2}+k x+7$
c) $k x^{2}=2 x-k$

Question 3:

Calculate the possible values of k, if $(k+1) x^{2}+k x+k+1=0$ has two distinct roots.

Question 4:

Calculate the possible values of k, if $(k+1) x^{2}+4 k x+9=0$ has no real roots.

Question 5:

The equation $x^{2}-3 k x+7-k$ has two distinct roots.
Find the possible values of k.

Question 6:

Find the condition of k for the equation $(x+1)\left(x^{2}+k x+4\right)=0$
to only have one real root.

Question 7:

a)Simplify $(k+5)^{2}-12 k(k+2)$
b) The quadratic equation $3(k+2) x^{2}+(k+5) x+k=0$ has real roots.
$i)$ Show that $(k-1)(11 k+25) \leq 0$
$i i)$ Hence find the possible values of k.

Question 8:

The quadratic equation $(2 k-3) x^{2}+2 x+(k-1)=0$
where k is a constant, has real roots.
a) Show that $2 k^{2}-5 k+2 \leq 0$.
b)i) Factorise $2 k^{2}-5 k+2$.
ii) Hence or ortherwise, solve the quadratic inequality $2 k^{2}-5 k+2 \leq 0$

Quadratic inequalities - exercises'

answers

Question 1:

$\begin{array}{ll}\text { a) }(x-3)(x+4)<0 & \text { for }-4<x<3 \\ \text { b) }(x-1)(x+3) \geq 0 & \text { for } x \leq-3 \text { or } x \geq 1 \\ \text { c) }(3-x)(x+1) \leq 0 & \text { for } x \leq-1 \text { or } x \geq 3\end{array}$
d) $x^{2}+3 x+2=(x+2)(x+1)>0 \quad$ for $x<-2$ or $x>-1$
e) $2 x^{2}-3 x-2=(2 x+1)(x-2)<0 \quad$ for $-\frac{1}{2}<x<2$
f) $6-4 x-2 x^{2}<0$

$$
2 x^{2}+4 x-6>0 \quad(2 x-2)(x+3)>0 \quad \text { for } x<-3 \text { or } x>1
$$

Question 2:

a) $x^{2}-2 x+k$ has no real roots:
the discriminant <0

$$
\begin{gathered}
(-2)^{2}-4 \times 1 \times k<0 \\
4-4 k<0 \quad k>1
\end{gathered}
$$

b) $3 x^{2}+k x+7$ has no real roots:
the discriminant <0

$$
\begin{aligned}
& k^{2}-4 \times 3 \times 7<0 \\
& k^{2}-84<0 \quad(k+\sqrt{84})(k-\sqrt{84})<0 \\
&-\sqrt{84}<k<\sqrt{84} \\
&- 2 \sqrt{21}<k<2 \sqrt{21}
\end{aligned}
$$

c) $k x^{2}-2 x+k=0$ has no real roots:
the discriminant <0

$$
\begin{aligned}
& (-2)^{2}-4 \times k \times k<0 \\
& 4-4 k^{2}<0 \\
& k^{2}-1>0 \quad(k+1)(k-1)>0 \\
& \quad k<-1 \text { or } k>1
\end{aligned}
$$

Question 3:

$(k+1) x^{2}+k x+k+1=0$ has two distinct roots:
the discriminant >0

$$
\begin{aligned}
& (k)^{2}-4 \times(k+1)^{2}>0 \\
& -3 k^{2}-8 k-4>0 \\
& 3 k^{2}+8 k+4<0
\end{aligned}
$$

The roots of this quadratic exp ression are

$$
k=\frac{-8+\sqrt{28}}{6}=\frac{-4+\sqrt{7}}{3} \text { or } k=\frac{-8-\sqrt{28}}{6}=\frac{-4-\sqrt{7}}{3}
$$

so $3 k^{2}+8 k+4<0 \quad$ for $\frac{-4-\sqrt{7}}{3}<k<\frac{-4+\sqrt{7}}{3}$
Question 4:
$(k+1) x^{2}+4 k x+9=0$ has noreal roots :
the discriminant $=0$

$$
\begin{aligned}
& (4 k)^{2}-4 \times(k+1) \times 9=0 \\
& 16 k^{2}-36 k-36=0 \\
& 4 k^{2}-9 k-9=0 \\
& (4 k+3)(k-3)=0 \\
& k=-\frac{3}{4} \text { or } k=3
\end{aligned}
$$

Question 5:

$x^{2}-3 k x+7-k$ has two distinct roots:
Discriminant >0

$$
\begin{aligned}
& (-3 k)^{2}-4 \times 1 \times(7-k)>0 \\
& 9 k^{2}+4 k-28>0 \\
& (9 k-14)(k+2)>0 \\
& k<-2 \text { or } k>\frac{14}{9}
\end{aligned}
$$

Question 6:

$(x+1)\left(x^{2}+k x+4\right)=0$ has only one real root.
This root is -1 .
This means that $x^{2}+k x+4$ has no real roots:
discriminant <0

$$
\begin{aligned}
k^{2}-4 \times 1 \times 4 & <0 \\
k^{2}-16 & <0 \\
(k+4)(k-4) & <0 \\
-4 & <k<4
\end{aligned}
$$

Question 7:

a) $(k+5)^{2}-12 k(k+2)=$
$k^{2}+10 k+25-12 k^{2}-24 k=$
$-11 k^{2}-14 k+25$
b) the discriminant ≥ 0

$$
\begin{aligned}
& (k+5)^{2}-4 \times 3(k+2) \times k \geq 0 \\
& (k+5)^{2}-12 k(k+2) \geq 0 \\
& -11 k^{2}-14 k+25 \geq 0 \\
& 11 k^{2}+14 k-25 \leq 0 \\
& (11 k+25)(k-1) \leq 0 \\
& \text { so }-\frac{25}{11} \leq k \leq 1
\end{aligned}
$$

Simultaneous equations

Question 1:

Solve these simultaneous equations
a) $\left\{\begin{array}{l}3 x+2 y=7 \\ 5 x+y=7\end{array}\right.$
b) $\left\{\begin{array}{l}4 x+3 y=5 \\ 3 x+2 y=4\end{array}\right.$
c) $\left\{\begin{array}{l}4 x-5 y=1 \\ 2 x-3 y=1\end{array}\right.$

Question 2:
Solve these simultaneous equations
a) $\left\{\begin{array}{l}y=3 x-4 \\ y=x^{2}-4 x+6\end{array}\right.$
b) $\left\{\begin{array}{l}y=4 x+1 \\ y=2 x^{2}-3 x+4\end{array}\right.$
c) $\left\{\begin{array}{l}y=x^{2}-6 x+5 \\ y=x-1\end{array}\right.$

Question 3:

a) Solve simultaneously

$$
x+y+3=0 \text { and } y=2 x^{2}+3 x-1
$$

b) Interpret your solution graphically

Question 4:

Find the points of intersection of the curve $y=7-x^{2}$ and the line $2 x+y=4$.

Question 5:

The line L has equation $y+2 x=12$ and the curve C has equation $y=x^{2}-4 x+9$.
i) Show that the x-coordinate of the points of intersection of L and C satisfy the equation:

$$
x^{2}-2 x-3=0
$$

ii) Hence find the coordinates of the points of intersection of L and C.

Question 6:

Find the value of k such that the line $y=2 x+k$ is a tangent to the curve $y=x^{2}+1$
Question 7:
A line has equation $y=m x+1$, where m is a constant.
A curve has equation $y=x^{2}-3 x+10$.
a) Show that the x-coordinate of any point of intersection of the line and the curve satisfies the equation

$$
x^{2}-(m+3) x+9=0
$$

b) Find the values of m for which the equation

$$
x^{2}-(m+3) x+9=0 \text { has equal roots. }
$$

c) Describe geometrically the case when m takes either of the values found in part b).
d) Find the set of values of m such that the line $y=m x+1$ intersects the curve $y=x^{2}-3 x+10$ in two distinct points.

Simultaneous equations - exercises'answers

Question 1:

$$
\text { a) } \begin{aligned}
&\left\{\begin{array} { l }
{ 3 x + 2 y = 7 } \\
{ 5 x + y = 7 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
3 x+2 y=7 \\
-10 x-2 y=-14
\end{array}\right.\right. \text { By adding, we have } \\
&-7 x=-7, x=1 \text { and } y=7-5 x=7-5 \times 1=2
\end{aligned}
$$

The solution is $(1,2)$
b) $\left\{\begin{array}{l}4 x+3 y=5 \\ 3 x+2 y=4\end{array} \Leftrightarrow\left\{\begin{array}{c}8 x+6 y=10 \\ -9 x-6 y=-12\end{array}\right.\right.$
$-x=-2, x=2$ and $3 \times 2+2 y=4$ gives $y=-1$
The solution is $(2,-1)$

$$
\text { c) }\left\{\begin{array} { l }
{ 4 x - 5 y = 1 } \\
{ 2 x - 3 y = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
4 x-5 y=1 \\
-4 x+6 y=-2
\end{array} \quad \begin{array}{l}
y=-1 \text { and } 2 x-3 \times-1=1 \text { gives } x=-2
\end{array}\right.\right.
$$

$$
\text { The solution is }(-2,-1)
$$

Question 2:

a) $\left\{\begin{array}{l}y=3 x-4 \\ y=x^{2}-4 x+6\end{array}\right.$ by subtraction,
we obtain $x^{2}-7 x+10=0$

$$
(x-2)(x-5)=0
$$

$x=2$ and $y=3 \times 2-4=2$ or $x=5$ and $y=3 \times 5-4=11$ The solutions are $(2,2)$ and $(5,11)$
b) $\left\{\begin{array}{l}y=4 x+1 \\ y=2 x^{2}-3 x+4\end{array}\right.$ by subtraction,
weobtain $2 x^{2}-7 x+3=0$

$$
(2 x-1)(x-3)=0
$$

$x=\frac{1}{2}$ and $y=4 \times \frac{1}{2}+1=3$ or $x=3$ and $y=4 \times 3+1=13$
The solutions are $\left(\frac{1}{2}, 3\right)$ and $(3,13)$
c) $\left\{\begin{array}{l}y=x^{2}-6 x+5 \\ y=x-1\end{array}\right.$ by subtration,
we obtain $x^{2}-7 x+6=0$

$$
(x-1)(x-6)=0
$$

$x=1$ and $y=1-1=0$ or $x=6$ and $y=6-1=5$
The solutions are $(1,0)$ and $(6,5)$

Question 3:

$x+y+3=0$ and $y=2 x^{2}+3 x-1$
By substitution, we obtain
$x+2 x^{2}+3 x-1+3=0$
$2 x^{2}+4 x+2=0$
$x^{2}+2 x+1=0 \quad(x+1)^{2}=0$
$x=-1$ (repeated root) and $y=-2$
The solution is $(-1,-2)$
b) The line $x+y+3=0$ is TANGENT
to the parabola $y=2 x^{2}+3 x-1$ at the point $(-1,-2)$.

Question 4:

$y=7-x^{2}$ and $2 x+y=4$
By substitution, we have

$$
\begin{aligned}
& 2 x+7-x^{2}=4 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& \quad x=3 \text { and } y=7-9=-2 \\
& \text { or } \quad x=-1 \text { and } y=7-1=6
\end{aligned}
$$

The solutions are $(3,-2)$ and $(-1,6)$

Question 5:

$y+2 x=12$ and $y=x^{2}-4 x+9$
by substitution, we have
$x^{2}-4 x+9+2 x=12$
$x^{2}-2 x-3=0$
$(x-3)(x+1)=0$

$$
x=3 \text { and } y=12-2 x=6
$$

or $\quad x=-1$ and $y=12+2=14$
The solutions are $(3,6)$ and $(-1,14)$

Question 6:

$y=2 x+k$ is tangent to $y=x^{2}+1$
by subtraction, we obtain, $x^{2}-2 x+1-k=0$
Because the line is tangent to the parabola,
the discriminant of this equation must be 0 :

$$
\begin{aligned}
& (-2)^{2}-4 \times 1 \times(1-k)=0 \\
& 4-4+4 k=0 \quad k=0
\end{aligned}
$$

Question 7

a) $y=m x+1$ and $y=x^{2}-3 x+10$

By subtraction, we obtain $x^{2}-(3+m) x+9=0$
b) The equation has equal root when the discriminant $=0$

$$
\begin{gathered}
(-(3+\mathrm{m}))^{2}-4 \times 1 \times 9=0 \\
9+6 m+m^{2}-36=0 \\
m^{2}+6 m-27=0 \\
(m+9)(m-3)=0 \\
m=-9 \text { or } m=3
\end{gathered}
$$

c) Two distinct points of intersection when the discriminant >0

$$
\begin{aligned}
(3+m)^{2} & -36>0 \\
(3+m)^{2} & >36 \\
3+m & <-6 \text { or } 3+m>6 \\
m & <-9 \text { or } m>3
\end{aligned}
$$

Polynomials

Algebraic division

We use algebraic division to divide algebraic expression:
$\left(x^{3}+3 x^{2}-5 x+2\right) \div(x+2)$

$$
\text { Conclusion: } x^{3}+3 x^{2}-5 x+2=(x+2)\left(x^{2}+x-7\right)+16
$$

The remainder and factor theorem.
a) The remainder theorem.

$$
\text { The remainder of the division of } f(x) \text { by }(x-a) \text { is } f(a) \text {. }
$$

Example: $f(x)=x^{3}+2 x-5 x+3$

- If we divide $f(x)$ by $(x-2)$, the remainder is $f(2)=(2)^{3}-2 \times 2-5 \times 2+3=-3$
- If we divide $f(x)$ by $(2 x-3)$, the remainder is $f\left(\frac{3}{2}\right)=\left(\frac{3}{2}\right)^{3}-2 \times \frac{3}{2}-5 \times \frac{3}{2}+3=-\frac{33}{8}$ The remainder of the division of $f(x)$ by $(a x-b)$ is $f\left(\frac{b}{a}\right)$.
b) The factor theorem.

The following statements are equivalent:

- a is a root of f
- $f(a)=0$ (The remainder of the division by $(x-a)$ is 0)
- $(x-a)$ is a factor of $f(x)$.

Example : $f(x)=x^{3}+2 x-6 x+3$
Show that $(x-1)$ is a factor of f.

$$
f(1)=1^{3}+2 \times 1-6 \times 1+3=1+2-6+3=0
$$

1 is a root of $f,(x-1)$ is a factor of f.
Factorising cubic expressions
To factorise a cubic expression, $f(x)$,

1) you need to find or be given a factor or a root of f, for example " a ".
2) Use the algebraic division to factorise f by $(x-a)$

$$
f(x)=(x-a)\left(b x^{2}+c x+d\right)
$$

3) Factorise the quadratic expression $b x^{2}+c x+d$.

Example: a) Showthat 2 is a root of $f(x)=2 x^{3}+3 x^{2}-11 x-6$
b) Factorise fully $f(x)$.
a) $f(2)=2 \times 2^{3}+3 \times 2^{2}-11 \times 2-6=16+12-22-6=0 \quad(x-2)$ is a factor
b) $f(x)=(x-2)\left(2 x^{2}+7 x+3\right)=(x-2)(2 x+1)(x+3)$.

Question 1:

Use the long division to divide the cubic below.
In each case state the quotient and the remainder.
a) $x^{3}-x^{2}-3 x+3$ by $(x+3)$
b) $x^{3}-3 x^{2}-5 x+6$ by $(x-2)$
c) $x^{3}+2 x^{2}+3 x+2$ by $(x+2)$

Question 2:
Find the remainder when the following are divided by
i) $(x+1)$
ii) $(x-1)$
iii) $(x-2)$
a) $f(x)=6 x^{3}-x^{2}-3 x-12$
b) $f(x)=x^{4}+2 x^{3}-x^{2}+3 x+4$
c) $f(x)=x^{5}+2 x^{2}-3$

Question 3:
The remainder when $x^{3}+c x^{2}+17 x-10$ is divided by $(x+3)$ is 16 .
Use the remainder theorem to the value of c.
Question 4:
$f(x)=(x+5)(x-2)(x-1)+k$.
If $(x+2)$ is a factor of $f(x)$, find the value of k.

Question 5:

Factorise fully $x^{3}-3 x^{2}+3 x-1$, given that $(x-1)$ is a factor.
Question 6:

$$
f(x)=x^{3}-2 x^{2}-4 x+8
$$

a) Factorise $f(x)$
b) Find the solutions of $f(x)=0$

Question 7:

Find the roots of the cubic $f(x)=x^{3}-x^{2}-3 x+3$
Question 8:
$f(x)=x^{3}-p x^{2}+17 x-10$ and $(x-5)$ is a factor of $f(x)$.
a) Find the value of p.
b) Factorise $f(x)$.
c) Find all solutions of $f(x)$.

Question 9: exam question - Jan 2006
The polynomial $\mathrm{p}(x)$ is given by

$$
\mathrm{p}(x)=x^{3}+x^{2}-10 x+8
$$

(a) (i) Using the factor theorem, show that $x-2$ is a factor of $\mathrm{p}(x)$. (2 marks)
(ii) Hence express $\mathrm{p}(x)$ as the product of three linear factors. (3 marks)
(b) Sketch the curve with equation $y=x^{3}+x^{2}-10 x+8$, showing the coordinates of the points where the curve cuts the axes.
(You are not required to calculate the coordinates of the stationary points.) (4 marks)

Question 1:

a) $x^{3}-x^{2}-3 x+3=(x+3)\left(x^{2}-4 x+9\right)-24$
b) $x^{3}-3 x^{2}-5 x+6=(x-2)\left(x^{2}-x-7\right)-8$
c) $x^{3}+2 x^{2}+3 x+2=(x+2)\left(x^{2}+3\right)-4$

Question 2:
a) i) $f(-1)=-6-1+3-12=-16$
ii) $f(1)=6-1-3-12=-10$
iii) $f(2)=48-4-12-12=20$
b) i) $f(-1)=1-2-1-3+4=-1$
ii) $f(1)=1+2-1+3+4=7$
iii) $f(2)=16+16-4+6+4=38$
c) i) $f(-1)=-1+2-3=-2$
ii) $f(1)=1+2-3=0$
iii) $f(2)=32+8-3=37$

Question 3:

$$
f(x)=x^{3}+c x^{2}+17 x-10
$$

the remiander of the division by $(x+3)$ is $f(-3)$ $f(-3)=-27+9 c-51-10=16$

$$
\begin{aligned}
& 9 c=104 \\
& c=\frac{104}{9}
\end{aligned}
$$

Question 4:

$f(x)=(x+5)(x-2)(x-1)+k$
$(x+2)$ is a factor of f, means $f(-2)=0$
$f(-2)=3 \times-4 \times-3+k=0$

$$
k=-36
$$

Question 5:
$x^{3}-3 x^{2}+3 x-1=(x-1)\left(x^{2}-2 x+1\right)$
(using the algebraic division)

$$
=(x-1)(x-1)^{2}=(x-1)^{3}
$$

Question 6:
$f(x)=x^{3}-2 x^{2}-4 x+8$
a) $f(2)=8-8-8+8=0$ so $(x-2)$ is a factor of f
$x^{3}-2 x^{2}-4 x+8=(x-2)\left(x^{2}-4\right)$
$f(x)=(x-2)(x+2)(x-2)=(x-2)^{2}(x+2)$
b) $f(x)=0$ for $x=2$ or $x=-2$

Question 7:
$f(x)=x^{3}-x^{2}-3 x+3$
$f(1)=1-1-3+3=0$
so $(x-1)$ is a factor of f
$f(x)=(x-1)\left(x^{2}-3\right)$
$f(x)=(x-1)(x+\sqrt{3})(x-\sqrt{3})$

Question 8:

$$
\begin{aligned}
& f(x)=x^{3}-p x^{2}+17 x-10 \\
& (x-5) \text { is a factor of } \mathrm{f} \text { so } f(5)=0 \\
& f(5)=5^{3}-25 p+85-10=0 \\
& p=8
\end{aligned}
$$

b) $f(x)=(x-5)\left(x^{2}-3 x+2\right)$

$$
=(x-5)(x-2)(x-1)
$$

$$
c 0 f(x)=0 \text { for } x=5 \text { or } x=2 \text { or } x=1
$$

Question 9:
a)i) $p(x)=x^{3}+x^{2}-10 x+8$
$(x-2)$ is a factor of p if $p(2)=0$
$p(2)=8+4-20+8=12-20+8=0$
$(x-2)$ is a factor of p
ii) $p(x)=(x-2)\left(x^{2}+3 x-4\right)$

$$
=(x-2)(x+4)(x-1)
$$

b) The graph crosses the x-axis at $(2,0),(-4,0)$ and $(1,0)$
The graph crosses the y-axis at $(0,8)$

Coordinates geometry

Straight lines

Gradient of a line

Two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ form a line $A B$
The gradient of the line $A B$ is $m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Equation of a line
An equation of the line going through $A\left(x_{1}, y_{1}\right)$ with gradeint m is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

After re-arranging this equation, you could have the forms:
or

$$
\begin{array}{ll}
y=m x+c & \text { explicit eqaution } \\
a x+b y=c & \text { implicit equation }
\end{array}
$$

Parallel and perpendicular lines
Consider two lines $\mathrm{L}_{1}: y=m_{1} x+c_{1}$ and $L_{2}: y=m_{2} x+c_{2}$

- L_{1} and L_{2} are parallel when $m_{1}=m_{2}$
- L_{1} and L_{2} are perpendicular when $m_{1} \times m_{2}=-1$

$$
m_{1}=-\frac{1}{m_{2}}
$$

$\underline{\text { Mid-point of a line segment }}$
The mid-point of $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is $I\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance between two points
The distance between $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
A B=d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Straight lines - exercises

Question 1:

Give the equation for the following straight lines AB in the form $y=m x+c$
a) $A(4,1) B(0,-3)$
b) $A(12,-3) B(14,1)$
c) $A(5,7) \quad B(-2,5)$

Question 2:

Write the following equations in the form $a x+b y+c=0$ where a, b and c are integers.
a) $y=5 x+2$
b) $3 y=\frac{1}{2} x+3$
c) $4 y-1=2(x-1)$
d) $y-3=\frac{1}{3}(x+2)$

Question 3:

Give the equation for the following straight lines AB in the form $a x+b y+c=0$
a) $A(5,2) B(3,4)$
b) $A(9,-1) B(7,2)$
c) $A(-6,1) \quad B(4,0)$

Question 4:
For each of the following,
i) find the distance AB
ii) find the midpoint I of AB .
a) $A(3,4) B(-2,6)$
b) $A(6,2) B(-3,-2)$
c) $A(2,-4) B(-6,-3)$

Question 5:
A line L_{1} has equation $y=2 x-3$. Consider two points $\mathrm{A}(3,2)$ and $B(-1,4)$.
a) Work out the equation of the line parallel to L_{1} going through A. Give your answers in the form $y=m x+c$.
b) Work out the equation of the line perpendicular to L_{1} going through B. Give your answers in the form $a x+b y+c=0$.

Question 6: exam question

The triangle $A B C$ has vertices $A(1,3), B(3,7)$ and $C(-1,9)$.
(a) (i) Find the gradient of $A B$.
(ii) Hence show that angle $A B C$ is a right angle.
(b) (i) Find the coordinates of M, the mid-point of $A C$.
(ii) Show that the lengths of $A B$ and $B C$ are equal.
(iii) Hence find an equation of the line of symmetry of the triangle $A B C$.

Question 7: exam question

The point A has coordinates $(1,1)$ and the point B has coordinates $(5, k)$.
The line $A B$ has equation $3 x+4 y=7$.
(a) (i) Show that $k=-2$.
(l mark)
(ii) Hence find the coordinates of the mid-point of $A B$.
(b) Find the gradient of $A B$.
(c) The line $A C$ is perpendicular to the line $A B$.
(i) Find the gradient of $A C$.
(ii) Hence find an equation of the line $A C$.
(1 mark)
(iii) Given that the point C lies on the x-axis, find its x-coordinate.

Straight lines - exercises'answers

Question 1:

$$
\begin{aligned}
& \text { a) } m_{A B}=\frac{-3-1}{0-4}=1 \quad y-y_{A}=m\left(x-x_{A}\right) \\
& y-1=x-4 \\
& y=x-3 \\
& \text { b) } m_{A B}=\frac{1+3}{14-12}=2 \quad \begin{array}{l}
y-y_{A}=m\left(x-x_{A}\right) \\
y+3=2(x-12)
\end{array} \\
& y=2 x-27 \\
& \text { c) } m_{A B}=\frac{5-7}{-2-5}=\frac{2}{7} \quad y-y_{A}=m\left(x-x_{A}\right) \\
& y-7=\frac{2}{7}(x-5) \\
& y=\frac{2}{7} x+\frac{39}{7}
\end{aligned}
$$

Question 2:

a) $5 x-y+2=0$
b) $x-6 y+6=0$
c) $2 x-4 y-1=0$
d) $x-3 y+11=0$

Question 3:

$$
\begin{array}{ll}
\text { a) } m_{A B}=\frac{4-2}{3-5}=-1 & y-y_{A}=m\left(x-x_{A}\right) \\
& y-2=-1(x-5) \\
& x+y=7 \\
\text { b) } m_{A B}=\frac{2+1}{7-9}=-\frac{3}{2} & y-y_{A}=m\left(x-x_{A}\right) \\
& y+1=-\frac{3}{2}(x-9) \\
& 3 x+2 y-25=0 \\
\text { c) } m_{A B}=\frac{0-1}{4+6}=-\frac{1}{10} \quad & y-y_{A}=m\left(x-x_{A}\right) \\
& y-1=-\frac{1}{10}(x+6) \\
& x+10 y-4=0
\end{array}
$$

Question 4:

a) $A B=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}}=\sqrt{5^{2}+2^{2}}=\sqrt{29}$

Mid - point $I\left(\frac{x_{A}+x_{B}}{2}, \frac{y_{A}+y_{B}}{2}\right)=\left(\frac{1}{2}, 5\right)$
b) $A B=\sqrt{9^{2}+4^{2}}=\sqrt{97} \quad I\left(\frac{3}{2}, 0\right)$
c) $A B=\sqrt{8^{2}+1^{2}}=\sqrt{65} \quad I\left(-2, \frac{-7}{2}\right)$

Question 5:

a) The gradient of L_{1} is 2
the line parallel to L_{1} has gradient 2
Its equation is $y-y_{A}=2\left(x-x_{A}\right)$

$$
\begin{aligned}
& y-2=2(x-3) \\
& y=2 x-4
\end{aligned}
$$

b) The line perpendicular to L_{1} has gradient $-\frac{1}{2}$

$$
\begin{aligned}
& \text { Its equation is } y-y_{B}=-\frac{1}{2}\left(x-x_{B}\right) \\
& \qquad \begin{array}{c}
y-4=-\frac{1}{2}(x+1) \\
x+2 y-7=0
\end{array}
\end{aligned}
$$

Question 6:

a)i) $m_{A B}=\frac{7-3}{3-1}=2$
ii) the gradient of BC is $m_{B C}=\frac{9-7}{-1-3}=-\frac{1}{2}$

$$
m_{A B} \times m_{B C}=2 \times-\frac{1}{2}=-1
$$

the line $A B$ and $B C$ are perpendicular,
the triangle $A B C$ is a right-angled triangle
b) i) $M(0,6)$

$$
\text { ii) } \begin{aligned}
A B & =\sqrt{2^{2}+4^{2}}=\sqrt{20}=2 \sqrt{5} \\
B C & =\sqrt{4^{2}+2^{2}}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

$$
A B=B C
$$

iii) The triangle ABC is a right-angled isosceles triangle, Its line of symmetry is the line AM
The gradient of $\mathrm{AM}=m_{A M}=\frac{6-3}{0-1}=-3$
The eqaution of AM is $y-y_{M}=-3\left(x-x_{M}\right)$
$y-6=-3 x$

$$
y=-3 x+6
$$

Question 7:

a) $3 x+4 y=7$ and B belongs to the line so

$$
3 \times 5+4 \times k=7 \quad 15+4 k=7
$$

$$
k=-2
$$

ii) $A(1,1)$ and $B(5,-2) \quad M\left(3,-\frac{1}{2}\right)$
b) $m_{A B}=\frac{-2-1}{5-1}=\frac{-3}{4}$
c) i) $m_{A C}=-\frac{1}{m_{A B}}=\frac{4}{3}$
ii) The equation of AC is: $y-1=\frac{4}{3}(x-1)$
$3 y-3=4 x-4$ gives $\quad 4 x-3 y-1=0$
iii) $C(x, 0)$ belongs to the line $A C$ so $4 x-0-1=0$

$$
x=\frac{1}{4}
$$

Circles

Equation of a circle.

Consider a circle C with centre $\Omega(a, b)$ and radius r.
Any point $M(x, y)$ on this circle satisfies $\Omega M=r$.
This is equivalent to $\Omega \mathrm{M}^{2}=r^{2}$

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

In particular if the centre is $(0,0)$, the equation becomes $x^{2}+y^{2}=r^{2}$.

Re-arranging circle equations

In its factorised form, it is easy to read centre and radius from the equation of a circle:

$$
(x-3)^{2}+(y+1)^{2}=9 \text { is the eqaution of the circle centre }(3,-1) \text { radius } 3 .
$$

But an equation can be given in its expanded form: $x^{2}+y^{2}+2 a x+2 b y+c=0$.
To re-arrange this equation, use the complete square form with $x^{2}+2 a x$ and $y^{2}+2 b x$.

$$
\begin{array}{ll}
\text { example: } & x^{2}+y^{2}+6 x+4 y-3=0 \\
& x^{2}+6 x+y^{2}+4 y \quad-3=0 \\
& (x+3)^{2}-9+(y+2)^{2}-4-3=0 \\
& (x+3)^{2}+(y+2)^{2}=16
\end{array}
$$

This is the circle centre $(-3,-2)$ radius $r=4$

Circle properties

a) Any point joined to the extremities of a diameter form a right-angled triangle.
b) The perpendicular bisector of a chord goes through the centre of the circle.
c) A tangent to the circle is perpendicular to the radius at its point of contact.

Work out exercise: Tangent to a circle

The circle C has centre $\mathrm{O}(2,1)$ and radius 25.
The point $A(6,4)$ belongs to the circle.
Work out the equation of the tangent to the circle at A .
-The tangent at A is PERPENDICULAR to the radius OA.
The gradient of OA is $m_{1}=\frac{4-1}{2-6}=\frac{3}{-4} \quad$ The gradient of the tangent is therefore $-\frac{1}{m_{1}}=\frac{4}{3}$
The equation of the tangent is : $y-4=\frac{4}{3}(x-6)$

$$
\begin{aligned}
& 3 y-12=4 x-24 \\
& 4 x-3 y-12=0
\end{aligned}
$$

Question 1:

For each of the following circles find the radius and the coordinates of the centre.
a) $x^{2}+y^{2}+2 x-6 y-6=0$
b) $x^{2}+y^{2}-2 y-4=0$
c) $x^{2}+y^{2}-6 x-4 y=12$
d) $x^{2}+y^{2}-10 x+6 y+13=0$

Question 2:
A circle has the equation $(x+1)^{2}+(y-2)^{2}=13$.
The circle passess through $A(-3,-1)$.
Find the equation of the tangent at A in the form $a x+b y+c=0$.
Question 3:
A circle has the equation $(x-3)^{2}+(y-4)^{2}=25$.
The circle passess through $A(7,1)$.
Find the equation of the tangent at A in the form $a x+b y=c$.

Question 4:

A circle has the equation $x^{2}+y^{2}+2 x-7=0$.
Find the equation of the tangent to the circle at $(-3,2)$.
Question 5:
A circle has the equation $x^{2}+y^{2}+2 x+4 y=5$.
Find the equation of the normal to the circle at $(0,-5)$.
Give your answer in the form $a x+b y=c$.
Question 6: exam question
A circle with centre C has equation $x^{2}+y^{2}-10 y+20=0$.
(a) By completing the square, express this equation in the form

$$
x^{2}+(y-b)^{2}=k
$$

(2 marks)
(b) Write down:
(i) the coordinates of C; (1 mark)
(ii) the radius of the circle, leaving your answer in surd form.
(1 mark)

Question 7: exam question
A circle with centre C has equation $x^{2}+y^{2}-6 x+10 y+9=0$.
(a) Express this equation in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(3 marks)
(b) Write down:
(i) the coordinates of C;
(ii) the radius of the circle.

Circles - exercises 'answers

$$
\begin{aligned}
& \text { Question 1: } \\
& \text { a) } x^{2}+y^{2}+2 x-6 y-6=0 \\
& (x+1)^{2}-1+(y-3)^{2}-9-6=0 \\
& (x+1)^{2}+(y-3)^{2}=16=4^{2}
\end{aligned}
$$

The circle has centre $(-1,3)$ and radius 4

$$
\begin{aligned}
& \text { b) } x^{2}+y^{2}-2 y-4=0 \\
& \quad(x)^{2}+(y-1)^{2}-1-4=0 \\
& (x)^{2}+(y-1)^{2}=\sqrt{5}^{2}
\end{aligned}
$$

The circle has centre $(0,1)$ and radius $\sqrt{5}$

$$
\begin{aligned}
& \text { c) } \begin{array}{l}
x^{2}+y^{2}-6 x-4 y=12 \\
(x-3)^{2}-9+(y-2)^{2}-4=12 \\
(x-3)^{2}+(y-2)^{2}=5^{2}
\end{array}
\end{aligned}
$$

The circle has centre $(3,2)$ and radius 5
d) $x^{2}+y^{2}-10 x+6 y+13=0$

$$
\begin{aligned}
& (x-5)^{2}-25+(y+3)^{2}-9+13=0 \\
& (x-5)^{2}+(y+3)^{2}=\sqrt{21}^{2}
\end{aligned}
$$

The circle has centre $(5,-3)$ and radius $\sqrt{21}$

Question 2:

The centre of the circle is $I(-1,2)$.
The tangent to the circle at $A(-3,-1)$
is perpendicular to the radius IA
Gradient of $I A=m_{I A}=\frac{-1-2}{-3+1}=\frac{3}{2}$
The gradient of the tangent is $m=-\frac{1}{m_{I A}}=-\frac{2}{3}$
The equation of the tangent is $y-y_{A}=m\left(x-x_{A}\right)$

$$
\begin{aligned}
& y+1=-\frac{2}{3}(x+3) \\
& 3 y+3=-2 x-6 \\
& 2 x+3 y=-9
\end{aligned}
$$

Question 3:

The centre of the circle is $\Omega(3,4)$
The radius $A \Omega$ has gradient $m_{A \Omega}=\frac{4-7}{3-1}=-\frac{3}{2}$
The tangent to the circle at A is
perpendicular to the radius: its gradient is $\frac{2}{3}$
The equation of the tangent is $y-1=\frac{2}{3}(x-7)$

$$
\begin{gathered}
3 y-3=2 x-14 \\
2 x-3 y=11
\end{gathered}
$$

Question 4:

$$
\begin{aligned}
& x^{2}+y^{2}+2 x-7=0 \\
& (x+1)^{2}+y^{2}=8
\end{aligned}
$$

The centre of the circle is $\Omega(-1,0)$
The gradient of the radius $\mathrm{A} \Omega$ is $m_{A \Omega}=\frac{0-2}{-1+3}=-1$
The gradient of the tangent is 1
The equation of the tangent is $y-2=1(x+3)$

$$
y=x+5
$$

Question 5:
$x^{2}+y^{2}+2 x+4 y=5$ and $A(0,-5)$
$(x+1)^{2}+(y+2)^{2}=10$
The centre of the circle is $\Omega(-1,-2)$
The normal is the radius $\mathrm{A} \Omega$ and
its the gradient is $m_{A \Omega}=\frac{-2+5}{-1-0}=-3$
The equation of the normal is
$y+5=-3(x-0)$
$3 x+y=-5$

Question 6:

$$
x^{2}+y^{2}-10 y+20=0
$$

a) $x^{2}+(y-5)^{2}=5$
b) The centre has coordinates $(0,5)$

The radius is $r=\sqrt{5}$

Question 7:

$$
x^{2}+y^{2}-6 x+10 y+9=0
$$

a) $(x-3)^{2}-9+(y+5)^{2}-25+9=0$

$$
(x-3)^{2}+(y+5)^{2}=25
$$

b) i) The centre is $(3,-5)$
ii) The radius is $r=5$

Transformations of graphs

Translations of graphs
A curve C_{f} has equation $y=f(x)$.
"a"is a positive number.
-The curve with equation $y=f(x)-b$ is the translation of C_{f} by vector $\binom{0}{-b}$
-The curve with equation $y=f(x+a)$ is the translation of C_{f} by vector $\binom{-a}{0}$

Combined translations

- The curve with equation $y+b=f(x+a)$ is the translation of C_{f} by vector $\binom{-a}{-b}$

Examples: The curve with equation $y=(x-3)^{2}+2$ is the translation of the curve $y=x^{2}$ by vector $\binom{3}{2}$.

The circle $(x-3)^{2}+(y+1)^{2}=9$ is the translation of the circle $x^{2}+y^{2}=9$
by the vector $\binom{3}{-1}$.

Parabolas

$$
\text { All parabolas of the form } y=x^{2}+b x+c \text { are the image of the parabola } y=x^{2}
$$

To work out the vector of this translation, use the completed square form:

$$
y=x^{2}+b x+c=(x+p)^{2}+q
$$

The vector of the translation is $\binom{-p}{q}$.
Note:This vector is the vector $\overrightarrow{\mathrm{OV}}$, where $V(-p, q)$ is the vertex of the parabola.

Question 1:
(a) Express $x^{2}+8 x+19$ in the form $(x+p)^{2}+q$, where p and q are integers.
(b) Hence, or otherwise, show that the equation $x^{2}+8 x+19=0$ has no real solutions.
(2 marks)
(c) Sketch the graph of $y=x^{2}+8 x+19$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis.
(3 marks)
(d) Describe geometrically the transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+8 x+19$.

Question 2:

(a) Express $x^{2}-3 x+4$ in the form $(x-p)^{2}+q$, where p and q are rational numbers.
(b) Hence write down the minimum value of the expression $x^{2}-3 x+4$.
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}-3 x+4$.
(3 marks)

Question 3:

(a) Express $(x-5)(x-3)+2$ in the form $(x-p)^{2}+q$, where p and q are integers.
(3 marks)
(b) (i) Sketch the graph of $y=(x-5)(x-3)+2$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis.
(3 marks)
(ii) Write down an equation of the tangent to the graph of $y=(x-5)(x-3)+2$ at its vertex.
(2 marks)
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=(x-5)(x-3)+2$.
(3 marks)

Question 4:

(a) (i) Express $x^{2}+2 x+5$ in the form $(x+p)^{2}+q$, where p and q are integers.
(2 marks)
(ii) Hence show that $x^{2}+2 x+5$ is always positive.
(1 mark)
(b) A curve has equation $y=x^{2}+2 x+5$.
(i) Write down the coordinates of the minimum point of the curve.
(2 marks)
(ii) Sketch the curve, showing the value of the intercept on the y-axis.
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+2 x+5$.
(3 marks)

Question 1:
a) $x^{2}+8 x+19=(x+4)^{2}+3$
b) $x^{2}+8 x+19=0$

$$
\begin{aligned}
& (x+4)^{2}+3=0 \\
& (x+4)^{2}=-3
\end{aligned}
$$

No solution
(a squared number is always positive)
c) The minimum point is $(-4,3)$

The graph crosses the y-axis at $(0,19)$
d) Translation vector $\binom{-4}{3}$

Question 2:

a) $x^{2}-3 x+4=\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+4$

$$
\left(x-\frac{3}{2}\right)^{2}+\frac{7}{4}
$$

b) The minimum point is $\left(\frac{3}{2}, \frac{7}{4}\right)$
c) Translation vector $\binom{\frac{3}{2}}{\frac{7}{4}}$

Question 3:
a) $(x-5)(x-3)+2=x^{2}-8 x+17=(x-4)^{2}+1$
b) i) Minimum point $(4,1)$

The graph crosses the y-axis at $(0,17)$
ii) $y=1$
c) Translation vector $\binom{4}{1}$

Question 4:

a)i) $x^{2}+2 x+5=(x+1)^{2}+4$
ii) For all $x,(x+1)^{2} \geq 0$

$$
\begin{aligned}
& (x+1)^{2}+4 \geq 4 \\
& y \geq 4 \geq 0
\end{aligned}
$$

b)i) Minimum point ($-1,4$)
ii) The graph crosses the y-axis at $(0,5)$
c) Translation vector $\binom{-1}{4}$

Calculus

Differentiation

Notation

- The function you get from differentiating y with respect to x is called the DERIVATIVE of y and it's written $\frac{d y}{d x}$.
- $\frac{d y}{d x}$ is the rate of change of y with respect to x.

It is the gradient of the curve/the tangent to the curve.

- The notation $f^{\prime}(x)(f$ prime of $x)$ is sometimes used instead of $\frac{d y}{d x}$.

Differentiation from first principle.

Consider two points on a curve $A(x, f(x))$ and a point B close to A
$B(x+h, f(x+h)) \quad$ where H is "small".
The chord AB has gradient $\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+}{}$
When B get closer and closer to A, h tends to 0 .
If $\frac{f(x+h)-f(x)}{h}$ has a value when h tends to 0 , this value is the gradient of the curve at $\mathrm{A}: f^{\prime}(x)$.

Example: $f(x)=x^{2}$
Let's work out the gradient of the curve at $x=3$.

- $A\left(3,3^{2}\right)$ and $B\left(3+h,(3+h)^{2}\right)$
the gradient of $\mathrm{AB}: m=\frac{(3+h)^{2}-3^{2}}{3+h-3}=\frac{9+6 h+h^{2}-9}{h}=6+h$
When htends to $0, m$ tends to 6 :
Conclusion: $\frac{d y}{d x}(x=3)=f^{\prime}(3)=6$
Differentiating polynomials
if $y=x^{n}$ then $\frac{d y}{d x}=n x^{n-1}$
- if $y=x^{n}+x^{p}$ then $\frac{d y}{d x}=n x^{n-1}+p x^{p-1}$
- if $y=k \times x^{n}$ then $\frac{d y}{d x}=k \times n x^{n-1} \quad$ where $k \in \mathbb{R}$.

Example : $y=x^{4} \quad \frac{d y}{d x}=4 x^{3}$

$$
\begin{aligned}
& y=5 x^{6} \quad \frac{d y}{d x}=5 \times 6 x^{5}=30 x^{5} \\
& y=3 x^{4}+5 x^{3}+x \quad \frac{d y}{d x}=12 x^{3}+15 x^{2}+1
\end{aligned}
$$

Question 1:
Differentiate the following functions
a) $f(x)=4 x^{3}-x^{2}$
b) $f(x)=x+1$
c) $f(x)=x^{4}-x$
d) $f(x)=3 x^{2}+x-5$
e) $f(x)=-2 x^{2}+4 x-6$

Question 2:

Find the gradient of each of the following curves
a) $y=x^{4}-x^{2}+2$ when $x=3$
b) $y=2 x^{5}+4$ when $x=-2$
c) $y=x(x-1)(x-2)$ at $(4,24)$
d) $y=5\left(x^{2}-1\right)+x$ at $(-1,-1)$

Question 3:

For each of the following functions, find the coordinates of the point or points where the gradient is 0
a) $y=x^{2}-2 x$
b) $y=3 x^{2}+4 x$
c) $y=5 x^{2}-3 x$
d) $y=9 x-3 x^{3}$

Question 1:

a) $\frac{d f}{d x}=12 x^{2}-2 x$
b) $\frac{d f}{d x}=1$
c) $\frac{d f}{d x}=4 x^{3}-1$
d) $\frac{d f}{d x}=6 x+1$
e) $\frac{d f}{d x}=-4 x+4$

Question 2:

a) $\frac{d y}{d x}=4 x^{3}-2 x \quad \frac{d y}{d x}(x=3)=4 \times 3^{3}-2 \times 3=102$
b) $\frac{d y}{d x}=10 x^{4} \quad \frac{d y}{d x}(x=-2)=10 \times(-2)^{4}=160$
c) $y=x^{3}-3 x^{2}+2 x \quad \frac{d y}{d x}=3 x^{2}-6 x+2 \quad \frac{d y}{d x}(x=4)=26$
d) $y=5 x^{2}+x-5 \quad \frac{d y}{d x}=10 x+1 \quad \frac{d y}{d x}(x=-1)=-9$

Question 3:

a) $\frac{d y}{d x}=2 x-2=0 \quad$ for $x=1$

$$
\begin{equation*}
y=1^{2}-2=-1 \tag{1,-1}
\end{equation*}
$$

b) $\frac{d y}{d x}=6 x+4=0$ for $x=-\frac{2}{3}$

$$
y=3 \times\left(-\frac{2}{3}\right)^{2}+4 \times\left(-\frac{2}{3}\right)=-\frac{4}{3}
$$

$$
\left(-\frac{2}{3},-\frac{4}{3}\right)
$$

c) $\frac{d y}{d x}=10 x-3=0$ for $x=\frac{3}{10}$

$$
y=-\frac{9}{20}
$$

$$
\left(\frac{3}{10},-\frac{9}{20}\right)
$$

d) $\frac{d y}{d x}=9-9 x^{2}=0 \quad$ for $x^{2}=1$

$$
\begin{aligned}
& x=-1 \text { or } x=1 \\
& y=-6 \text { or } x=6
\end{aligned}
$$

$$
(-1,-6) \text { or }(1,6)
$$

Using differentiation

Tangents and normals

- A tangent to a curve is a straight line that touches the curve The gradient of the tangent is the same as the gradient of the curve at the point of contact.
- A normal to a curve at a point A is a straight line which is perpendicular to the tangent to the curve at A .

Consequence: $m_{\text {tangent }} \times m_{\text {normal }}=-1$ or

$$
m_{\text {normal }}=\frac{-1}{m_{\text {tangen }}}
$$

Second order derivatives

- If you differentiate y with respect to x, you get the derivative $\frac{d y}{d x}$.
- If you differentiate $\frac{d y}{d x}$ with respect to x, you get the second order derivative $\frac{d^{2} y}{d x^{2}}$.
- The second order derivative gives the rate of change
of the gradient of the curve with respect to x.
- If $y=f(x)$, we usethe notation $\frac{d^{2} y}{d x^{2}}=f^{n}(x)$.

Stationary points

Stationary points occur when the gradient of the curve is zero: $\frac{d y}{d x}=0$

There are three kinds of stationary points:

To work out the coordinates of a stationary point:
Maximum
When the gradient

Point of inflection When the graph

1) Work out $f^{\prime}(x)$
2) Solve the equation $f^{\prime}(x)=0$
3) Substitute the x-values found into the original equation to find y-values.

Minimum and maximum points

If the point $A\left(x_{A}, f\left(x_{A}\right)\right)$ is a stationary point of the curve $y=f(x)$,
The nature of the point A is determined by the sign of the second order derivative:
If $\frac{d^{2} y}{d x^{2}}\left(x=x_{A}\right)<0, A$ is a maximum point
If $\frac{d^{2} y}{d x^{2}}\left(x=x_{A}\right)=0, A$ is point of inflection
If $\frac{d^{2} y}{d x^{2}}\left(x=x_{A}\right)>0, A$ is a minimum point

Question 1:
Find the equation of the tangent to each of these curves at the given point.
Give your answer in the form $y=m x+c$
a) $y=9 x-x^{2} \quad(1,7)$
b) $y=x^{3}-2 x+3$
c) $y=(x+2)(2 x-3)$

Find the equation of the tangent to each of these curves at the given point.
Give your answer in the form $a x+b y+c=0$ where a, b and c are integers.
d) $y=3 x^{2}-4 x+2$
$(2,6)$
e) $y=x^{2}(x+4)-5 x \quad(-1,8)$

Question 2:

The curve with equation $y=x^{3}+x^{2}+x+5$ passes through the point $\mathrm{A}(1,8)$.
a) Work out the equation of the tangent to the curve at A. (give your answer in theform $y=m x+c$)
b) Work out the equation of the normal to the curve at A in the form $a x+b y+c=0$.

Question 3:

Find the stationary points on the graphs of the following functions and say if they are maximum or minimum turning points.
a) $f(x)=8 x^{3}+16 x^{2}+8 x+1$
b) $f(x)=2 x^{4}+x$
c) $f(x)=x^{3}-3 x^{2}+4$

Question 4:

The curve given by the function $f(x)=x^{3}+a x^{2}+b x+c$ has a stationary point with coordinates $(3,10)$. If $f^{\prime \prime}(x)=0$ at $(3,10)$, find a, b and c.

Question 5:

Given that the curve with equation $y=x^{4}+k x^{3}+x^{2}+17$ has only one stationary point,
show that $k^{2}<\frac{32}{9}$.
Find the coordinates of the stationary point and say if it is a maximum or a minimum point.

Question 6:

A ball is catapulted vertically with an initial speed of $30 \mathrm{~m} / \mathrm{s}$.
After t seconds the height h of the ball is given by $h=30 t-7.5 t^{2}$.
Use calculus to find the maximum height the ball reaches.

Using differentiation - exercises 'answers

Question 1:

a) $\frac{d y}{d x}=9-2 x$
$\frac{d y}{d x}(x=1)=9-2=7$

The equation of the tangent is $y-7=7(x-1)$

$$
y=7 x
$$

b) $\frac{d y}{d x}=3 x^{2}-2 \quad \frac{d y}{d x}(x=2)=10$

The equation of the tangent is $\quad y-7=10(x-2)$

$$
y=10 x-13
$$

c) $y=2 x^{2}+x-6$

$$
\begin{aligned}
& \frac{d y}{d x}=4 x+1 \\
& \frac{d y}{d x}(x=2)=9
\end{aligned}
$$

The equation of the tangent is $\quad y-4=9(x-2)$

$$
y=9 x-14
$$

d) $\frac{d y}{d x}=6 x-4 \quad \frac{d y}{d x}(x=2)=8$

The equation of the tangent is $y-6=8(x-2)$

$$
8 x-y-10=0
$$

e) $\frac{d y}{d x}=3 x^{2}+8 x-5 \quad \frac{d y}{d x}(x=-1)=-10$

The equation of the tangent is $y-8=-10(x+1)$

$$
10 x+y+2=0
$$

Question 2:

$$
\text { a) } \frac{d y}{d x}=3 x^{2}+2 x+1 \quad \frac{d y}{d x}(x=1)=6
$$

The equation of the tangent is $y-8=6(x-1)$

$$
y=6 x+2
$$

b) The gradient of the normal is $-\frac{1}{6}$

The equation of the normal is $y-8=-\frac{1}{6}(x-1)$

$$
\begin{gathered}
6 y-48=-x+1 \\
x+6 y-49=0
\end{gathered}
$$

Question 3:

a) $\frac{d f}{d x}=24 x^{2}+32 x+8=0$
$3 x^{2}+4 x+1=0$
$(3 x+1)(x+1)=0$
$x=-\frac{1}{3}$ or $x=-1$
$f\left(-\frac{1}{3}\right)=-\frac{5}{27}$ or $f(-1)=1$
The stationary points are $A\left(-\frac{1}{3}, \frac{5}{27}\right)$ and $B(-1,1)$.
$\frac{d^{2} f}{d x^{2}}=48 x+32$
$\frac{d^{2} f}{d x^{2}}\left(x=-\frac{1}{3}\right)=16>0 \quad \mathrm{~A}$ is a minimum
$\frac{d^{2} f}{d x^{2}}(x=-1)=-16<0 \quad$ B is a maximum

Question 4:

$f(x)=x^{3}+a x^{2}+b x+c$
$\frac{d f}{d x}=3 x^{2}+2 a x+b$
$\frac{d f}{d x}(x=3)=27+6 a+b=0$

$$
6 a+b=-27
$$

$\frac{d^{2} f}{d x^{2}}=6 x+2 a$
$\frac{d^{2} f}{d x^{2}}(x=3)=18+2 a=0 \quad a=-9$ and $b=-27-6 a=27$
$f(x)=x^{3}-9 x^{2}+27 x+c$
$f(3)=27-81+81+c=10$

$$
c=10-27=-17
$$

Conclusion: $f(x)=x^{3}-9 x^{2}+27 x-17$

Question 5:

$$
\begin{aligned}
& \frac{d y}{d x}=4 x^{3}+3 k x^{2}+2 x=0 \\
& \quad x\left(4 x^{2}+3 k x+2\right)=0 \\
& \text { so } x=0 \text { and } y=17 \text { give }
\end{aligned}
$$

THE stationary point
This means that $4 x^{2}+3 k x+2$
has no real roots:
The discriminant is <0
$(3 k)^{2}-4 \times 4 \times 2<0$
$9 k^{2}-32<0$

$$
k^{2}<\frac{32}{9}
$$

The stationary point is $(0,17)$
$\frac{d^{2} y}{d x^{2}}=12 x^{2}+6 k x+2$
$\frac{d^{2} y}{d x^{2}}(x=0)=2>0$.
The point $(0,17)$ is a minimum.

Question 6:

$\frac{d h}{d t}=30-15 t=0$ for $t=2$
for $t=2, h=60-30=30$
The maximum height reached
is 30 m at $t=2$ seconds

Integration

Indefinite integrals
Integration is the "opposite" of differentiation.
If $y=f(x)$ is a given function, to integrate f means finding a function $F(x)$

$$
\text { so that } \frac{d F}{d x}=f
$$

F is called an INTEGRAL of f and it is noted $\int f(x) d x$
Note : An integral is not unique. If $F(x)$ is an integral, then $F(x)+c$ is also one.

$$
\int f(x) d x=F(x)+c \quad \text { where } c \text { is a constant }
$$

Integrating x^{n}
The formula tells you how to integrate powers of x.

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c \quad \text { for all } n \neq-1
$$

Rules of integrations
$f(x)$ and $g(x)$ are two functions , a is a constant

$$
\begin{aligned}
& \int a \times f(x) d x=a \times \int f(x) d x \\
& \int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x
\end{aligned}
$$

Examples: $\int x^{3} d x=\frac{1}{4} x^{4}+c \quad \int\left(3 x^{2}-3 x\right) d x=3 \times \frac{1}{3} x^{3}-3 \times \frac{1}{2} x^{2}+c=x^{3}-\frac{3}{2} x^{2}+c$

Integrating to find the equation of a curve
A curve $y=f(x)$ is going through the point $A\left(x_{A}, y_{A}\right)$ and $\frac{d y}{d x}=f^{\prime}(x)$ is given.
To find the equation of the curve,
\bullet integrate $f^{\prime}(x) \quad: \int f^{\prime}(x) d x=F(x)+c$

- find the value of the constant c using the coordinates of A.

Example:The curve $y=f(x)$ goes through $\mathrm{A}(2,9)$ and $\frac{d y}{d x}=3 x^{2}$.
Find the eqaution of the curve.

- $\int 3 x^{2} d x=x^{3}+c$ so $y=x^{3}+c$
- $A(2,9)$ belongs to the curve so $9=(2)^{3}+c \quad c=1$
-the eqaution of the curve is $y=x^{3}+1$

Question 1:
Find the following
a) $\int x^{2} d x$
b) $\int 7 x^{4} d x$
c) $\int \frac{x}{2} d x$
d) $\int-\frac{1}{4} x d x$
e) $\int\left(x^{6}+x\right) d x$
f) $\int\left(10 x^{2}+4 x+1\right) d x$
g) $\int x(x+2) d x$
h) $\int \frac{2 x^{3}+4 x^{2}}{x} d x$
i) $\int \frac{1}{2} x^{3}+\frac{2 x^{5}}{x^{2}} d x$

Question 2:

For each of the following, the curve $y=f(x)$ goes through the given point. Find $f(x)$
a) $f^{\prime}(x)=4 x^{3}$
b) $f^{\prime}(x)=3 x^{2}-4 x+3 \quad(1,-3)$
c) $f^{\prime}(x)=6 x(x+2) \quad(-1,1)$
d) $f^{\prime}(x)=\frac{9 x^{3}+2 x^{2}}{x} \quad(-1,2)$

Question 3:

Consider $\frac{d y}{d t}=(t-3)^{2}$.
Given that $y=9$ when $t=4$, find y as a function of t.

Question 4:

The curve $y=f(x)$ has derivative $f^{\prime}(x)=x^{3}+\frac{x}{2}+3$ and passes through $(1,-1)$.
Find the equation of the curve.

Question 1:
a) $\int x^{2} d x=\frac{1}{3} x^{3}+c$
b) $\int 7 x^{4} d x=\frac{7}{5} x^{5}+c$
c) $\int \frac{x}{2} d x=\frac{1}{4} x^{2}+c$
d) $\int-\frac{1}{4} x d x=-\frac{1}{8} x^{2}+c$
e) $\int\left(x^{6}+x\right) d x=\frac{1}{7} x^{7}+\frac{1}{2} x^{2}+c$
f) $\int\left(10 x^{2}+4 x+1\right) d x=\frac{10}{3} x^{3}+2 x^{2}+x+c$
g) $\int x(x+2) d x=\frac{1}{2} x^{2}+x^{2}+c$
h) $\int \frac{2 x^{3}+4 x^{2}}{x} d x=\int\left(2 x^{2}+4 x\right) d x=\frac{2}{3} x^{3}+2 x^{2}+c$
i) $\int \frac{1}{2} x^{3}+\frac{2 x^{5}}{x^{2}} d x=\int \frac{1}{2} x^{3}+2 x^{3} d x=\frac{1}{8} x^{4}+\frac{1}{2} x^{4}+c$

Question 2:

a) $f(x)=x^{4}+5$
b) $f(x)=x^{3}-2 x^{2}+3 x+-5$
c) $f(x)=2 x^{3}+6 x^{2}-3$
d) $f(x)=3 x^{3}+x^{2}+4$

Question 3:

$\frac{d y}{d t}=(t-3)^{2}=t^{2}-6 t+9$
$y=\frac{1}{3} t^{3}-3 t^{2}+9 t+c$
for $t=4, y=9$ so
$9=\frac{64}{3}-48+36+c$
$c=-\frac{1}{3}$
$y=\frac{1}{3} t^{3}-3 t^{2}+9 t-\frac{1}{3}$

Question 4:

$y=f(x)=\frac{1}{4} x^{4}+\frac{1}{4} x^{2}+3 x+c$
for $x=1, y=-1$ so
$-1=\frac{1}{4}+\frac{1}{4}+3+c$
$c=-\frac{9}{2}$
$f(x)=\frac{1}{4} x^{4}+\frac{1}{4} x^{2}+3 x-\frac{9}{2}$

Integration and area

Definite integrals
Definite integrals have numbers, a and b, next to the integral sign.
They indicate the range of x -values to integrate the function between.
a is the lower limit, b is the upper limit $\quad a<b$
$\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a) \quad$ where F is an integral of f.

Example:

$$
\int_{1}^{2} x^{2} d x=\left[\frac{1}{3} x^{3}\right]_{1}^{2}=\left(\frac{1}{3} \times 2^{3}\right)-\left(\frac{1}{3} \times 1^{3}\right)=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}
$$

Area under a curve

The value of a definite integral represents the area between
the curve of the function, the x -axis and the line $x=a$ and $x=b$.

Be careful:if the curve is below the x-axis, i.e if $f(x)<0$, the integral will give a negative value.
In this case, Area $=-\int_{a}^{b} f(x) d x$

Area between two curves

$f(x)$ and $g(x)$ are two functions and a and b are two numbers.
when $a<x<b, f(x)>g(x)$.
The area between the two curves and the lines $x=a$ and $x=b$ is

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \text { or } \int_{a}^{b}(f(x)-g(x)) d x
$$

Area $=\int_{1}^{2}-x^{2}+3 x-\left((x-1)^{2}+1\right) d x=\int_{1}^{2}-2 x^{2}+5 x-2 d x$
$=\left[-\frac{2}{3} x^{3}+\frac{5}{2} x^{2}-2 x\right]_{1}^{2}$
Area $=\left(-\frac{16}{3}+10-4\right)-\left(-\frac{2}{3}+\frac{5}{2}-2\right)=\frac{5}{6}$

Question 1:
Work out
a) $\int_{1}^{3} 3 x^{2} d x$
b) $\int_{-2}^{0}\left(4 x^{3}+2 x\right) d x$
c) $\int_{0}^{2}\left(x^{3}+x\right) d x$
d) $\int_{-5}^{-2}(x+1)^{2} d x$

Question 2:

Given that $\int_{0}^{a} x^{3} d x=4$, work out the value of a, where $a>0$.

Question 3:

Calculate the shaded area in the following diagram:

Question 4:

Find the area between the graph of $y=x^{2}+x$, the x-axis and the lines $x=1$ and $x=3$

Question 5:

Find the area between the graph of $y=5 x^{3}$, the x-axis and the lines $x=-2$ and $x=-1$.

Question 6:

Find the area enclosed by the curve $y=x^{2}+4$ and the line $y=x+4$.

Question 7:

Find the area enclosed by the curve $y=x^{2}+x+1$,
the line $y=4-x$ and the x-axis for $x \geq 0$.

Question 8:

Work out the shaded area in the following diagrams:

Question 1:
a) $\int_{1}^{3} 3 x^{2} d x=\left[x^{3}\right]_{1}^{3}=3^{3}-1^{3}=26$
b) $\int_{-2}^{0}\left(4 x^{3}+2 x\right) d x=\left[x^{4}+x^{2}\right]_{-2}^{0}=0-\left((-2)^{4}+(-2)^{2}\right)=-20$
c) $\int_{0}^{2}\left(x^{3}+x\right) d x=\left[\frac{1}{4} x^{4}+\frac{1}{2} x^{2}\right]_{0}^{2}=(4+2)-(0)=6$
d) $\int_{-5}^{-2}(x+1)^{2} d x=\int_{-5}^{-2} x^{2}+2 x+1 d x=\left[\frac{1}{3} x^{3}+x^{2}+x\right]_{-5}^{-2}$ $=\left(-\frac{8}{3}+4-2\right)-\left(-\frac{125}{3}+25-5\right)=21$

Question 2:

$\int_{0}^{a} x^{3} d x=\left[\frac{1}{4} x^{4}\right]_{0}^{a}=\frac{1}{4} a^{4}=4$
This gives $a^{4}=16 \quad a=\sqrt[4]{16}=2$
(because $a>0$)

Question 3:

Area $=\int_{1}^{3} x^{3}+2 x d x=\left[\frac{1}{4} x^{4}+x^{2}\right]_{1}^{3}$
Area $=\left(\frac{81}{4}+9\right)-\left(\frac{1}{4}+1\right)=28$

Question 4:

Area $=\int_{1}^{3} x^{2}+x d x=\left[\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right]_{1}^{3}$
Area $=\left(9+\frac{9}{2}\right)-\left(\frac{1}{3}+\frac{1}{2}\right)=\frac{38}{3}$

Question 5:

$I=\int_{-2}^{-1} 5 x^{3} d x=\left[\frac{5}{4} x^{4}\right]_{-2}^{-1}$
$I=\left(\frac{5}{4}\right)-(20)=-\frac{75}{4}$
The area is $\frac{75}{4}=18 \frac{3}{4}$

Question 6:
We need to find where the parabola and the line intersect:
$\left\{\begin{array}{l}y=x^{2}+4 \\ y=x+4\end{array} \quad\right.$ this gives:

$$
\begin{aligned}
& x^{2}+4=x+4 \\
& x^{2}-x=0 \\
& x(x-1)=0 \\
& x=0 \text { or } x=1
\end{aligned}
$$

$I=\int_{0}^{1}(x+4)-\left(x^{2}+4\right) d x=\int_{0}^{1} x-x^{2} d x$
$I=\left[\frac{1}{2} x-\frac{1}{3} x^{3}\right]_{0}^{1}=\left(\frac{1}{2}-\frac{1}{3}\right)-(0)=\frac{1}{6}$
The area is $\frac{1}{6}$.

Question 7:

We solve simultaneously $\left\{\begin{array}{l}y=x^{2}+x+1 \\ y=4-x\end{array}\right.$
$x^{2}+x+1=4-x$
$x^{2}+2 x-3=0$
$(x+3)(x-1)=0$
$x=-3$ or $x=1$
But we want $x \geq 0$ so we work out
$I=\int_{0}^{1}\left(x^{2}+x+1\right)-(4-x) d x=\int_{0}^{1} x^{2}+2 x-3 d x$
$I=\left[\frac{1}{3} x^{3}+x^{2}-3 x\right]_{0}^{1}=\left(\frac{1}{3}+1-3\right)-(0)=-\frac{5}{3}$
The area comprised between the curve is $\frac{5}{3}$.

Question 8:

a) $I=\int_{-2}^{2} 16-\left(3 x^{2}+4\right) d x=\int_{-2}^{2} 12-3 x^{2} d x$

$$
I=\left[12 x-x^{3}\right]_{-2}^{2}=(24-8)-(-24+8)=48
$$

b) $I=\int_{0}^{2} 2 x-x^{2} d x=\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{2}$ $I=\left(4-\frac{8}{3}\right)-(0)=\frac{4}{3}$
The area is $\frac{4}{3}$.

General Certificate of Education
 January 2006
 Advanced Subsidiary Examination
 AQA
 Assessmentand
 atuance
 ATICS
 MPC1
 Unit Pure Core 1

Tuesday 10 January 20061.30 pm to 3.00 pm

For this paper you must have:
 - an 8-page answer book
 the blue AQA booklet of formulae and statistical table
 You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.

All necessary working should be shown; otherwise marks for method may be lost.

- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75

The marks for questions are shown in brackets.

dvice

- Unless stated otherwise, formulae may be quoted, without proof, from the booklet

1 (a) Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$.
(b) Express $\sqrt{8}+\sqrt{18}$ in the form $n \sqrt{2}$, where n is an integer.

2 The point A has coordinates $(1,1)$ and the point B has coordinates $(5, k)$.
The line $A B$ has equation $3 x+4 y=7$.
(a) (i) Show that $k=-2$.
(1 mark)
(ii) Hence find the coordinates of the mid-point of $A B$
(2 marks)
(b) Find the gradient of $A B$.
(c) The line $A C$ is perpendicular to the line $A B$.
(i) Find the gradient of $A C$
(2 marks)
(ii) Hence find an equation of the line $A C$
(1 mark)
(iii) Given that the point C lies on the x-axis, find its x-coordinate.

3 (a) (i) Express $x^{2}-4 x+9$ in the form $(x-p)^{2}+q$, where p and q are integers.
(ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y=x^{2}-4 x+9$
(2 marks)
(b) The line L has equation $y+2 x=12$ and the curve C has equation $y=x^{2}-4 x+9$.
(i) Show that the x-coordinates of the points of intersection of L and C satisfy the equation

$$
x^{2}-2 x-3=0
$$

(1 mark)
(ii) Hence find the coordinates of the points of intersection of L and C.

4 The quadratic equation $x^{2}+(m+4) x+(4 m+1)=0$, where m is a constant, has equal roots.
(a) Show that $m^{2}-8 m+12=0$.
(3 marks)
(b) Hence find the possible values of m.
(2 marks)

5 A circle with centre C has equation $x^{2}+y^{2}-8 x+6 y=11$.
(a) By completing the square, express this equation in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(3 marks)
(b) Write down:
(i) the coordinates of C;
(1 mark)
(ii) the radius of the circle.
(1 mark)
(c) The point O has coordinates $(0,0)$.
(i) Find the length of CO .
(2 marks)
(ii) Hence determine whether the point O lies inside or outside the circle, giving a reason for your answer.
(2 marks)

6 The polynomial $\mathrm{p}(x)$ is given by

$$
\mathrm{p}(x)=x^{3}+x^{2}-10 x+8
$$

(a) (i) Using the factor theorem, show that $x-2$ is a factor of $\mathrm{p}(x)$.
(2 marks)
(ii) Hence express $\mathrm{p}(x)$ as the product of three linear factors.
(3 marks)
(b) Sketch the curve with equation $y=x^{3}+x^{2}-10 x+8$, showing the coordinates of the points where the curve cuts the axes.
(You are not required to calculate the coordinates of the stationary points.)
(4 marks)

7 The volume, $V \mathrm{~m}^{3}$, of water in a tank at time t seconds is given by

$$
V=\frac{1}{3} t^{6}-2 t^{4}+3 t^{2}, \quad \text { for } t \geqslant 0
$$

(a) Find:
(i) $\frac{\mathrm{d} V}{\mathrm{~d} t} ; \square \quad$ (3 marks)
(ii) $\frac{\mathrm{d}^{2} V}{\mathrm{~d} t^{2}}$.
(2 marks)
(b) Find the rate of change of the volume of water in the tank, in $\mathrm{m}^{3} \mathrm{~s}^{-1}$, when $t=2$.
(c) (i) Verify that V has a stationary value when $t=1$ (2 marks)
(ii) Determine whether this is a maximum or minimum value.
(2 marks)
8 The diagram shows the curve with equation $y=3 x^{2}-x^{3}$ and the line L.

The points A and B have coordinates $(-1,0)$ and $(2,0)$ respectively. The curve touches the x-axis at the origin O and crosses the x-axis at the point $(3,0)$. The line L cuts the curve at the point D where $x=-1$ and touches the curve at C where $x=2$.
(a) Find the area of the rectangle $A B C D$.
(b) (i) Find $\int\left(3 x^{2}-x^{3}\right) \mathrm{d} x$.
(ii) Hence find the area of the shaded region bounded by the curve and the line L.
(4 marks)
(c) For the curve above with equation $y=3 x^{2}-x^{3}$:
(i) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$; (2 marks)
(ii) hence find an equation of the tangent at the point on the curve where $x=1$;
(3 marks)
(iii) show that y is decreasing when $x^{2}-2 x>0$. (2 marks)
(d) Solve the inequality $x^{2}-2 x>0$. (2 marks)
Question 1: \quad Exam report
a) $(\sqrt{5}+2)(\sqrt{5}-2)=5-2 \sqrt{5}+2 \sqrt{5}-4=1$
b) $\sqrt{8}+\sqrt{18}=\sqrt{4 \times 2}+\sqrt{9 \times 2}=2 \sqrt{2}+3 \sqrt{2}=5 \sqrt{2}$

Many candidates earned full marks on this introductory question.
(a) Most candidates multiplied out the two brackets to obtain four terms. The most common error occurred in the last term, which was sometimes seen as -2 instead of -4 . Very few candidates recognised that it was the difference of two squares.
(b) This part was less well done. Some candidates had problems simplifying $\sqrt{8}$ and $\sqrt{18}$ and wrote $2 \sqrt{4}$ and $2 \sqrt{9}$, for example. Some, having correctly converted both surds, added them incorrectly and so $6 \sqrt{6}$ was quite common. A few candidates thought $\sqrt{8}+\sqrt{18}$ were equal to $\sqrt{26}$.

Question 2:

$A(1,1) \quad B(5, k)$

$A B: 3 x+4 y=7$
a)i) B belongs to the line so its coordinates satify the equation:

$$
3 \times 5+4 \times k=7 \quad 15+4 k=7 \quad k=-2
$$

ii) $I\left(\frac{x_{A}+x_{B}}{2}, \frac{y_{A}+y_{B}}{2}\right)=I\left(3,-\frac{1}{2}\right)$
b) $m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{-2-1}{5-1}=-\frac{3}{4}$
c)i) $m_{A C}=-\frac{1}{m_{A B}}=\frac{4}{3}$
ii) $A C: y-y_{A}=m_{A C}\left(x-x_{A}\right)$

$$
\begin{aligned}
& y-1=\frac{4}{3}(x-1) \\
& 3 y-3=4 x-4 \\
& 4 x-3 y=1
\end{aligned}
$$

iii) C belongs to the x -axis so $C\left(x_{C}, 0\right)$

$$
4 x_{C}-3 \times 0=1 \quad x_{C}=\frac{1}{4}
$$

Exam report

(a)(i) Candidates used various methods to prove that $\mathrm{k}=-2$. Some used the most direct method of substituting $x=5$ into the given line equation and solving for y; some chose to verify that $x=5$ and $y=-$ 2 satisfied the equation of the straight line. Others took a longer route; they found the gradient using $(1,1)$ and $(5,-2)$ and then found the equation passing through one of the points and proved it to be the given one.
(a)(ii) Most candidates knew how to find the midpoint of a line. A few made a simplification error and wrote $\left(3, \frac{1}{2}\right)$ instead of $\left(3,-\frac{1}{2}\right)$.The common error amongst the weaker candidates was to subtract the coordinates instead of adding them.
(b) Many candidates gave fully correct answers here.

However, some, having obtained $\frac{-2-1}{5-1}$ wrote $\frac{3}{4}$
as a final answer. A few candidates used $\frac{x_{1}-x_{2}}{y_{1}-y_{2}}$.
(c)(i) Most knew the gradient rule for perpendicular lines. However, not all could implement it since it involved the reciprocal of a fraction.
(c)(ii) At least half of the candidates found the equation of the line passing through the midpoint of $A B$ instead of through C.
(iii) Most realised the need to substitute $\mathrm{y}=0$ into their $A C$ equation and solve for x, so they at least earned the method mark. Even those with the correct equation did not always earn two marks.
Some had difficulty in simplifying $\frac{1}{3} \div \frac{4}{3}$

Question 3:

i) $x^{2}-4 x+9=(x-2)^{2}-4+9=(x-2)^{2}+5$
ii) for all $x,(x-2)^{2} \geq 0$ so $(x-2)^{2}+5 \geq 5$

The minimum y value is 5 , obtained for $x=2$

$$
\operatorname{Min}(2,5)
$$

b) Solve the equations simultaneously: $\left\{\begin{array}{l}y=-2 x+12 \\ y=x^{2}-4 x+9\end{array}\right.$

This gives $(y=) x^{2}-4 x+9=-2 x+12$

$$
x^{2}-2 x-3=0
$$

ii) $x^{2}-2 x-3=(x-3)(x+1)=0$

$$
x=3 \text { or } x=-1
$$

and $\quad y=12-2 x=6$ or $y=14$
$(3,6)$ and $(-1,14)$

Exam report

(a)(i) Most candidates were familiar with the idea of .completing the square. and answered this part satisfactorily. There were occasional sign errors and $+9-4$ was not always evaluated correctly.
(a)(ii) There were several correct answers although some wrote $(5,-2)$ instead of $(5,2)$. Some did not recognise the link between parts (i) and (ii) and chose to differentiate instead. This was a satisfactory, though more time-consuming, alternative method. Some earned no marks here as they wrote comments such as ". 5 is the minimum", with no link to the y-coordinate being 5 .
(b)(i) This simple proof was usually well done. Occasionally the mark was lost due to the omission of " $=0$ "...
(b)(ii) Many scored full marks here. Most factorised the equation and obtained the correct x-values. Some made no further progress, while a few substituted into the given quadratic equation and obtained
$y=0$, instead of using the equation of the line or curve to find the values of y. It was encouraging to see many factorising the quadratic correctly. Those who used the quadratic equation formula or completion of the square often made more errors than those who factorised

Question 4:

a) $x^{2}+(m+4) x+(4 m+1)=0$ has equal roots
so the discriminant $=0$:
$(m+4)^{2}-4 \times 1 \times(4 m+1)=0$
$m^{2}+8 m+16-16 m-4=0$
$m^{2}-8 m+12=0$
b) $m^{2}-8 m+12=0$
$(m-6)(m-2)=0$
$m=6$ or $m=2$

Exam report

(a) There were several completely correct proofs here. Some lost the last mark by concentrating on the discriminant but failing to equate it to zero. There was a little fudging by some; for example, some who wrote $-4(4 m+1)=-16 m+4$ still managed to obtain the correct printed equation.

Some of the weaker candidates found $b^{2}-4 a c$ using numerical values from the equation they were supposed to establish.
(b) Almost all candidates found both values of m successfully. A few spotted just one answer and some factorised correctly and then wrote $m=-2, m=-6$, but they were in the minority.

Question 5:

a) $x^{2}+y^{2}-8 x+6 y=11$

$$
\begin{aligned}
& (x-4)^{2}-16+(y+3)^{2}-9=11 \\
& (x-4)^{3}+(y+3)^{2}=36
\end{aligned}
$$

b)i) Centre $C(4,3)$
ii) Radius $r=\sqrt{36}=6$
c) $O(0,0) \quad C(4,3)$
i) Length $C O=\sqrt{\left(x_{O}-x_{C}\right)^{2}+\left(y_{O}-y_{C}\right)^{2}}$

$$
C O=\sqrt{4^{2}+3^{2}}=\sqrt{25}=C O=5
$$

ii) Because $C O<6$, O lies INSIDE the circle.

Exam report

(a) Completion of the squares in the circle equation was carried out well once more. The most common error was a sign slip usually in the second term. Another error lay in combining the constant terms, so answers such as -14 and 11 were seen for r^{2}.
(b) Most earned the mark for the coordinates of the centre of the circle as this was a follow through mark. The mark for the radius was not always earned as some failed to take the square root or had an inappropriate answer such as a negative value for r^{2}.
(c)(i) Most found CO to be 5 . However, a few neglected to square 3 and 4 before adding and some subtracted 9 from 16.
(c)(ii) This part was answered well with most realising the need to explain, using both lengths, why O lay inside or outside the circle. Some accompanied their explanations with diagrams, although this was not necessary.

Question 6:

a) i) $p(x)=x^{3}+x^{2}-10 x+8$

$$
p(2)=2^{3}+2^{2}-10 \times 2+8=8+4-20+8=0
$$

2 is a root of p so $(x-2)$ is a factor of p.
ii) $x^{3}+x^{2}-10 x+8=(x-2)\left(x^{2}+3 x-4\right)=(x-2)(x+4)(x-1)$

$$
\begin{gathered}
x^{2}+3 x-4 \\
x-2 \left\lvert\, \begin{array}{l}
x^{3}+x^{2}-10 x+8 \\
\frac{x^{3}-2 x^{2}}{3 x^{2}-10 x} \\
\frac{3 x^{2}-6 x}{-4 x+8} \\
\frac{-4 x+8}{0}
\end{array}\right.
\end{gathered}
$$

$b)$ The graph cuts the axes at $(2,0),(-4,0),(1,0)$ and $(8,0)$.

(a)(i) It was good to see that almost all candidates started correctly by evaluating $p(2)$, though a few thought they needed to find $p(-2)$ and others wrongly assumed that long division was the "factor theorem". It was necessary to write a conclusion or statement after showing that $p(2)=0$, in order to earn the second mark.
(a)(ii) The most successful approach here was by using a quadratic factor ($a x^{2}+b x+c$), though long division also worked well for many. A surprising number who found the correct quadratic then factorised it wrongly. Those who tried the factor theorem again rarely spotted both factors. A few lost the final mark by failing to write $p(x)$ as a product of factors.
(b) Although there were many correct sketches, many lost a mark by failing to mark the point (0,8) on the y-axis. Candidates were expected to draw a cubic through their intercepts, to use an approximately linear scale and to continue the graph beyond the intercepts on the x-axis. It was common to see the negative values in the factors wrongly taken to be the roots and hence the intercepts on the x-axis.

Question 7:

a) i) $\frac{d V}{d t}=\frac{1}{3} \times 6 t^{5}-2 \times 4 t^{3}+3 \times 2 t=2 t^{5}-8 t^{3}+6 t$
ii) $\frac{d^{2} V}{d t^{2}}=10 t^{4}-24 t^{2}+6$
$b)$ The rate of change is $\frac{d V}{d t}$
so $\frac{d V}{d t}(t=2)=2 \times 2^{5}-8 \times 2^{3}+6 \times 2=64-64+12=12 \mathrm{~m}^{3} / \mathrm{s}$
c) i) $\frac{d V}{d t}(t=1)=2 \times 1^{5}-8 \times 1^{3}+6 \times 1=2-8+6=0$
V has a stationary point when $t=1$
ii) $\frac{d^{2} V}{d t^{2}}(t=1)=10 \times 1^{4}-24 \times 1^{2}+6=10-24+6=-8<0$

The stationary point is a MAXIMUM.

Exam report

(a)(i) The differentiation was generally well done, though some candidates found the fractional coefficient problematic. Those who wrote $\frac{6}{3} t^{5}$ were not penalised in this part but writing 6. $\frac{1}{3}$ generally led to errors later in the question. Some tried to avoid the fraction by considering $3 V$ throughout the question, making errors, and suffered a heavy penalty.
(a)(ii) Again, most applied the method correctly and here simplification of coefficients was necessary. A few failed to differentiate $6 t$ or omitted it altogether.
(b) This part was poorly done with many not recognising that the rate of change was $\frac{d V}{d t}$ and substituted $t=2$ into the expression for V or $\frac{d^{2} V}{d t^{2}}$. Quite a lot of candidates made
arithmetic errors. A few found two values of the expression and averaged them.
(c)(i) Again, many failed to evaluate $\frac{d V}{d t}$ in order to verify that a stationary point occurred, but those who did generally obtained a value of zero. It was essential to include a relevant statement to earn both marks.
(c)(ii) This required evaluation of the second derivative at $t=1$ or an appropriate test. Candidates who tried to test the gradient on either side of 1 almost invariably failed, as the values used were too far away from the stationary point. A surprising number evaluated
$10-24+6$ to be -20 thus losing the accuracy mark. Some appeared to be guessing and drew wrong conclusions about maxima or minima after evaluating the second derivative.

Question 8:
$y=3 x^{2}-x^{3} \quad A(-1,0) B(2,0)$
a) $y(2)=3 \times 2^{2}-2^{3}=12-8=4 \quad C(2,4) \quad D(-1,4)$
The area of the rectangle is $3 \times 4=12$

b) i) $\int\left(3 x^{2}-x^{3}\right) d x=x^{3}-\frac{1}{4} x^{4}+c$
ii) Area $=12-\int_{-1}^{2}\left(3 x^{2}-x^{3}\right) d x=12-\left[x^{3}-\frac{1}{4} x^{4}\right]_{-1}^{2}$

$$
\text { Area }=12-(8-4)+\left(-1-\frac{1}{4}\right)=6 \frac{3}{4}
$$

c) i) $\frac{d y}{d x}=6 x-3 x^{2}$
ii) $\frac{d y}{d x}(x=1)=6-3=3$
$y(1)=3-2=2$
Equation of the tangent : $y-2=3(x-1)$

$$
y=3 x-1
$$

iii) y is decreasing when $\frac{d y}{d x}<0$

$$
6 x-3 x^{2}<0
$$

$$
(\div-3) \quad x^{2}-2 x>0
$$

d) $x^{2}-2 x=x(x-2)>0 \quad$ for $x<0$ or $x>2$

Exam report

(a) Not everyone recognised that the height of the rectangle was the value of y when $x=-1$ or $x=2$. Some who did made numerical errors. Even having found the height 4, some obtained the wrong area by taking $A B$ as 4 or 2 (sometimes using Pythagoras' .Theorem) or by finding the perimeter instead.
(b)(i) The integral was generally correct, though sometimes incorrect simplification occurred subsequently. A few integrated x^{3} to $\frac{1}{3} x^{4}$ and a surprising number misread the integrand as $3 x^{2}-x^{2}$.
There were also candidates who confused integration with differentiation or whose process was a hybrid of the two.
(b)(ii) Almost everyone recognised that they should firstly evaluate the integral from -1 to 2 , but most stopped there, instead of going on to subtract the value of the integral from the area of the rectangle.
There were a lot of sign errors in the work with some adding instead of subtracting or putting the two parts the wrong way round. A few wrongly substituted in the original function. Those who chose to work with the differences of two integrals seldom completed it correctly.
(c)(i) Differentiation was done well on the whole.
(c)(ii) Many substituted $x=1$ into the derivative to find the gradient of the tangent and went no further. Most did not find the y coordinate of the point and so made no attempt at the equation of the tangent. A few non-linear equations were seen with a .gradient. of $6 x-3 x^{2}$.
(c)(iii) Very few candidates completed this part. Many made no attempt, and those who did tended to test a few values of x or to find the second derivative, which was of no value.
Only the strongest candidates realised that $\frac{d y}{d x}<0$ was the condition for y to be decreasing and that, after a couple of lines of algebra, the given inequality could be obtained.
(d) Although most made an attempt at the quadratic inequality, few obtained both parts of the solution. It was imperative that candidates wrote $x>2, x<0$ and not $0>x>2$ as many incorrectly stated.
It was disappointing to see how many candidates at this level could not solve the equation $x^{2}-2 x=0$, obtaining values such as $-2, \sqrt{ } 2,1+\sqrt{ } 2$. Using the formula or completing the square sometimes led to $1 \pm \sqrt{ } 1$, which many candidates failed to simplify.

GRADE BOUNDARIES						
Component title	Max mark	A	B	C	D	E
Core 1 - Unit PC1	75	61	53	45	38	31

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
	follow through from previous incorrect result		
\checkmark or ft or F		MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examine will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accurac accepted in the mark scheme, when it gains no marks

Otherwise we require evidence of a correct method for any marks to be awarded

Q	Solution	Marks	Total	Comments
4(a)	$(m+4)^{2}=m^{2}+8 m+16$	B1		Condone $4 m+4 m$
	$b^{2}-4 a c=(m+4)^{2}-4(4 m+1)=0$	M1		$b^{2}-4 a c$ (attempted and involving m 's
	$m^{2}+8 m+16-16 m-4=0$			and no x 's) or $b^{2}-4 a c=0$ stated
	$\Rightarrow m^{2}-8 m+12=0$	A1	3	AG (be convinced - all working correct$=0$ appearing more than right at the end)
(b)	$(m-2)(m-6)=0$	M1		Attempt at factors or quadratic formula
	$m=2, m=6$		2	SC B1 for 2 or 6 only without working
	Total		5	
5(a)	$(x-4)^{2}+(y+3)^{2}$	B2		B1 for one term correct
	$(11+16+9=36) \quad$ RHS $=6^{2}$	B1	3	Condone 36
$\underset{\text { (ii) }}{\text { (b) }}$	Centre ($4,-3$)	B1 \checkmark	1	Ft their a and b from part (a)
	Radius $=6$	B1^	1	Ft their r from part (a)
(c)(i)	$C O^{2}=(-4)^{2}+3^{2}$	M1		Accept + or - with numbers but must add
	$\mathrm{CO}=5$	A1 \checkmark	2	Full marks for answer only
(ii)	Considering CO and radius	$\begin{gathered} \text { M1 } \\ \text { Al } \checkmark \end{gathered}$	2	
	$\mathrm{CO}<r \Rightarrow \mathrm{O}$ is inside the circle		2	or on the circle when 'their $C O$ ' $=r$ SC BI \checkmark if no explanation given
	Total		9	
6(a)(i)	$\mathrm{p}(2)=8+4-20+8$	M1		Finding p(2) M0 long division
	$=0, \Rightarrow x-2 \quad$ is a factor	A1	2	Shown =0 AND conclusion/statement about $x-2$ being a factor
(ii)	Attempt at quadratic factor	M1		or factor theorem again for $2^{\text {nd }}$ factor
	$\begin{aligned} & x^{2}+3 x-4 \\ & \mathrm{p}(x)=(x-2)(x+4)(x-1) \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	or $(x+4)$ or $(x-1)$ proved to be a factor
(b)		B1		Graph through (0,8) 8 marked
		B1 \checkmark		Ft "their factors" 3 roots marked on x axis
		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	Cubic curve through their 3 points Correct including x-intercepts correct Condone max on y-axis etc or slightly wrong concavity at ends of graph
	Total		9	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\mathrm{d} V$	M1		One term correct unsimplified
	$\overline{\mathrm{d} t}=2 t^{3}-8 t^{3}+6 t$	A1		Further term correct unsimplified
		A1	3	All correct unsimplified ($\mathrm{no}+\mathrm{c}$ etc)
(ii)	$\mathrm{d}^{2} V$	M1		One term FT correct unsimplified
	$\frac{1}{\mathrm{~d} t^{2}}=10 t^{4}-24 t^{2}+6$	A1	2	CSO. All correct simplified
(b)	Substitute $t=2$ into their $\frac{\mathrm{d} \text { }}{}$	M1		
	$(=64-64+12)=12$	A1	2	CSO. Rate of change of volume is $12 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
(c)(i)	$t=1 \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} t}=2-8+6$	M1		Or putting their $\frac{\mathrm{d} V}{\mathrm{~d} t}=0$
	$=0 \Rightarrow$ Stationary value	A1	2	CSO. Shown to $=0$ AND statement (If solving equation must obtain $t=1$)
(ii)	$t=1 \Rightarrow \frac{\mathrm{~d}^{2} V}{\mathrm{~d} t^{2}}=-8$	M1		Sub $t=1$ into their second derivative or equivalent full test.
	Maximum value	$\mathrm{Al} \checkmark$	2	Ft if their test implies minimum
	Total		11	
8(a)	$y_{D}=3+1=4$ or $y_{C}=12-8=4$	M1		Attempt at either y coordinate
	Area $A B C D=3 \times 4=12$	A1	2	
(b)(i)	$x^{3}-\frac{x^{4}}{4} \quad(+C)$	M1		Increase one power by 1
	$x-\frac{x^{4}}{4} \quad(+C)$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	One term correct unsimplified All correct unsimplified (condone no +C)
(ii)	Sub limits -1 and 2 into their (b) (i) ans	M1		May use both $-1,0$ and 0,2 instead
	$[8-4]-\left[-1-\frac{1}{4}\right] \quad=5 \frac{1}{4}$	A1		
	Shaded area $=$ "their" $($ rectangle - integral $)$	M1		Alt method: difference of two integrals
	$=12-5 \frac{1}{4}=6 \frac{3}{4}$	A1	4	CSO. Attempted M2, A2
(c)(i)	$\frac{\mathrm{d} y}{\mathrm{~d}}=6 x-3 x^{2}$	M1	2	One term correct
		A1	2	All correct (no + C etc)
(ii)	When $x=1, y=2$ when $x=1$, dy	B1		May be implied by correct tgt equation
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ as 'their' grad of tgt	M1 \checkmark		Ft their derivative when $x=1$
	Tangent is $y-2=3(x-1)$	Al	3	Any correct form $y=3 x-1$ etc
(iii)	Decreasing when $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x-3 x^{2}<0$	M1		Watch no fudging here!! May work backwards in proof.
	$3\left(2 x-x^{2}\right)<0 \Rightarrow x^{2}-2 x>0$	A1	2	AG (be convinced no step incorrect)
(d)	Two critical points 0 and 2	M1	2	Marked on diagram or in solution or M1 A0 for $0<x<2$ or $0>x>2$
	Total		18	
	TOTAL		75	

Answer all questions.

General Certificate of Education
June 2006
Advanced Subsidiary Examination

MATHEMATICS
 Unit Pure Core

AQA
assessumenting
aualifications

Monday 22 May 20069.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables

You must not use a calculator.

Time allowed: 1 hour 30 minutes

nstructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost
- The use of calculators (scientific and graphics) is not permitted.

nformation

The maximum mark for this paper is 75

- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet

1 The point A has coordinates $(1,7)$ and the point B has coordinates $(5,1)$.
(a) (i) Find the gradient of the line $A B$.
(2 marks)
(ii) Hence, or otherwise, show that the line $A B$ has equation $3 x+2 y=17$. (2 marks)
(b) The line $A B$ intersects the line with equation $x-4 y=8$ at the point C. Find the coordinates of C.
(3 marks)
(c) Find an equation of the line through A which is perpendicular to $A B$
(3 marks)

2 (a) Express $x^{2}+8 x+19$ in the form $(x+p)^{2}+q$, where p and q are integers. (2 marks)
(b) Hence, or otherwise, show that the equation $x^{2}+8 x+19=0$ has no real solutions.
(2 marks)
(c) Sketch the graph of $y=x^{2}+8 x+19$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis. (3 marks)
(d) Describe geometrically the transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+8 x+19$
(3 marks)

3 A curve has equation $y=7-2 x^{5}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(2 marks)
(b) Find an equation for the tangent to the curve at the point where $x=1$.
(3 marks)
(c) Determine whether y is increasing or decreasing when $x=-2$.
(2 marks)

4 (a) Express $(4 \sqrt{5}-1)(\sqrt{5}+3)$ in the form $p+q \sqrt{5}$, where p and q are integers.
(3 marks)
(b) Show that $\frac{\sqrt{75}-\sqrt{27}}{\sqrt{3}}$ is an integer and find its value.

5 The curve with equation $y=x^{3}-10 x^{2}+28 x$ is sketched below.

The curve crosses the x-axis at the origin O and the point $A(3,21)$ lies on the curve.
(a) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(3 marks)
(ii) Hence show that the curve has a stationary point when $x=2$ and find the x-coordinate of the other stationary point.
(4 marks)
(b) (i) Find $\int\left(x^{3}-10 x^{2}+28 x\right) \mathrm{d} x$.
(3 marks)
(ii) Hence show that $\int_{0}^{3}\left(x^{3}-10 x^{2}+28 x\right) \mathrm{d} x=56 \frac{1}{4}$.
(iii) Hence determine the area of the shaded region bounded by the curve and the line $O A$.
(3 marks)

7 A circle has equation $x^{2}+y^{2}-4 x-14=0$
(a) Find:
(i) the coordinates of the centre of the circle;
(3 marks)
(ii) the radius of the circle in the form $p \sqrt{2}$, where p is an integer.
(3 marks)
(b) A chord of the circle has length 8. Find the perpendicular distance from the centre of the circle to this chord.
(3 marks)
(c) A line has equation $y=2 k-x$, where k is a constant.
(i) Show that the x-coordinate of any point of intersection of the line and the circle satisfies the equation

$$
x^{2}-2(k+1) x+2 k^{2}-7=0
$$

(3 marks)
(ii) Find the values of k for which the equation

$$
x^{2}-2(k+1) x+2 k^{2}-7=0
$$

has equal roots.
(4 marks)
(iii) Describe the geometrical relationship between the line and the circle when k takes either of the values found in part (c)(ii).
(1 mark)

6 The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}-4 x^{2}+3 x$.
(a) Use the Factor Theorem to show that $x-3$ is a factor of $\mathrm{p}(x)$.
(2 marks)
(b) Express $\mathrm{p}(x)$ as the product of three linear factors.
(2 marks)
(c) (i) Use the Remainder Theorem to find the remainder, r, when $\mathrm{p}(x)$ is divided by $x-2$. (2 marks)
(ii) Using algebraic division, or otherwise, express $\mathrm{p}(x)$ in the form

$$
(x-2)\left(x^{2}+a x+b\right)+r
$$

AQA - Core 1 - June 2006 - Answers

Question 1:
a)i) Gradient of $A B=m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{1-7}{5-1}=\frac{-6}{4}=-\frac{3}{2}$

ii) Equation of $A B: y-y_{A}=m_{A B}\left(x-x_{A}\right)$

$$
\begin{align*}
& y-7=-\frac{3}{2}(x-1) \\
& 2 y-14=-3 x+3 \\
& 3 x+2 y=17
\end{align*}
$$

b) solve simultaneously $\left\{\begin{array}{l}3 x+2 y=17 \\ x-4 y=8\end{array}\right.$

$$
\left\{\begin{array}{l}
6 x+4 y=34 \tag{add}\\
x-4 y=8
\end{array}\right.
$$

This gives

$$
7 x=42
$$

$$
x=6
$$

AND $x-4 y=8$

$$
6-4 y=8 \quad y=-\frac{1}{2}
$$

The lines intersect at $\left(6,-\frac{1}{2}\right)$
c) The gradient of the line perpendicular to AB is $-\frac{1}{m_{A B}}=\frac{2}{3}$

Equation of the line : $y-7=\frac{2}{3}(x-1)$

$$
\begin{aligned}
& 3 y-21=2 x-2 \\
& 2 x-3 y=-19
\end{aligned}
$$

Exam report

Part (a)(i) Although most obtained the correct gradient, some omitted the negative sign (particularly those who relied on a sketch for their evaluation) and some had a fraction with the change in x as the numerator which immediately scored no marks. Quite a few found mid-points (possibly since that had appeared on previous examinations) and others added the coordinates instead of finding the differences in their quotient expression for the gradient.
Part (a)(ii) The use of their gradient to obtain the given equation was the most successful method. Those using
$y=m x+c$ had a tendency to introduce a new ' c ' by doubling both sides but then substituted their value back into the original equation. The most successful candidates used the formula $y-y_{1}=m\left(x-x_{1}\right)$. Some rearranged the given equation to check the gradient then checked one set of co-ordinates; others checked two points and indicated that a straight line has the form
$a x+b y=c$.
Part (b) Those using substitution often began by using an incorrect rearrangement of one of the equations. If they attempted elimination, sometimes only part of an equation was multiplied by the appropriate constant. Many added the equations instead of subtracting. Of those who wrote $14 y=-7$, just as many obtained an incorrect answer of $y=-2$ as the correct answer of
$y=-1 / 2$.
Part (c) The condition for perpendicularity was generally known but some were unable to evaluate -1 divided by
-1.5 . A few omitted the - sign while some referred to the equation $3 x+2 y=17$ and gave a gradient of $-1 / 3$. Once again, those determined to use $y=m x+c$ often made errors in the constant due to the fractional coefficient of x. Quite a few did not use the point A as instructed, choosing to use the point C instead.

Question 2:

a) $x^{2}+8 x+19=(x+4)^{2}-16+19=(x+4)^{2}+3$
b) $x^{2}+8 x+19=0$ is equivalent to $(x+4)^{2}+3=0$

$$
(x+4)^{2}=-3
$$

For all x real, $(x+4)^{2} \geq 0$, so this equation has no solution.
c) The minimum point is $(-4,3)$

The graph crosses the y-axis at $(0,19)$

Tranlation vector $\left[\begin{array}{l}-4 \\ 3\end{array}\right]$

Exam report

Part (a) Many candidates began by finding the correct values of p and q. A few wrote $(x-4)^{2}$ and some added 16 instead of subtracting 16 so $q=35$ was sometimes seen.
Part (b) Very few chose to consider the expression they had in part (a). Practically all candidates decided to find the discriminant instead but its evaluation was often incorrect. Not everyone quoted the expression for the discriminant, b^{2} $-4 a c$, correctly. Some attempted to refer to the fact that the curve was completely above the x-axis but did not, in general, complete their argument.
Part (c) The graphs here were disappointing. Although most drew a quadratic shape, there seemed to be little reference to their part (a) and many just tried to plot a few points. Most were able to state the intercept on the y-axis. However, sometimes the point (0.19) was shown as the minimum point or a straight line intercept. Several curves were drawn only in the first quadrant, regardless of whether the quoted minimum point was (-4.3) or (4.3).
Part (d) This was not well answered. The term translation was required but generally the wrong word was used or it was accompanied by another transformation such as a
stretch. The most common incorrect vector stated was $\left[\begin{array}{l}8 \\ -19\end{array}\right]$.

Question 3:
$y=7-2 x^{5}$
a) $\frac{d y}{d x}=0-2 \times 5 x^{4}=-10 x^{4}$
b) Gradient of the tangent is $\frac{d y}{d x}(x=1)=-10 \times 1^{4}=-10$

$$
\text { for } x=1, y=7-2 \times 1^{5}=5
$$

the equation of the tangent is : $y-5=-10(x-1)$

$$
10 x+y=15
$$

c) $\frac{d y}{d x}(x=-2)=-10 \times(-2)^{4}=-160<0$

y is decreasing

Exam report

Part (a) Most candidates answered this part correctly. A few included the 7 or thought the derivative of the first term was $7 x$ and the - sign was sometimes lost.
Part (b) Many substituted $x=1$ correctly, though it was apparent that they did not recognise this value of -10 to be the gradient of the tangent. Many correctly found y as 5 but stopped there. Again, some correct attempts at the tangent equation using $y=m x+c$ foundered and quite a large number attempted to find the equation of the normal.
Part (c) Use of the value of $\frac{d y}{d x}$ was the only acceptable
method here. Evaluations of y at different points or finding the second derivative were common but earned no marks.

Question 4:	Exam report
a) $\begin{aligned} (4 \sqrt{5}-1)(\sqrt{5}+3) & =4 \times 5+12 \sqrt{5}-\sqrt{5}-3 \\ & =20-3+12 \sqrt{5}-\sqrt{5} \\ & =17+11 \sqrt{5} \end{aligned}$ b) $\begin{aligned} \frac{\sqrt{75}-\sqrt{27}}{\sqrt{3}} & =\frac{\sqrt{25 \times 3}-\sqrt{9 \times 3}}{\sqrt{3}} \\ & =\frac{5 \sqrt{3}-3 \sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{3}}=2 \end{aligned}$	Part (a) Almost everyone recognised that multiplication of the two brackets was required but there were numerous errors with $7 \sqrt{5}$ instead of $12 \sqrt{5}$ being common and -2 or -4 instead of -3 . Although most dealt with the first term correctly and obtained 20, many added $12 \sqrt{5}$ and $-\sqrt{5}$ wrongly to get $-11 \sqrt{5}$. Part (b) This part was answered more successfully with $\sqrt{\frac{75}{3}}-\sqrt{\frac{27}{3}}$ being the neatest method. Some failed to complete correctly from $\frac{2 \sqrt{3}}{\sqrt{3}}$ to 2 and gave an answer of $\sqrt{3}$. A few went 'all round the houses' but got there eventually. Some tried to cancel out $\sqrt{3}$ but only considered one term in the denominator. Multiplying top and bottom by $\sqrt{3}$ caused some problems. A few attempted to combine the 2 terms in the numerator and wrote $\frac{\sqrt{48}}{\sqrt{3}}$ which of course is also an integer!

a)i) $\frac{d y}{d x}=3 x^{2}-20 x+28$
ii) $\frac{d y}{d x}=0$

$$
\begin{gathered}
3 x^{2}-20 x+28=0 \\
(3 x-14)(x-2)=0 \\
x=\frac{14}{3} \text { or } x=2
\end{gathered}
$$

There are two stationary points: $x=2$ and $x=\frac{14}{3}$
b) i) $\int\left(x^{3}-10 x^{2}+28 x\right) d x=\frac{1}{4} x^{4}-\frac{10}{3} x^{3}+14 x^{2}+c$
ii) $\int_{0}^{3}\left(x^{3}-10 x^{2}+28 x\right) d x=\left[\frac{1}{4} x^{4}-\frac{10}{3} x^{3}+14 x^{2}\right]_{0}^{3}$
$=\left(\frac{1}{4} \times 3^{4}-\frac{10}{3} \times 3^{3}+14 \times 3^{2}\right)-(0-0+0)$
$=\frac{225}{4}=56 \frac{1}{4}$
iii) Area shaded $=56 \frac{1}{4}$ - Area of the triangle
$=56 \frac{1}{4}-\frac{1}{2} \times 3 \times 21=\frac{99}{4}=24 \frac{3}{4}$

Part (a)(i) Most candidates differentiated correctly. However a few made a slip or misread one of the terms.
Part (a)(ii) Although most managed to substitute 2 into their derivative some made numerical errors and some used y or the second derivative. Most who realised that they should equate their derivative to zero (or at least showed their intention though never inserting the $=0$) then tried to factorise or use the formula (though it was clear that some did not recognise the quadratic equation as such). It was disappointing that the bracket ($3 x-14$) often produced the solution $x=14$ instead of $14 / 3$, and the solution of $x=2$ did not always appear.
Part (b)(i) The integration was also completed correctly by most candidates, although the $28 x$ was occasionally wrong and some
'hybrid' processes led to terms such as $-\frac{20}{3}$.
In part (b)(ii) almost everyone attempted to substitute 3 into their integral but their problems with the ensuing fractions often took pages to resolve, and although most ended 'magically' with the required answer there were many errors en route. A few substituted into the original expression for y instead of the integrated expression.
Part (b)(iii) This part was quite well done although again there were errors in evaluating both $\frac{1}{2} \times 21 \times 3$ and $56 \frac{1}{4}-31 \frac{1}{2}$.
Some candidates confused length with area and merely used Pythagoras's Theorem to find the length of the hypotenuse of the triangle. Those who chose to integrate the equation of the straight line were sometimes successful but many made arithmetic errors.

Question 6:
$p(x)=x^{3}-4 x^{2}+3 x$
a) $p(3)=3^{3}-4 \times 3^{2}+3 \times 3=27-36+9=0$
3 is a root of p so $(x-3)$ is a factor of p
b) $x^{3}-4 x^{2}+3 x=x\left(x^{2}-4 x+3\right)=x(x-1)(x-3)$
c)i) $r=p(2)=2^{3}-4 \times 2^{2}+3 \times 2=8-16+6=-2$

c)i) $r=p(2)=2^{3}-4 \times 2^{2}+3 \times 2=8-16+6=-2$

$$
\text { ii) } x-2 \left\lvert\, \begin{array}{r}
x^{2}-2 x-1 \\
\begin{array}{r}
\frac{x^{3}-4 x^{2}+3 x+0}{-2 x^{2}}+3 x \\
\frac{-2 x^{2}+4 x}{-x+0} \\
\frac{-x+2}{-2}
\end{array}
\end{array}\right.
$$

$$
x^{3}-4 x^{2}+3 x=(x-2)\left(x^{2}-2 x-1\right)-2
$$

Exam report

Part (a) Although many candidates showed that $p(3)=0$, many lost a mark for failing to include a statement of the implication. Some candidates appeared ignorant of the Factor Theorem and used long division and therefore earned no marks in this part. Part (b) Only about half of the candidates were able to complete this part, although most made an attempt. The term $x^{2}-x$ confused some. A few failed to write a product of factors even though this was requested.
Part(c)(i) As the question requested the use of the Remainder Theorem, finding $p(2)$ was the only acceptable method here. Many attempted long division and scored no marks.
Part (c)(ii) There were many full solutions either by multiplying out and comparing coefficients they are both valid methods or by using long division. The majority of candidates showed poor algebraic skills and were unable to find the correct values of a and b. No credit was given for stating the value of r obtained in part (i) unless the values of a and b were correct. Full marks were earned by able candidates who simply wrote down the correct values of a, b and r by inspection.
$x^{2}+y^{2}-4 x-14=0$
a)i) $(x-2)^{2}-4+y^{2}-14=0$

$$
(x-2)^{2}+y^{2}=18
$$

The centre C has coordinates $(2,0)$
ii) the radius is $r=\sqrt{18}=\sqrt{9 \times 2}=3 \sqrt{2}$
b) Call the chord AB and the mid-point of the chord I
then the triangle CIA is a right-angled triangle.
The perpendicular distance is the length CI.
Using Pythagoras' theorem, $\mathrm{CI}^{2}=C A^{2}-I A^{2}$

$$
\begin{aligned}
\quad & =r^{2}-4^{2} \\
C I & =\sqrt{2}
\end{aligned}
$$

c)i) By solving the equations simultaneously:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
y=2 k-x \\
x^{2}+y^{2}-4 x-14=0
\end{array}\right. \text { we obtain, by substitution } \\
x^{2}+(2 k-x)^{2}-4 x-14=0 \\
x^{2}+4 k^{2}+x^{2}-4 k x-4 x-14=0 \\
2 x^{2}-4(k+1) x+4 k^{2}-14=0 \quad(\div 2) \\
x^{2}-2(k+1)+2 k^{2}-7=0
\end{array}\right.
$$

ii) This equation has equal roots when the discriminant $=0$

$$
\begin{gathered}
(-2(k+1))^{2}-4 \times 1 \times\left(2 k^{2}-7\right)=0 \\
4\left(k^{2}+2 k+1\right)-8 k^{2}+28=0 \\
-4 k^{2}+8 k+32=0 \\
k^{2}-2 k-8=0 \\
(k-4)(k+2)=0 \\
k=4 \text { or } k=-2
\end{gathered}
$$

iii) The line will be tangent to the circle when $k=4$ or $k=-2$

Part (a)(i) It was apparent that some candidates had not covered this part of the specification and they made no progress. Most who had done so, earned the marks here. However a few wrote $(x+2)^{2}$ or even $(x-2)^{2}$ and then gave the centre as $(-2,0)$ Some managed to incorporate the 7 with the y term so wrote the coordinates of the centre as $(2,-7)$.

Part (a)(ii) Most candidates were successful in finding the correct radius. However some forfeited one mark by 'meddling' with their equation and putting 18^{2} or $\sqrt{18}$ on the right hand side of the equation.

Part(b) This part was rarely attempted. Even where a correct diagram was drawn, few recognised that the chord would be bisected. Many assumed that the triangle was right-angled at the centre of the circle. Others drew tangents instead of a chord.

Part (c)(i) Many made little progress here. However, it was good to see more able candidates coping well. A few fell at the final line writing ($k-1$) instead of $(k+1)$; a few lost a mark by not introducing ' $=0$ ' as part of the equation of the circle and simply added ' $=$ 0 ' at the end of several lines of working so as to match the printed answer. Many made a slip in squaring ($2 k-x$) and some made gross errors such as writing this as $4 \mathrm{k}^{2}+\mathrm{x}^{2}$ or $4 \mathrm{k}^{2}-\mathrm{x}^{2}$. Others 'simplified' the equation to $(x-2)+(2 k-x)=\sqrt{18}$.

Part (c)(ii) Those candidates who made progress here needed both knowledge and algebraic skills and only a small minority completed this part correctly. However more earned some method marks. Use of the correct condition on the discriminant was required but some just tried to solve the equation using the quadratic formula or used ' >0 ' instead of $=0$ '. A few attempts at completing the square were seen but most failed to equate the expression to zero.

Part (c)(iii) Many candidates who had made no progress in the rest of the question stated that the line would be a tangent to the circle; however several candidates wrote at length about various transformations and completely missed the point.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\text { Gradient } \begin{aligned} A B & =\frac{1-7}{5-1} \\ & =-\frac{6}{4}=-\frac{3}{2}=-1.5 \end{aligned}$	M1 A1	2	Must be y on top and subtr'n of cords Any correct equivalent
(ii)	$y-7=m(x-1) \text { or } y-1=m(x-5)$	M1		Verifying 2 points or $y=-\frac{3}{2} x+c$
	leading to $3 x+2 y=17$	A1	2	AG (or grad \& 1 point verified)
(b)	Attempt to eliminate x or $y: 7 x=42$ etc $x=6$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Solving $x-4 y=8 ; \quad 3 x+2 y=17$
	$y=-\frac{1}{2}$	A1	3	$C \text { is point }\left(6,-\frac{1}{2}\right)$
(c)	Grad of perp $=-1 /$ their gradient $A B$	M1		Or $m_{1} m_{2}=-1$ used or stated
	$=\frac{2}{3}$	Alv		ft their gradient $A B$
	$y-7=\frac{2}{3}(x-1) \text { or } 3 y-2 x=19$	A1	3	CSO Any correct form of equation
	Total		10	
2(a)	$(x+4)^{2}$	$\overline{\text { B1 }}$		$p=4$
		B1	2	$q=3$
(b)	$(x+4)^{2}=-3$ or "their" $(x+p)^{2}=-q$	M1		Or discriminant $=64-76$
	No real square root of -3	A1	2	Disc <0 so no real roots (all correct figs)
(c)	Minimum $(-4,3)$	B1 \checkmark		ft their $-p$ and q (or correct)
	graph	B1		Parabola (vertex roughly as shown)
	$\xrightarrow[-4]{ }$	B1	3	Crossing at $y=19$ marked or $(0,19)$ stated
(d)	Translation (and no additional transf'n) through $\left[\begin{array}{c}-4 \\ 3\end{array}\right]$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Not shift, move, transformation, etc One component correct eg 3 units up All correct - if not vector - must say 4 units in negative x - direction, to left etc
	Total		10	
3(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-10 x^{4}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$k x^{4} \quad$ condone extra term Correct derivative unsimplified
(b)	When $x=1$, gradient $=-10$	B1v		FT their gradient when $x=1$
	Tangent is	M1		Attempt at y \& tangent (not normal)
	$y-5=-10(x-1)$ or $y+10 x=15$ etc	A1	3	CSO Any correct form
(c)	When $x=-2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-160 \quad($ or $<0)$	B1J		Value of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=-2$
	($\frac{\mathrm{d} y}{\mathrm{~d} x}<0$ hence) y is decreasing	E1 \checkmark	2	ft Increasing if their $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$
	Total		7	

Q	Solution	Marks	Total	Comments
4(a) (b)	$\begin{aligned} & 4(\sqrt{5})^{2}+12 \sqrt{5}-\sqrt{5}-3 \\ & 4(\sqrt{5})^{2}=4 \times 5 \quad(=20) \\ & \text { Answer }=17+11 \sqrt{5} \\ & \text { Either } \begin{aligned} \sqrt{75} & =\sqrt{25} \sqrt{3} \text { or } \sqrt{27}=\sqrt{9} \sqrt{3} \\ \text { Expression } & =\frac{5 \sqrt{3}-3 \sqrt{3}}{\sqrt{3}} \\ & =2 \end{aligned} \\ & \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Multiplied out At least 3 terms with $\sqrt{5}$ term Or multiplying top and bottom by $\sqrt{3}$ or $\frac{\sqrt{225}-\sqrt{81}}{3}$ or $\sqrt{25}-\sqrt{9}$ or $5-3$ CSO
	Total		6	
5(a)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-20 x+28$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	One term correct Another term correct All correct (no $+c$ etc)
(ii)	Their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ for stationary point $\begin{aligned} & (x-2)(3 x-14)=0 \\ & \Rightarrow x=2 \\ & \text { or } x=\frac{14}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	Or realising condition for stationary pt Attempt to solve using formula/ factorise Award M1, A1 for verification that $x=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ then may earn ml later
(b)(i)	$\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+14 x^{2} \quad(+c)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	One term correct unsimplified Another term correct unsimplified All correct unsimplified (condone missing $+c$)
(ii)	$\begin{gathered} {\left[\frac{81}{4}-90+126\right]} \\ =56 \frac{1}{4} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Attempt to sub limit 3 into their (b)(i) AG Integration, limit sub'n all correct
(iii)	$\text { Area of triangle }=31 \frac{1}{2}$	B1		Correct unsimplified $\frac{1}{2} \times 21 \times 3$
	$\begin{aligned} \text { Shaded Area } & =56 \frac{1}{4}-\text { triangle area } \\ & =24 \frac{3}{4} \end{aligned}$	M1 A 1	3	Or equivalent such as $\frac{99}{4}$
	Total		15	

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & \mathrm{p}(3)=27-36+9 \\ & \mathrm{p}(3)=0 \Rightarrow x-3 \text { is a factor } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Finding p(3) and not long division Shown $=0$ plus a statement
(b)	$x\left(x^{2}-4 x+3\right)$ or $(x-3)\left(x^{2}-x\right)$ attempt $\mathrm{p}(x)=x(x-1)(x-3)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Or $\mathrm{p}(1)=0 \Rightarrow x-1$ is a factor attempt Condone $x+0$ or $x-0$ as factor
(c)(i)	$\mathrm{p}(2)=8-16+6$ $\text { (Remainder is) }-2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Must use $\mathrm{p}(2)$ and not long division
(ii)	Attempt to multiply out and compare coefficients $\begin{aligned} a & =-2 \\ b & =-1 \\ r & =-2 \end{aligned}$ SC B1 for $\mathrm{r}=-2$ if M0 scored	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	Or long division (2 terms of quotient) $x^{2}-2 x \ldots$ \cdots_{-1} Withhold final A1 for long division unless written as $(x-2)\left(x^{2}-2 x-1\right)-2$
	Total		10	
7(a)(i)	$(x-2)^{2}$ centre has x-coordinate $=2$ and y-coordinate $=0$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	3	Attempt to complete square for x M1 implied if value correct or -2 Centre (2,0)
(ii)	$\begin{aligned} & \text { RHS }=18 \\ & \text { Radius }=\sqrt{18} \\ & \text { Radius }=3 \sqrt{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Withhold if circle equation RHS incorrect Square root of RHS of equation (if >0)
(b)	Perpendicular bisects chord so need to use Length of 4 $\begin{aligned} & d^{2}=(\text { radius })^{2}-4^{2} \\ & d^{2}=18-16 \end{aligned}$ so perpendicular distance $=\sqrt{2}$	B1 M1 A1	3	
(c)(i)	$\begin{aligned} & x^{2}+(2 k-x)^{2}-4 x-14=0 \\ & (2 k-x)^{2}=4 k^{2}-4 k x+x^{2} \\ & \Rightarrow 2 x^{2}+4 k^{2}-4 k x-4 x-14=0 \\ & \left(\Rightarrow x^{2}+2 k^{2}-2 k x-2 x-7=0\right) \\ & \Rightarrow x^{2}-2(k+1) x+2 k^{2}-7=0 \end{aligned}$	M1 B1 A1	3	AG (be convinced about algebra and $=0$)
(ii)	$\begin{aligned} & 4(k+1)^{2}-4\left(2 k^{2}-7\right) \\ & 4 k^{2}-8 k-32=0 \text { or } k^{2}-2 k-8=0 \\ & (k-4)(k+2)=0 \end{aligned}$	M1 A1 m1		" $b^{2}-4 a c$ " in terms of k (either term correct) $b^{2}-4 a c=0$ correct quadratic equation in k Attempt to factorise, solve equation
	$k=-2, k=4$	A1	4	SC B1, B1 for -2, 4 (if M0 scored)
(iii)	Line is a tangent to the circle	E1	1	Line touches circle at one point etc
	Total		17	
	TOTAL		75	

1 The polynomial $\mathrm{p}(x)$ is given by

$$
\mathrm{p}(x)=x^{3}-4 x^{2}-7 x+k
$$

where k is a constant.
(a) (i) Given that $x+2$ is a factor of $\mathrm{p}(x)$, show that $k=10$.
(2 marks)
(ii) Express $\mathrm{p}(x)$ as the product of three linear factors.
(3 marks)
(b) Use the Remainder Theorem to find the remainder when $\mathrm{p}(x)$ is divided by $x-3$
(2 marks)
(c) Sketch the curve with equation $y=x^{3}-4 x^{2}-7 x+10$, indicating the values where the curve crosses the x-axis and the y-axis. (You are not required to find the coordinates of the stationary points.)
(4 marks)

2 The line $A B$ has equation $3 x+5 y=8$ and the point A has coordinates $(6,-2)$.
(a) (i) Find the gradient of $A B$.
(2 marks)
(ii) Hence find an equation of the straight line which is perpendicular to $A B$ and which passes through A.
(3 marks)
(b) The line $A B$ intersects the line with equation $2 x+3 y=3$ at the point B. Find the coordinates of B.
(3 marks)
(c) The point C has coordinates $(2, k)$ and the distance from A to C is 5 . Find the two possible values of the constant k.

3 (a) Express $\frac{\sqrt{5}+3}{\sqrt{5}-2}$ in the form $p \sqrt{5}+q$, where p and q are integers.
(b) (i) Express $\sqrt{45}$ in the form $n \sqrt{5}$, where n is an integer. (1 mark)
(ii) Solve the equation

$$
x \sqrt{20}=7 \sqrt{5}-\sqrt{45}
$$

giving your answer in its simplest form.

4 A circle with centre C has equation $x^{2}+y^{2}+2 x-12 y+12=0$.
(a) By completing the square, express this equation in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(3 marks)
(b) Write down:

(i) the coordinates of C;	(1 mark)
(ii) the radius of the circle.	(1 mark)

(c) Show that the circle does not intersect the x-axis.
(d) The line with equation $x+y=4$ intersects the circle at the points P and Q.
(i) Show that the x-coordinates of P and Q satisfy the equation

$$
x^{2}+3 x-10=0
$$

(ii) Given that P has coordinates $(2,2)$, find the coordinates of Q.
(iii) Hence find the coordinates of the midpoint of $P Q$.

Turn over for the next question

5 The diagram shows an open-topped water tank with a horizontal rectangular base and four vertical faces. The base has width x metres and length $2 x$ metres, and the height of the tank is h metres.

The combined internal surface area of the base and four vertical faces is $54 \mathrm{~m}^{2}$.
(a)
(i) Show that $x^{2}+3 x h=27$.
(ii) Hence express h in terms of x.
(iii) Hence show that the volume of water, $V \mathrm{~m}^{3}$, that the tank can hold when full is given by

$$
V=18 x-\frac{2 x^{3}}{3}
$$

(1 mark)
(b) (i) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
(ii) Verify that V has a stationary value when $x=3$.
(c) Find $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ and hence determine whether V has a maximum value or a minimum value when $x=3$.
(2 marks)

6
The curve with equation $y=3 x^{5}+2 x+5$ is sketched below.

The curve cuts the x-axis at the point $A(-1,0)$ and cuts the y-axis at the point B.
(a) (i) State the coordinates of the point B and hence find the area of the triangle $A O B$, where O is the origin.
(3 marks)
(ii) Find $\int\left(3 x^{5}+2 x+5\right) \mathrm{d} x$.
(3 marks)
(iii) Hence find the area of the shaded region bounded by the curve and the line $A B$.
(4 marks)
(b) (i) Find the gradient of the curve with equation $y=3 x^{5}+2 x+5$ at the point $A(-1,0)$.
(3 marks)
(ii) Hence find an equation of the tangent to the curve at the point A.
(1 mark)

7 The quadratic equation $(k+1) x^{2}+12 x+(k-4)=0$ has real roots.
(a) Show that $k^{2}-3 k-40 \leqslant 0$.
(b) Hence find the possible values of k.

Question 1:	Exam report
$p(x)=x^{3}-4 x^{2}-7 x+k$ a)i) $(x+2)$ is a factor of $p(x)$ This means that $p(-2)=0$ $\begin{aligned} p(-2)= & (-2)^{3}-4 \times(-2)^{2}-7 \times(-1)+k= \\ = & -8-16+14+k=0 \\ & -10+k=0 \quad k=10 \end{aligned}$ ii) $\begin{aligned} x^{3}-4 x^{2}-7 x+10 & =(x+2)\left(x^{2}-6 x+5\right) \\ & =(x+2)(x-5)(x-1) \end{aligned}$ b) The remainder of the division by $(x-3)$ is $p(3)$ $\begin{aligned} p(3) & =3^{3}-4 \times 3^{2}-7 \times 3+10 \\ & =27-36-21+10=-20 \end{aligned}$ c) The graph crosses the x-axis at $(-2,0),(5,0)$ and $(1,0)$ crosses the y-axis at $(0,10)$	Part (a)(i) Most candidates found $\mathrm{p}(-2)$ but often failed to convince examiners that they had really shown that $k=10$. Many substituted $k=10$ from the outset and then drew no conclusion from the fact that $p(-2)=0$. Those using long division often made sign errors. Part (a)(ii) Factorisation of a cubic seems well understood and, apart from those who could not factorise $x^{2}-6 x+5$, candidates usually scored full marks. Some still confuse factors and roots. Part (b) Many ignored the request to use the Remainder Theorem and scored no marks for long division. A few who correctly found that $p(3)=-20$ concluded that the remainder was +20 . Part (c) The sketch was generously marked with regard to the position of the stationary points but it was expected that candidates would indicate the values where the curve crossed the coordinate axes and often these values, particularly the 10 on the y-axis, were omitted.

Question 2:
a)i) $3 x+5 y=8 \quad A(6,-2)$
Make y the subject: $y=-\frac{3}{5} x+\frac{8}{5}$

The gradient is $\mathrm{m}_{A B}=-\frac{3}{5}$
ii) The gradient of the line

$$
\text { perpendicular to } \mathrm{AB} \text { is }-\frac{1}{m_{A B}}=\frac{5}{3}
$$

The equation of the line is : $y-(-2)=\frac{5}{3}(x-6)$

$$
\begin{aligned}
& 3 y+6=5 x-30 \\
& 5 x-3 y=36
\end{aligned}
$$

b) Solve simultaneously $\begin{cases}3 x+5 y=8 & (\times 2) \\ 2 x+3 y=3 & (\times-3)\end{cases}$

This gives $\left\{\begin{array}{l}6 x+10 y=16 \\ -6 x-9 y=-9\end{array}\right.$ by adding, $y=7$
then $3 x+5 y=8 \quad 3 x+35=8 \quad x=-9$

$$
B(-9,7)
$$

c) $C(2, k)$ and $A(6,-2)$

$$
A C=\sqrt{(2-6)^{2}+(k+2)^{2}}=5
$$

so $A C^{2}=16+(k+2)^{2}=25$

$$
\begin{gathered}
(k+2)^{2}=9 \\
k+2=3 \text { or } k+2=-3 \\
k=1 \text { or } k=-5
\end{gathered}
$$

a) $\frac{\sqrt{5}+3}{\sqrt{5}-2}=\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{5+2 \sqrt{5}+3 \sqrt{5}+6}{5-4}=11+5 \sqrt{5}$
b)i) $\sqrt{45}=\sqrt{9 \times 5}=3 \sqrt{5}$
ii) $x \sqrt{20}=7 \sqrt{5}-\sqrt{45}$
$x \times 2 \sqrt{5}=7 \sqrt{5}-3 \sqrt{5}$
$x=\frac{4 \sqrt{5}}{2 \sqrt{5}}=\frac{4}{2}=2$

Part (a) It was not uncommon to see the denominator and numerator multiplied by different surds and the usual errors occurred as candidates tried to multiply out brackets. This part of the question did not seem to be answered as well as in previous years.

Part (b)(i) was usually correct but very few were successful in solving the equation in part (b)(ii), even though they reached forms of the correct equation such as $2 \sqrt{5} x=4 \sqrt{5}$ or $x=\frac{4 \sqrt{5}}{2 \sqrt{5}}$.

Question 4:
$x^{2}+y^{2}+2 x-12 y+12=0$
a) $(x+1)^{2}-1+(y-6)^{2}-36+12=0$
$\quad(x+1)^{2}+(y-6)^{2}=25$

b) i) The centre $C(-1,6)$
ii) $r=\sqrt{25}=5$
c) On the x -axis, $y=0$,

The equation becomes $(x+1)^{2}+36=25$

$$
(x+1)^{2}=-11
$$

No solution as $(x+1)^{2}>0$ for all x.
d) Consider simultaneously $\left\{\begin{array}{l}x^{2}+y^{2}+2 x-12 y+12=0 \\ y=4-x\end{array}\right.$
by substitution, we have $x^{2}+(4-x)^{2}+2 x-12(4-x)+12=0$

$$
\begin{aligned}
& x^{2}+16+x^{2}-8 x+2 x-48+12 x+12=0 \\
& 2 x^{2}+6 x-20=0 \\
& x^{2}+3 x-10=0
\end{aligned}
$$

ii) $x^{2}+3 x-10=0$

$$
\begin{array}{rl}
(x-2)(x+5)=0 & x=2 \text { or } x=-5 \\
\text { and } y=4-x: & y=2 \text { or } y=9
\end{array}
$$

$$
P(2,2) \text { and } Q(-5,9)
$$

iii) The mid-point of PQis $\left(\frac{x_{P}+x_{Q}}{2}, \frac{y_{P}+y_{Q}}{2}\right)=\left(-\frac{3}{2}, \frac{11}{2}\right)$

Exam report

Part (a) The $+2 x$ term was ignored by many who wrote the left hand side of the circle equation as (x $-1)^{2}+(y-6)^{2}$ but most candidates were able to complete the square correctly. The right hand side was often seen as 49 and since this was a perfect square it did not cause candidates to doubt their poor arithmetic.
Part (b) Many who had the correct circle equation in part (a) wrote the coordinates of the centre with incorrect signs. Generous follow through marks were awarded in this part provided the right hand side of the equation had a positive value.
Part (c) Almost all candidates reasoned correctly by considering the y-coordinate of the centre and the radius of the circle, although a number were successful in showing that the quadratic resulting from substituting $y=0$ into the circle equation does not have real roots. Some simply drew a diagram and this alone was not regarded as sufficient to prove that the circle did not intersect the x-axis. Others using an algebraic approach found a quadratic that they said did not factorise and concluded incorrectly that the equation had no real roots.
Part (d) The algebra proved too difficult for the weaker candidates and many who had shown good algebraic skills rather casually forgot to include "= 0 " on their final line of working. Sadly, many were unable to factorise the quadratic or wrote the coordinates of Q as (-(-5, 2). It was good, however, to see more candidates being able to find the correct mid-point, where in previous years too many had found the difference of the coordinates before dividing by 2 .

Question 5:	Exam report		
a) i) Surface area $x \times 2 x+2 h x+2 h \times 2 x=54$			
$2 x^{2}+2 h(x+2 x)=54 \quad(\div 2)$			
$x^{2}+3 x h=27$		\quad	ii) $h=\frac{27-x^{2}}{3 x}=\frac{9}{x}-\frac{x}{3}$
:---			
iii) $V=x \times 2 x \times h=2 x^{2}\left(\frac{9}{x}-\frac{x}{3}\right)=18 x-\frac{2 x^{3}}{3}$			
b)i) $\frac{d V}{d x}=18-\frac{2}{3} \times 3 x^{2}=18-2 x^{2}$			
ii) $\frac{d V}{d x}=0 \quad$Part (a) Candidates did not seem confident at working on this kind of problem and algebraic weaknesses were evident. Many worked backwards from the result in part (a)(i) and did not always convince the examiner that they were considering the surface area of four faces and the base. The inability of most candidates to rearrange the formula to make h the subject in part (a)(ii) was alarming. Consequently few, without considerable fudging, could establish the printed formula for the volume. Part (b) Basic differentiation is well understood and most			
candidates found $\frac{d V}{d x}$ correctly. Some tried to substitute $x=3$			

Question 6:	Exam report
a)i) $B\left(0, y_{B}\right)$ belongs to the curve so $y_{B}=3 \times 0^{5}+2 \times 0+5=5$ $B(0,5)$ Area $A O B=\frac{1}{2} \times 1 \times 5=\frac{5}{2}$ ii) $\begin{aligned} \int\left(3 x^{5}+2 x+5\right) d x & =\frac{3}{6} x^{6}+\frac{2}{2} x^{2}+5 x+c \\ & =\frac{1}{2} x^{6}+x^{2}+5 x+c \end{aligned}$ iii) Area of shaded region $=\int_{-1}^{0}\left(3 x^{5}+2 x+5\right) d x-\frac{5}{2}$ $\begin{aligned} & =\left[\frac{1}{2} x^{6}+x^{2}+5 x\right]_{-1}^{0}-\frac{5}{2}=(0)-\left(\frac{1}{2}+1-5\right)-\frac{5}{2} \\ & =\frac{7}{2}-\frac{5}{2}=1 \end{aligned}$ b) i) the gradient of the curve at A is $\frac{d y}{d x}(x=-1)$ $\frac{d y}{d x}=15 x^{4}+2 \quad \text { and for } x=-1, m=17$ ii) The equation of the tangent at A is $\begin{gathered} y-0=17(x+1) \\ y=17 x+17 \end{gathered}$	Part (a)(i) Some candidates ignored the request to state the coordinates of B even though they were using the height of the triangle as 5 . The negative x-coordinate of A caused quite a few to feel that the triangle had a negative area. Far too many when finding $\frac{1}{2} \times 1 \times 5 \text { wrote the answer as } 3$ Part (a)(ii) Practically every candidate found the correct integral although some made errors when cancelling fractions. Part (a)(iii) It was necessary here to have the lower limit as .1 and the upper limit as 0 . Many reversed the order and by some trickery arrived at a positive value. This was penalised and so very few, even though many had an answer of 1 for the area, scored full marks for this part of the question. Part (b) Most candidates differentiated correctly but, because of poor understanding of negative signs, many wrong values of -13 were seen for the gradient. There is obviously confusion for many between tangents and normals and several thought the gradient of the tangent was $-\frac{1}{17}$.

Question 7:	Exam report
$(k+1) x^{2}+12 x+(k-4)=0$ has real roots means the discriminant ≥ 0 $\begin{aligned} & \text { a) } 12^{2}-4 \times(k+1) \times(k-4) \geq 0 \\ & 144-4 k^{2}+12 k+16 \geq 0 \\ & -4 k^{2}+12 k+160 \geq 0 \quad(\div-4) \\ & k^{2}-3 k-40 \leq 0 \end{aligned}$ b) $\begin{gathered} (k-8)(k+5) \leq 0 \\ -5 \leq k \leq 8 \end{gathered}$	Part (a) The condition for real roots was not widely known and the form of the printed answer caused many to write the condition as $\mathrm{b}^{2}-4 \mathrm{ac} \leq 0$. Part (b) It was disappointing to see many unable to factorise the quadratic correctly. Far too many guessed at answers and an approach using a sign diagram or sketch is recommended. Candidates also need to realise that the final form of the answer cannot be written as " $k \geq-5$ " or " $k \leq 8$ "

GRADE BOUNDARIES							
Component title	Max mark	A	B	C	D	E	
Core 1-Unit PC1	75	59	51	43	35	28	

Q	Solution	Marks	Total	Comments
1(a)(i)	$\mathrm{p}(-2)=-8-16+14+k$	M1		or long division or $(x+2)\left(x^{2}-6 x+5\right)$
	$\mathrm{p}(-2)=0 \Rightarrow-10+k=0 \quad \Rightarrow k=10$	A1	2	AG likely withhold if $\mathrm{p}(-2)=0$ not seen
	$\mathrm{p}(x)=(x+2)\left(x^{2}+\ldots . \quad 5\right)$	M1		Attempt at quadratic or second linear
	$\mathrm{p}(x)=(x+2)\left(x^{2}-6 x+5\right)$	A1		factor (x-1) or $(x-5)$ from factor theorem
	$\Rightarrow \mathrm{p}(x)=(x+2)(x-1)(x-5)$	A1	3	Must be written as product
(b)	$\mathrm{p}(3)=27-36-21+k$	M1		long division scores M0
	(Remainder) $=k-30=\underline{-20}$	A1	2	Condone k - 30
(c)		B1		Curve thro' 10 marked on y-axis
	\xrightarrow{x}	B1 \checkmark		FT their 3 roots marked on x-axis
	$\begin{aligned} & - \\ & 2 \end{aligned}$	M1		Cubic shape with a max and min
	,	A1	4	Correct graph (roughly as on left) going beyond -2 and 5 (condone max anywhere between $x=-2$ and 1 and \min between 1 and 5)
	Total		11	
2(a)(i)	$y=-\frac{3}{5} x+\ldots ; \quad$ Gradient $A B=-\frac{3}{5}$	M1		$\begin{aligned} & \text { Attempt to find } y=\text { or } \Delta y / \Delta x \\ & \text { or } \frac{3}{5} \text { or } 3 x / 5 \end{aligned}$
		A1	2	Gradient correct - condone slip in $y=\ldots$
(ii)	$m_{1} m_{2}=-1$	M1		Stated or used correctly
	$\text { Gradient of perpendicular }=\frac{5}{3}$	Alv		ft gradient of $A B$
(b)	$\Rightarrow y+2=\frac{5}{3}(x-6)$	A1	3	CSO Any correct form eg $y=\frac{5}{3} x-12$, $5 x-3 y=36$ etc
	Eliminating x or y (unsimplified)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Must use $3 x+5 y=8 ; 2 x+3 y=3$
	$y=7$	A1	3	B $(-9,7)$
(c)	$\begin{gathered} 4^{2}+(k+2)^{2} \quad(=25) \text { or } 16+d^{2}=25 \\ k=1 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Diagram with 3,4, 5 triangle Condone slip in one term (or $k+2=3$)
	or $\quad k=-5$	A1	3	SC1 with no working for spotting one correct value of k. Full marks if both values spotted with no contradictory work
	Total		11	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 3(a)

(b)(i)

(ii) \& \begin{tabular}{l}
$$
\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}
$$

Numerator $=5+3 \sqrt{5}+2 \sqrt{5}+6$
$$
=5 \sqrt{5}+11
$$
$$
\text { Final answer }=5 \sqrt{5}+11
$$
$$
\begin{aligned}
& \sqrt{45}=3 \sqrt{5} \\
& \sqrt{20}=\sqrt{4} \sqrt{5} \text { or } 4 \sqrt{5}=\sqrt{4} \times \sqrt{20}
\end{aligned}
$$

or attempt to have equation with $\sqrt{5}$ or $\sqrt{20}$ only
$$
[x 2 \sqrt{5}=7 \sqrt{5}-3 \sqrt{5}] \text { or } x \sqrt{20}=2 \sqrt{20}
$$
$$
x=2
$$

 \&

M1

M1

A1

Al

B1

M1

A1

A1

 \& 3 \&

Multiplying top \& bottom by $\pm(\sqrt{5}+2)$

Multiplying out (condone one slip)

$$
\pm(\sqrt{5+3})(\sqrt{5+2})
$$

With clear evidence that denominator $=1$

Both sides

or $x=\sqrt{4}$

CSO
\end{tabular}

\hline \& Total \& \& 8 \&

\hline 4(a) \& $$
\begin{aligned}
& (x+1)^{2}+(y-6)^{2} \\
& (1+36-12=25) \quad \text { RHS }=5^{2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { B2 } \\
& \text { B1 }
\end{aligned}
$$
\] \& 3 \& B1 for one term correct or missing + sign Condone 25

\hline | (b)(i) |
| :--- |
| (ii) | \& \[

Centre \quad(-1,6) \quad Radius=5

\] \& \[

$$
\begin{aligned}
& \mathrm{B} 1 \checkmark \\
& \mathrm{~B} 1 \checkmark
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

\] \& | FT their a and b from part (a) or correct |
| :--- |
| FT their r from part (a) RHS must be >0 |

\hline (c) \& | Attempt to solve "their" $x^{2}+2 x+12=0$ |
| :--- |
| (all working correct) so no real roots or statement that does not intersect | \& M1 \& 2 \& | Or comparing "their" $y_{c}=6$ and their $r=5$ |
| :--- |
| may use a diagram with values shown $\left\{\begin{array}{l}r<y_{c} \text { so does not intersect } \\ \text { condone } \pm 1 \text { or } \pm 6 \text { in centre for A1 }\end{array}\right.$ |

\hline (d)(i) \& \[
$$
\begin{gathered}
(4-x)^{2}=16-8 x+x^{2} \\
x^{2}+(4-x)^{2}+2 x-12(4-x)+12=0 \\
\text { or }(x+1)^{2}+(-2-x)^{2}=25 \\
\Rightarrow 2 x^{2}+6 x-20=0 \quad \Rightarrow x^{2}+3 x-10=0
\end{gathered}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& 3 \& | Or $(-2-x)^{2}=4+4 x+x^{2}$ |
| :--- |
| Sub $y=4-x$ in circle eqn (condone slip) or "their" circle equation |
| AG CSO (must have $=0$) |

\hline (ii) \& | $(x+5)(x-2)=0 \Rightarrow x=-5, x=2$ |
| :--- |
| Q has coordinates $(-5,9)$ | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 2 \& Correct factors or unsimplified solution to quadratic (give credit if factorised in part (i)) SC2 if Q correct. Allow x $=-5 \quad y=9$

\hline (iii) \& Mid point of 'their' $(-5,9)$ and $(2,2)$

$$
\left(-1 \frac{1}{2}, 5 \frac{1}{2}\right)
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 2 \& Arithmetic mean of either x or y coords Must follow from correct value in (ii)

\hline \& Total \& \& 14 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
5 (a)(i)	$\begin{aligned} & 2 x^{2}+2 x h+4 x h \quad(=54) \\ & \Rightarrow x^{2}+3 x h=27 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Attempt at surface area (one slip) AG CSO
(ii)	$h=\frac{27-x^{2}}{3 x} \quad$ or $\quad h=\frac{9}{x}-\frac{x}{3}$ etc	B1	1	Any correct form
(iii)	$V=2 x^{2} h=18 x-\frac{2 x^{3}}{3}$	B1	1	AG (watch fudging) condone omission of brackets
(b)(i)	$\frac{\mathrm{d} V}{\mathrm{~d} x}=18-2 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	One term correct "their" V All correct unsimplified $18-6 x^{2} / 3$
(ii)	$\text { Sub } x=3 \text { into their } \frac{\mathrm{d} V}{\mathrm{~d} x}$	M1		Or attempt to solve their $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$
	Shown to equal 0 plus statement that this implies a stationary point if verifying	A1	2	CSO Condone $x= \pm 3$ or $x=3$ if solving
(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-4 x$	B1 \checkmark		$\text { FT their } \frac{\mathrm{d} V}{\mathrm{~d} x}$
	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}<0$ at stationary point \Rightarrow maximum	E1V	2	FT their second derivative conclusion If "their" $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0 \Rightarrow$ minimum etc
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{aligned} & B(0,5) \\ & \\ & \\ &=2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Condone slip in number or a minus sign
(ii)	$\frac{3 x^{6}}{6}+\frac{2 x^{2}}{2}+5 x \text { or } \frac{x^{6}}{2}+x^{2}+5 x$ (may have $+c$ or not)	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	Raise one power by 1 One term correct All correct unsimplified
(iii)	$\text { Area under curve }=\int_{1}^{0} \mathrm{f}(x) \mathrm{d} x$	B1		Correctly written or $\mathrm{F}(0)-\mathrm{F}(-1)$ correct
	$[0]-\left[\frac{1}{2}+1-5\right]$ Area under curve $=3 \frac{1}{2}$	M1 Al		Attempt to sub limit(s) of -1 (and 0) Must have integrated CSO (no fudging)
	Area of shaded region $=3 \frac{1}{2}-2 \frac{1}{2}=1$	B1,	4	FT their integral and triangle (very generous)
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{4}+2$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		One term correct All correct (no +c etc)
	when $x=-1$, gradient $=17$	A1	3	cso
(ii)	$y=$ "their gradient" $(x+1)$	B1^	1	Must be finding tangent - not normal any form e.g. $y=17 x+17$
	Total		14	
7(a)	$b^{2}-4 a c=144-4(k+1)(k-4)$	M1		Clear attempt at $b^{2}-4 a c$ Condone slip in one term of expression
	Real roots when $b^{2}-4 a c \geqslant 0$	B1		Not just a statement, must involve k
	$\Rightarrow k^{2}-3 k-40 \leqslant 0$	A1	3	AG (watch signs carefully)
(b)	$(k-8)(k+5) \quad$ Critical points 8 and -5	M1		Factors attempt or formula
		A1		
	Sketch or sign diagram correct, must have 8 and -5	M1	4	+ve -ve +ve
	A0 for $-5<k<8$ or two separate inequalities unless word AND used			
	Total		7	
	TOTAL		75	

General Certificate of Education June 2007
 Advanced Subsidiary Examination

MATHEMATICS
 Unit Pure Core 1

AQA
assessmentan
aualificatio
alliance

Monday 21 May 20079.00 am to 10.30 am

For this paper you must have:
- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.
You must not use a calculator.

Time allowed: 1 hour 30 minutes

nstructions

Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.

- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75
- The marks for questions are shown in brackets

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The points A and B have coordinates $(6,-1)$ and $(2,5)$ respectively.
(a) (i) Show that the gradient of $A B$ is $-\frac{3}{2}$
(2 marks)
(ii) Hence find an equation of the line $A B$, giving your answer in the form $a x+b y=c$, where a, b and c are integers.
(2 marks)
(b) (i) Find an equation of the line which passes through B and which is perpendicular to the line $A B$
(2 marks)
(ii) The point C has coordinates $(k, 7)$ and angle $A B C$ is a right angle.

Find the value of the constant k.
(2 marks)

2 (a) Express $\frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}}$ in the form $n \sqrt{7}$, where n is an integer. (3 marks)
(b) Express $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ in the form $p \sqrt{7}+q$, where p and q are integers. (4 marks)
(a) (i) Express $x^{2}+10 x+19$ in the form $(x+p)^{2}+q$, where p and q are integers.
(ii) Write down the coordinates of the vertex (minimum point) of the curve with equation $y=x^{2}+10 x+19$
(2 marks)
(iii) Write down the equation of the line of symmetry of the curve $y=x^{2}+10 x+19$.
(1 mark)
(iv) Describe geometrically the transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+10 x+19$
(3 marks)
(b) Determine the coordinates of the points of intersection of the line $y=x+11$ and the curve $y=x^{2}+10 x+19$.
(4 marks)

4 A model helicopter takes off from a point O at time $t=0$ and moves vertically so that its height, $y \mathrm{~cm}$, above O after time t seconds is given by

$$
y=\frac{1}{4} t^{4}-26 t^{2}+96 t, \quad 0 \leqslant t \leqslant 4
$$

(a) Find:
(i) $\frac{\mathrm{d} y}{\mathrm{~d} t}$;
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$.
(3 marks)
(2 marks)
(b) Verify that y has a stationary value when $t=2$ and determine whether this stationary value is a maximum value or a minimum value.
(4 marks)
(c) Find the rate of change of y with respect to t when $t=1$.
(2 marks)
(d) Determine whether the height of the helicopter above O is increasing or decreasing at the instant when $t=3$
(2 marks)

5 A circle with centre C has equation $(x+3)^{2}+(y-2)^{2}=25$.
(a) Write down:
(i) the coordinates of C;
(2 marks)
(ii) the radius of the circle.
(1 mark)
(b) (i) Verify that the point $N(0,-2)$ lies on the circle.
(1 mark)
(ii) Sketch the circle.
(2 marks)
(iii) Find an equation of the normal to the circle at the point N.
(3 marks)
(c) The point P has coordinates $(2,6)$.
(i) Find the distance $P C$, leaving your answer in surd form.
(2 marks)
(ii) Find the length of a tangent drawn from P to the circle.
(3 marks)

6 (a) The polynomial $\mathrm{f}(x)$ is given by $\mathrm{f}(x)=x^{3}+4 x-5$.
(i) Use the Factor Theorem to show that $x-1$ is a factor of $\mathrm{f}(x)$. (2 marks)
(ii) Express $\mathrm{f}(x)$ in the form $(x-1)\left(x^{2}+p x+q\right)$, where p and q are integers.
(2 marks)
(iii) Hence show that the equation $\mathrm{f}(x)=0$ has exactly one real root and state its value.
(3 marks)
(b) The curve with equation $y=x^{3}+4 x-5$ is sketched below.

The curve cuts the x-axis at the point $A(1,0)$ and the point $B(2,11)$ lies on the curve.
(i) Find $\int\left(x^{3}+4 x-5\right) \mathrm{d} x$.
(ii) Hence find the area of the shaded region bounded by the curve and the line $A B$.

7 The quadratic equation

$$
(2 k-3) x^{2}+2 x+(k-1)=0
$$

where k is a constant, has real roots.
(a) Show that $2 k^{2}-5 k+2 \leqslant 0$
(b) (i) Factorise $2 k^{2}-5 k+2$
(ii) Hence, or otherwise, solve the quadratic inequality

$$
2 k^{2}-5 k+2 \leqslant 0
$$

(3 marks)

END OF QUESTIONS

AQA - Core 1 - - June 2007 - Answers

Question 1:	Exam report
$A(6,-1) \quad B(2,5)$	Part (a)(i) Most candidates were able to show that the
a)i) $m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{5+1}{2-6}=\frac{6}{-4}=-\frac{3}{2}$	gradient was $-\frac{3}{2}$. However, examiners had to be vigilant
ii) Equation of $A B$: $y+1=-\frac{3}{2}(x-6)$	since fractions such as $\frac{6}{4}$ and $\frac{-4}{6}$ were sometimes equated
$=-3 x+18$	$\text { to }-\frac{3}{2}$
$3 x+2 y=16$	Part (a)(ii) Many candidates did not heed the request for
b) i) the line perpendicular to $A B$ has gradient $-\frac{1}{m_{A B}}=\frac{2}{3}$	integer coefficients and left their answer as $y=-\frac{3}{2} x+8$.
The equation of this line : $y-5=\frac{2}{3}(x-2)$	Many who attempted to express the equation in the required form were unable to double the 8 and wrote their final equation as $3 x+2 y=8$. Part (b)(i) Most candidates realised that the product of the
$=2 x-4$	gradients should be-1. However, not all were able to
$2 x-3 y=-11$	calculate the negative reciprocal. Others used the incorrect point and therefore found an equation of the wrong line.
ii) $C(k, 7)$. the angle ABC is a right angle so the point C belongs to the perpendicular to AB .	Part (b)(ii) Many candidates made no attempt at this part of the question. The most successful method was to substitute $y=7$ into the answer to part (b)(i) or to equate the gradient
By substituting : $2 \times \mathrm{k}-3 \times 7=-11$	to $-\frac{2}{3}$. There were also some good answers using a
$2 k=10 \quad k=5$	3 diagrammatic approach. Those using Pythagoras usually made algebraic errors and so rarely reached a solution.

Question 2:	Exam report a) $\frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}}=\frac{\sqrt{9 \times 7}}{3}+\frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{3 \sqrt{7}}{3}+\frac{14 \sqrt{7}}{7}$ $=\sqrt{7}+2 \sqrt{7}=3 \sqrt{7}$		
b) $\frac{\sqrt{7}+1}{\sqrt{7}-2}=\frac{\sqrt{7}+1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2}=\frac{7+2 \sqrt{7}+\sqrt{7}+2}{7-4}$			
$=\frac{9+3 \sqrt{7}}{3}$			Part (a) Some candidates found this part more difficult than part (b) and revealed a lack of understanding of surds. Some managed to express the first term as $\sqrt{7}$ but were unable to deal with the second term. Those who ottempted to find a common denominato often multiplied the terms in the numerator and/or added those in the denominator. Very few obtained the correct answer of $3 \sqrt{7}$. Part (b) Most candidates recognised the first crucial step of multiplying the numerator and denominator by $\sqrt{7}+2$ and many obtained $\frac{9+3 \sqrt{7}}{3}$, but poor cancellation led to a very common incorrect answer of $3 \sqrt{7}+3$.
:---			

a)i) $x^{2}+10 x+19=(x+5)^{2}-25+19=(x+5)^{2}-6$
ii) The minimum point has coordinates $(-5,-6)$
iii) The graph is symmetrical around the line $x=-5$

Translation vector $\left[\begin{array}{l}-5 \\ -6\end{array}\right]$
b) solve simultaneously $\left\{\begin{array}{l}y=x+11 \\ y=x^{2}+10 x+19\end{array}\right.$
by identifying the y 's

$$
\begin{aligned}
& (y=) x^{2}+10 x+19=x+11 \\
& x^{2}+9 x+8=0 \\
& (x+8)(x+1)=0 \\
& \quad x=-8 \text { or } x=-1
\end{aligned}
$$

and $y=x+11$ gives $y=3$ or $y=10$
The points of intersection have coordinates $(-8,3)$ and $(-1,10)$

Part (a)(i) The completion of the square was done successfully by most candidates, although occasionally + 44 was seen instead of .-6 for q.
Part (a)(ii) Most candidates were able to write down the correct minimum point, although some wrote $(5,-6)$ as the vertex. A few chose to use differentiation but often made arithmetic slips in finding the coordinates of the stationary point.
Part (a)(iii) Although there were correct answers for the equation, the term . line of symmetry. was not well understood by many; typical wrong answers were $y=-6$, the y-axis and even
$y=-x^{2}+10 x+19$ or other quadratic curves.
Part (a)(iv) The more able candidates earned full marks here. The term translation was required but generally the wrong word was used or it was accompanied by another transformation such as a stretch. The most common (but incorrect) vector stated was $\left[\begin{array}{l}10 \\ 19\end{array}\right]$. Part
(b) There were a number of complete correct solutions here. The errors that did occur usually stemmed from sign slips in rearranging the equations. Some candidates found the x-coordinates and made no attempt at the y coordinates. A few candidates wrote down the coordinates of at least one point without any working.

Question 4:

a)i) $\frac{d}{d t}=\frac{1}{4} \times 4 t^{3}-26 \times 2 t+96=t^{3}-52 t+96$
ii) $\frac{d^{2} y}{d t^{2}}=3 t^{2}-52$
b) Let's verify that for $t=2, \frac{d y}{d t}=0$

$$
\frac{d y}{d t}(t=2)=2^{3}-52 \times 2+96=8-104+96=0
$$

There is a stationary point when $t=2$.
Let's work out $\frac{d^{2} y}{d t^{2}}(t=2)=3 \times 2^{2}-52=12-52=-40<0$
The stationary point is a Maximum.
c) The rate of change is $\frac{d y}{d t}(t=1)=1-52+96=45 \mathrm{~cm} / \mathrm{s}$
d) The sign of $\frac{d y}{d t} a t t=3$
will indicate if the height is increasing or decreasing.
$\frac{d y}{d t}(t=3)=3^{3}-52 \times 3+96=27-156+96=-33<0$
The height is decreasing when $t=3$

Exam report

Part (a) Almost all candidates were able to find the first and second derivatives correctly, although there was an occasional arithmetic slip; some could not cope with the fraction term, others doubled 26 incorrectly.
Part (b) Those who substituted $\mathrm{t}=2$ into $\frac{d y}{d t}$ did not always explain that $\frac{d y}{d t}=0$ is the condition for a stationary point. Many used the second derivative test and concluded that the point was a maximum. Some assumed that a stationary point occurred when $t=2$ and went straight to the test for maximum or minimum and only scored half of the marks. A few tested $\frac{d y}{d t}$ on either side of $t=2$ correctly, but those who only considered the gradient on one side of the stationary value scored no marks for the test.
Part (c) The concept of .rate of change. was not understood by many. Approximately equal numbers of candidates substituted into $\mathrm{t}=1$ into the expression for $\mathrm{y}, \frac{d y}{d t}$ or $\frac{d^{2} y}{d t^{2}}$ and so only about one third of the candidates were able to score any marks on this part. Those who used $\frac{d y}{d t}$ often made careless arithmetic errors when adding three numbers.
Part (d) As in part (c), candidates did not realise which expression to use and perhaps the majority wrongly selected the second derivative. It is a general weakness that candidates do not realise that the sign of the first derivative indicates whether a function is increasing or decreasing at a particular point.

Question 5:	Exam report

$(x+3)^{2}+(y-2)^{2}=25$
a) i) $C(-3,2)$
ii) Radius $r=\sqrt{25}=5$
b)i) N belongs to the circle
if its coodinates satify the equation
$(0+3)^{2}+(-2-2)^{2}=3^{2}+4^{2}=9+16=25$
$N(0,-2)$ belongs to the circle
ii)
iii) The equation of the normal is the equation of the line CN

$$
\mathrm{m}_{C N}=\frac{-2-2}{0+3}=-\frac{4}{3}
$$

Equation: $y+2=-\frac{4}{3}(x-0)$

$$
\begin{aligned}
& 3 y+6=-4 x \\
& 4 x+3 y=-6
\end{aligned}
$$

c) $P(2,6) \quad C(-3,2)$
i) $P C=\sqrt{(-3-2)^{2}+(2-6)^{2}}=\sqrt{25+16}=\sqrt{41}$
ii) If we call T the point of contact of the tangent from P then the triangle PTC is a right-angled triangle.

$$
\begin{aligned}
& \mathrm{PT}^{2}=P C^{2}-T C^{2}=(\sqrt{41})^{2}-r^{2}=41-25=16 \\
& P T=\sqrt{16}=4
\end{aligned}
$$

Part (a) Most candidates found the correct coordinates of the centre, although some wrote these as $(3,-2)$ instead of $(-3,2)$. Those who multiplied out the brackets were often unsuccessful in writing down the correct radius of the circle.
Part (b)(i) Most candidates were able to verify that the point N was on the circle, although some, who had perhaps worked a previous examination question, were keen to show that the distance from C to N was less than the radius and that N lay inside the circle.
Part (b)(ii) Most sketches were correct, though some were very untidy with several attempts at the circle so that the diagram resembled a chaotic orbit of a planet. Some candidates omitted the axes and scored no marks.
Part (b)(iii) The majority of candidates found the gradient of CN and then assumed they had to find the negative reciprocal of this since the question asked for the normal at N . Reference to their diagram might have avoided this incorrect assumption.
Part (c)(i) Most wrote $\mathrm{PC}^{2}=5^{2}+4^{2}$, provided they had the correct coordinates of C. However, the length of PC was often calculated incorrectly with answers such as $\sqrt{31}$ and $\sqrt{36}=6$ seen quite often.
Part (c)(ii) Although there were many correct solutions seen, Pythagoras‘ Theorem was often used incorrectly. A large number of candidates wrote the answer as a
difference of two lengths such as $\sqrt{41}-5$. Candidates need to realise that obtaining the correct answer from incorrect working is not rewarded; quite a few wrote $\sqrt{41}-\sqrt{25}=\sqrt{16}=4$ and scored no marks. Many who drew a good diagram realised that a tangent from $(2,6)$ touched the circle at $(2,2)$ and so the vertical line segment was of length 4 units.

Question 6:

Exam report

a) $f(x)=x^{3}+4 x-5$
i) Let's work out $f(1)$

$$
f(1)=1^{3}+4 \times 1-5=1+4-5=0
$$

1 is a root of f so $(x-1)$ is a factor of f.
ii) $f(x)=(x-1)\left(x^{2}+x+5\right)$
iii) The discriminant of $x^{2}+x+5$ is $1^{2}-4 \times 1 \times 5=-19<0$

$$
x^{2}+x+5 \text { has no real roots }
$$

The only real root of f is 1 .
b) i) $\int\left(x^{3}+4 x-5\right) d x=\frac{1}{4} x^{4}+2 x^{2}-5 x+c$
ii) Mark the point $C(2,0)$.

Area of the shaded region is Area of $\mathrm{ABC}-\int_{1}^{2} f(x) d x$
$A=\frac{1}{2} \times 1 \times 11-\left[\frac{1}{4} x^{4}+2 x^{2}-5 x\right]_{1}^{2}=\frac{11}{2}-\left[(4+8-10)-\left(\frac{1}{4}+2-5\right)\right]$
$A=\frac{11}{2}-2-\frac{11}{4}=\frac{22-8-11}{4}=\frac{3}{4}$

Part (a)(i) Most candidates realised the need to find the value of $f(x)$ when $x=1$. However, it was also necessary, after showing that $f(1)=0$, to write a statement that the zero value implied that x-1 was a factor.
Part (a)(ii) Those who used inspection were the most successful here. Methods involving long division or equating coefficients usually contained algebraic errors.
Part (a)(iii) This section seemed unclear to some candidates. Many tried to find the discriminant but used the coefficients of the cubic equation. Many who used the quadratic thought that in order to have one real root the discriminant had to be zero, no doubt thinking the question was asking about equal roots. Some correctly stated that 1 was the only real root but many were obviously confused by the terms "factor" and "root" and stated that "x-1 was a root". Part (b)(i) Most candidates were well versed in integration and earned full marks here.
Part (b)(ii) The correct limits were usually used, although many sign/arithmetic slips occurred after substitution of the numbers 1 and 2 . Very few candidates realised the need to find the area of a triangle as well and so failed to subtract the value of the integral from the area of the triangle in order to find the area of the shaded region.

Question 7:
$(2 k-3) x^{2}+2 x+(k-1)=0$ has
This means that the discrimi
$2^{2}-4 \times(2 k-3) \times(k-1) \geq 0$
$4-8 k^{2}+20 k-12 \geq 0$
$-8 k^{2}+20 k-8 \geq 0 \quad(\div-4)$
$2 k^{2}-5 k+2 \leq 0$

b)i) $2 k^{2}-5 k+2=(2 k-1)(k-2)$
ii) $(2 k-1)(k-2) \leq 0$
critical values $: \frac{1}{2}$ and 2 $\frac{1}{2} \leq k \leq 2$

Exam report

Part (a) Only the more able candidates were able to complete this proof correctly. Many began by stating that the discriminant was less than or equal to zero, no doubt being influenced by the printed answer.
Part (b)(i) The factorisation was usually correct.
Part (b)(ii) Most candidates found the critical values, but many then either stopped or wrote down a solution to the inequality without any working. Many candidates wrongly thought the solution was $k \leq \frac{1}{2}, k \leq 2$. Candidates are advised to draw an appropriate sketch or sign diagram so they can deduce the correct interval for the solution.

GRADE BOUNDARIES							
Component title	Max mark	A	B	C	D	E	
Core $1-$ Uni+Dr1	75	60	52	44	37	30	

Q	Solution	Marks	Total	Comments
1（a）（i）	$\text { Gradient } A B=\frac{-1-5}{6-2} \text { or } \frac{5--1}{2-6}$	M1		$\pm \frac{6}{4} \text { implies M1 }$
	$=\frac{-6}{4}=-\frac{3}{2}$	A1	2	AG
（ii）	$\left.\begin{array}{l} y-5 \\ y+1 \end{array}\right\}=-\frac{3}{2}\left\{\begin{array}{l} (x-2) \\ (x-6) \end{array}\right.$	M1		or $y=-\frac{3}{2} x+c$ and attempt to find c
	$\Rightarrow 3 x+2 y=16$	A1	2	OE ；must have integer coefficients
（b）（i）	$\text { Gradient of perpendicular }=\frac{2}{3}$	M1		or use of $m_{1} m_{2}=-1$
	$\Rightarrow y-5=\frac{2}{3}(x-2)$	A1	2	$3 y-2 x=11$（no misreads permitted）
（ii）	Substitute $x=k, y=7$ into their（b）（i）	M1		or grads $\frac{7-5}{k-2} \times \frac{-3}{2}=-1$
	$\Rightarrow 2=\frac{2}{3}(k-2) \Rightarrow k=5$	A1	2	or Pythagoras $(k-2)^{2}=(k-6)^{2}+8$
	Total		8	
2（a）	$\frac{\sqrt{63}}{3}=\sqrt{7} \text { or } \frac{3 \sqrt{7}}{3}$	B1		$\text { or } \frac{(\sqrt{7} \sqrt{63}+14 \times 3)}{3 \sqrt{7}}$
	$\frac{14}{\sqrt{7}}=2 \sqrt{7} \text { or } \frac{14 \sqrt{7}}{7}$	B1		$\text { or } \frac{\sqrt{7}}{\sqrt{7}}(\quad) \quad \text { M1 }$
	$\Rightarrow \operatorname{sum}=3 \sqrt{7}$	B1	3	\Rightarrow correct answer with all working correct A2
（b）	Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1		
	Denominator $=7-4=3$	A1		
	$\text { Numerator }=(\sqrt{7})^{2}+\sqrt{7}+2 \sqrt{7}+2$	m1		multiplied out（allow one slip） $9+3 \sqrt{7}$
	Answer $=\sqrt{7}+3$	A1	4	
	Total		7	

Q	Solution	Marks	Total	Comments
3（a）（i）	$(x+5)^{2}$	B1		$p=5$
	－6	B1	2	$q=-6$
（ii）	$x_{\text {verex }}=-5($ or their $-p)$	BI」		may differentiate but must have $x=-5$
	$y_{\text {verex }}=-6$（or their q ）	B1」	2	and $y=-6$ ．Vertex $(-5,-6)$
（iii）	$x=-5$	B1	1	
（iv）	Translation（not shift，move etc）	E1		and NO other transformation stated
	through $\left[\begin{array}{l}-5 \\ -6\end{array}\right]$（or 5 left， 6 down）	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	either component correct $\mathrm{M1}, \mathrm{Al}$ independent of E mark
（b）	$x+11=x^{2}+10 x+19$			quadratic with all terms on one side of equation
	$\begin{aligned} & \Rightarrow x^{2}+9 x+8=0 \text { or } y^{2}-13 y+30=0 \\ & (x+8)(x+1)=0 \\ & \text { or }(y-3)(y-10)=0 \end{aligned}$	$\begin{aligned} & \mathrm{Ml} \\ & \mathrm{ml} \end{aligned}$		attempt at formula（1 slip）or to factorise
	$\left.\left.\begin{array}{l} x=-1 \\ y=10 \end{array}\right\} \text { or } \begin{array}{l} x=-8 \\ y=3 \end{array}\right\}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	both x values correct both y values correct and linked
				SC（ $-1,10$ ）B2，（－8，3）B2 no working
	Total		12	
4（a）（i）	$t^{3}-52 t+96$	M1		one term correct
		${ }^{\text {A1 }}$		another term correct
			3	all correct（ $\mathrm{no}+c$ etc）
（ii）	$3 t^{2}-52$	M1		ft one term correct
		A1ヶ	2	$\mathrm{ft} \mathrm{all} \mathrm{"correct"}$
（b）	$\frac{\mathrm{d} y}{\mathrm{~d}}=8-104+96$	M1		substitute $t=2$ into their $\frac{\mathrm{d} y}{\underline{d y}}$
	$\mathrm{d} t=0 \Rightarrow$ stationary value			Cso shown $=0+$ stateme
		AI		CSO；shown $=0+$ statement
	Substiute $t=2$ into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}} \quad(=-40)$	M1		any appropriate test，e．g．$y^{\prime}(1)$ and $y^{\prime}(3)$
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}<0 \Rightarrow \text { max value }$	A1	4	all values（if stated）must be correct
（c）	Substitute $t=1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} t}$	M1		$\text { must be their } \frac{\mathrm{d} y}{\mathrm{~d} t} \text { NOT } \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$
	Rate of change $=45\left(\mathrm{cms}^{-1}\right)$	Al \checkmark	2	ft their $y^{\prime}(1)$
（d）	$\begin{aligned} & \text { Substiute } t=3 \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} t} \\ & (27-156+96=-33<0) \end{aligned}$	M1		interpreting their value of $\frac{\mathrm{d} y}{\mathrm{~d} t}$
	\Rightarrow decreasing when $t=3$	EIV	2	allow increasing if their $\frac{\mathrm{d} y}{\mathrm{~d} t}>0$
	Total		13	

Q	Solution	Marks	Total	Comments
5(a)(i)	Centre (-3, 2)	M1		± 3 or ± 2
		A1	2	correct
(ii)	Radius $=5$	B1	1	accept $\sqrt{25}$ but not $\pm \sqrt{25}$
(b)(i)	$\begin{aligned} & 3^{2}+(-4)^{2}=9+16=25 \\ & \Rightarrow N \text { lies on circle } \end{aligned}$	B1	1	must have $9+16=25$ or a statement
(ii)		M1		must draw axes;
		A1	2	correct (reasonable freehand circle enclosing origin)
(iii)	Attempt at gradient of CN	M1		withhold if subsequently finds tangent
	$\operatorname{grad} C N=-\frac{4}{3}$	A1		CSO
	$y=-\frac{4}{3} x-2$ (or equivalent)	Al \checkmark	3	ft their grad $C N$
(c)(i)	$P(2,6)$ Hence $P C^{2}=5^{2}+4^{2}$	M1		"their" $P C^{2}$
	$\Rightarrow P C=\sqrt{41}$	A1	2	
(ii)	Use of Pythagoras correctly	M1		
	$P T^{2}=P C^{2}-r^{2}=41-25,$ where T is a point of contact of tangent	$\mathrm{A} \sqrt{ } \sqrt{ }$		ft their $P C^{2}$ and r^{2}
	$\Rightarrow P T=4$	A1	3	Alternative sketch with vertical tangent M1 showing that tangent touches circle at point $(2,2) \quad \mathrm{Al}$ hence $P T=4 \quad \mathrm{Al}$
	Total		14	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathrm{f}(1)=1+4-5$	M1		must find $\mathrm{f}(1)$ NOT long division
	$\Rightarrow \mathrm{f}(1)=0 \Rightarrow(x-1)$ is factor	A1	2	shown $=0$ plus a statement
(ii)	Attempt at $x^{2}+x+5$	M1		long division leading to $x^{2} \pm x+\ldots$ or equating coefficients
	$\mathrm{f}(x)=(x-1)\left(x^{2}+x+5\right)$	A1	2	$p=1, q=5$ by inspection scores B1, B1
(iii)	$(x=) 1$ is real root	B1		
	Consider $b^{2}-4 a c$ for their $x^{2}+x+5$ $b^{2}-4 a c=1^{2}-4 \times 5=-19<0$	M1		not the cubic!
	Hence no real roots (or only real root is 1)	A1	3	CSO; all values correct plus a statement
(b)(i)	$\int \ldots \mathrm{d} x=\frac{x^{4}}{4}+2 x^{2}-5 x(+c)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	one term correct unsimplified second term correct unsimplified all correct unsimplified
(ii)	$[4+8-10]-\left[\frac{1}{4}+2-5\right]$	M1		correct use of limits 1 and 2; $F(2)-F(1)$ attempted
	$=4 \frac{3}{4}$	A1		
	$\begin{aligned} & \text { Area of } \Delta=\frac{1}{2} \times 11=5 \frac{1}{2} \\ & \Rightarrow \text { shaded area }=5 \frac{1}{2}-4 \frac{3}{4} \end{aligned}$	B1		correct unsimplified combined integral of $7 x-6-x^{3}$ scores M1 for limits correctly used then
	$=\frac{3}{4}$	A1	4	A3 correct answer with all working correct
	Total		14	
7(a)	$b^{2}-4 a c=4-4(k-1)(2 k-3)$	M1		(or seen in formula) condone one slip
	Real roots when $b^{2}-4 a c \geqslant 0$	E1		must involve $\mathrm{f}(k) \geqslant 0$ (usually M1 must be earned)
	$4-4\left(2 k^{2}-5 k+3\right) \geqslant 0$			
	$\Rightarrow-2 k^{2}+5 k-3+1 \geqslant 0$			at least one step of working justifying $\leqslant 0$
	$\Rightarrow 2 k^{2}-5 k+2 \leqslant 0$	A1	3	AG
(b)(i)	$(2 k-1)(k-2)$	B1	1	
(ii)	(Critical values) $\frac{1}{2}$ and 2	B1 \checkmark		ft their factors or correct values seen on diagram, sketch or inequality or stated
		M1		use of sketch / sign diagram
	$\Rightarrow 0.5 \leqslant k \leqslant 2$	A1	3	M1A0 for $0.5<k<2$ or $k \geqslant 0.5, k \leqslant 2$
	Total		7	
	TOTAL		75	

General Certificate of Education
January 2008
Advanced Subsidiary Examination

MATHEMATICS

Unit Pure Core 1

AQA
assessmentong
alliance

Wednesday 9 January 20081.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The triangle $A B C$ has vertices $A(-2,3), B(4,1)$ and $C(2,-5)$.
(a) Find the coordinates of the mid-point of $B C$.
(2 marks)
(b) (i) Find the gradient of $A B$, in its simplest form.
(2 marks)
(ii) Hence find an equation of the line $A B$, giving your answer in the form $x+q y=r$, where q and r are integers.
(2 marks)
(iii) Find an equation of the line passing through C which is parallel to $A B$
(c) Prove that angle $A B C$ is a right angle.
(3 marks)

2 The curve with equation $y=x^{4}-32 x+5$ has a single stationary point, M.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(3 marks)
(b) Hence find the x-coordinate of M.
(3 marks)
(c) (i) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(1 mark)
(ii) Hence, or otherwise, determine whether M is a maximum or a minimum point.
(2 marks)
(d) Determine whether the curve is increasing or decreasing at the point on the curve where $x=0$.
(2 marks)

3 (a) Express $5 \sqrt{8}+\frac{6}{\sqrt{2}}$ in the form $n \sqrt{2}$, where n is an integer.
(b) Express $\frac{\sqrt{2}+2}{3 \sqrt{2}-4}$ in the form $c \sqrt{2}+d$, where c and d are integers.

4 A circle with centre C has equation $x^{2}+y^{2}-10 y+20=0$.
(a) By completing the square, express this equation in the form

$$
\begin{equation*}
x^{2}+(y-b)^{2}=k \tag{2marks}
\end{equation*}
$$

(b) Write down:
(i) the coordinates of C;
(1 mark)
(ii) the radius of the circle, leaving your answer in surd form.
(1 mark)
(c) A line has equation $y=2 x$.
(i) Show that the x-coordinate of any point of intersection of the line and the circle satisfies the equation $x^{2}-4 x+4=0$.
(2 marks)
(ii) Hence show that the line is a tangent to the circle and find the coordinates of the point of contact, P.
(3 marks)
(d) Prove that the point $Q(-1,4)$ lies inside the circle.
(2 marks)

5 (a) Factorise $9-8 x-x^{2}$. (2 marks)
(b) Show that $25-(x+4)^{2}$ can be written as $9-8 x-x^{2}$. (1 mark)
(c) A curve has equation $y=9-8 x-x^{2}$.
(i) Write down the equation of its line of symmetry.
(1 mark)
(ii) Find the coordinates of its vertex.
(2 marks)
(iii) Sketch the curve, indicating the values of the intercepts on the x-axis and the y-axis.
(3 marks)

6 (a) The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}-7 x-6$.
(i) Use the Factor Theorem to show that $x+1$ is a factor of $\mathrm{p}(x)$.
(2 marks)
(ii) Express $\mathrm{p}(x)=x^{3}-7 x-6$ as the product of three linear factors.
(3 marks)
(b) The curve with equation $y=x^{3}-7 x-6$ is sketched below.

The curve cuts the x-axis at the point A and the points $B(-1,0)$ and $C(3,0)$.
(i) State the coordinates of the point A.
(ii) Find $\int_{-1}^{3}\left(x^{3}-7 x-6\right) \mathrm{d} x$. (5 marks)
(iii) Hence find the area of the shaded region bounded by the curve $y=x^{3}-7 x-6$ and the x-axis between B and C
(1 mark)
(iv) Find the gradient of the curve $y=x^{3}-7 x-6$ at the point B.
(v) Hence find an equation of the normal to the curve at the point B.
(3 marks)

7 The curve C has equation $y=x^{2}+7$. The line L has equation $y=k(3 x+1)$, where k is a constant.
(a) Show that the x-coordinates of any points of intersection of the line L with the curve C satisfy the equation

$$
\begin{equation*}
x^{2}-3 k x+7-k=0 \tag{1mark}
\end{equation*}
$$

(b) The curve C and the line L intersect in two distinct points. Show that

$$
9 k^{2}+4 k-28>0
$$

(c) Solve the inequality $9 k^{2}+4 k-28>0$.

Question 1:
$A(-2,3) \quad B(4,1) \quad C(2,-5)$
a) Mid-point of $\mathrm{BC}\left(\frac{4+2}{2}, \frac{1-5}{2}\right)=(3,-2)$
b) i) $m_{A B}=\frac{1-3}{4+2}=-\frac{2}{6}=-\frac{1}{3}$
ii) $E q: y-3=-\frac{1}{3}(x+2)$

$$
\begin{aligned}
& 3 y-9=-x-2 \\
& x+3 y=7
\end{aligned}
$$

iii) this line has the same gradient $-\frac{1}{3}$
$E q: y+5=-\frac{1}{3}(x-2)$

$$
\begin{gathered}
3 y+15=-x+2 \\
x+3 y=-13
\end{gathered}
$$

c) Let's work out the gradient of the line BC:

$$
\begin{aligned}
\mathrm{m}_{B C} & =\frac{-5-1}{2-4}=\frac{-6}{-2}=3 \\
m_{A B} \times m_{B C} & =-\frac{1}{3} \times 3=-1
\end{aligned}
$$

Conclusion: the line AB and BC are perpendicular the triangle ABC is a right-angled triangle.

Exam report

In part (a), apart from a few sign errors, it was pleasing to see that most candidates were able to find the correct mid-point. However, those who insisted on subtracting the coordinates before dividing by 2 would do well to learn the formula in the first bullet point above. Quite a few candidates found the mid-point of $A B$ instead of $B C$, and this was generously treated as a misread.
In part (b)(i), many ignored the request to simplify the gradient, but most were successful in writing the gradient of $A B$ as $-1 / 3$.
In part (b)(ii), almost all candidates managed to write down a correct equation for the line $A B$, but careless arithmetic prevented many from obtaining the required form of $x+3 y=$ 7 . Some were content to give a final answer that was not in the required form, thus losing a mark.
In part (b)(iii), some candidates immediately used $m 1 \times m 2=$ -1 to find the gradient of the parallel line and scored no marks. Many who used the formula $y=m x+c$ for the equation of the straight line through C parallel to $A B$ made arithmetic slips and did not obtain a correct final equation. In part (c), the most common approach, and the one expected, was to use gradients in order to prove that angle $A B C$ was a right angle. Some simply assumed the result, stating that since the gradient of $A B$ was $-1 / 3$ then $B C$ had gradient 3. It was necessary to show, by considering the differences of the coordinates that $B C$ had gradient 3. Far too many simply found the two gradients and wrote "therefore the lines $B C$ and $A B$ are perpendicular". Since this was a proof, it was expected that the product of the two gradients would be shown to equal -1 before a statement was made about angle $A B C$ being a right angle. Some were successful in proving the result using Pythagoras' Theorem, but many attempts were incomplete with several candidates writing $\sqrt{40}+\sqrt{40}=\sqrt{80}$ or other inaccurate statements. Others used the cosine
rule, and one or two used the scalar product of two vectors in order to prove the result. A surprising number confused "isosceles" with "right-angled" and, having found two equal sides, stated that the result was proved.

Question 2:	Exam report
$y=x^{4}-32 x+5$ a) $\frac{d y}{d x}=4 x^{3}-32$ b) M is a stationary point. Let's solve $\frac{d y}{d x}=0$ $\begin{aligned} & 4 x^{3}-32=0 \\ & x^{3}=8 \quad x=2 \end{aligned}$ c) i) $\frac{d^{2} y}{d x^{2}}=12 x^{2}$ ii) $\frac{d^{2} y}{d x^{2}}(x=2)=12 \times 2^{2}=48>0$ M is a minimum d) $\frac{d y}{d x}(x=0)=-32<0$ The curve is decreasing.	In part (a), most candidates were able to find the correct expression for $\frac{d y}{d x}$, although there were some who left +5 in their answer or added $+C$. In part (b), It had been expected that candidates would solve the equation $\frac{d y}{d x}=0$ and obtain the equation $\mathrm{x}^{3}=8$ and hence deduce that $\mathrm{x}=2$. It seemed, however, that many were unable to formulate an appropriate equation, but merely spotted the correct answer: $\mathrm{x}=2$. This was not penalised on this occasion, provided that the candidate stated clearly that the x coordinate of M was equal to 2 . In part (c)(i), the expression for $\frac{d^{2} y}{d x^{2}}$ was usually correct. In part (c)(ii), although the method was left open, most candidates found the value of the second derivative when $x=2$ and correctly concluded that M was a minimum point. In part (c)(iii), some candidates were not aware of the need to find the value of

$\frac{d y}{d x}$ when $\mathrm{x}=0$ in order to ascertain whether the curve was increasing or decreasing at that point.

Question 3:	Exam report
a) 5 $\begin{aligned} 5 \sqrt{8}+\frac{6}{\sqrt{2}} & =5 \sqrt{4 \times 2}+\frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\ & =5 \times 2 \sqrt{2}+\frac{6 \sqrt{2}}{2} \\ & =10 \sqrt{2}+3 \sqrt{2}=13 \sqrt{2} \end{aligned}$ b) $\begin{aligned} \frac{\sqrt{2}+2}{3 \sqrt{2}-4} & =\frac{\sqrt{2}+2}{3 \sqrt{2}-4} \times \frac{3 \sqrt{2}+4}{3 \sqrt{2}+4}=\frac{6+4 \sqrt{2}+6 \sqrt{2}+8}{9 \times 2-16} \\ & =\frac{14+10 \sqrt{2}}{2}=7+5 \sqrt{2} \end{aligned}$	Candidates did not always approach part (a) of the question with confidence. Several wrote $5 \sqrt{8}=5 \sqrt{4 \times 2}=7 \sqrt{2}$ or $5+2 \sqrt{2}$, others tried to rationalise $\frac{6}{\sqrt{2}}$ by simply multiplying the denominator by $\sqrt{2}$. Consequently, it was quite common to see only one of the two terms expressed correctly in the form $k \sqrt{2}$. It was quite strange, though, to see many obtaining an answer of $13 \sqrt{2}$ from completely wrong working; clearly this was not given any credit. Some combined the two terms with a common denominator but often with an incorrect numerator. In part (b), it was not uncommon to see the denominator and numerator multiplied by different surds and the usual errors occurred as candidates tried to multiply out brackets. A few multiplied top and bottom by the conjugate of the numerator. Nevertheless, this part of the question seemed to be answered much better than similar questions in previous years, despite the fairly difficult denominator.

Question 4:	Exam report
$x^{2}+y^{2}-10 y+20=0$ a) $x^{2}+(y-5)^{2}-25+20=0$ $x^{2}+(y-5)^{2}=5$ b) i) $C(0,5)$ ii) $r=\sqrt{5}$ c) $y=2 x$ i) solve simultaneously $\left\{\begin{array}{l}y=2 x \\ x^{2}+y^{2}-10 y+20=0\end{array}\right.$ Substitute y by $2 x$: $\begin{aligned} & x^{2}+(2 x)^{2}-10 \times(2 x)+20=0 \\ & 5 x^{2}-20 x+20=0 \\ & x^{2}-4 x+4=0 \end{aligned}$ ii) $\begin{aligned} x^{2}-4 x+4 & =(x-2)^{2}=0 \\ x & =2 \text { is a repeated root } \end{aligned}$ The line $y=2 x$ is tangent to the circle. d) $Q(-1,4)$ $\begin{aligned} x^{2}+y^{2}-10 y+20 & =(-1)^{2}+4^{2}-10 \times 4+20 \\ & =1+16-40+20=-3<5 \end{aligned}$ Q is inside the circle	In part (a), it was only necessary to complete the square for the y-terms. As a result, there were probably fewer errors this year expressing the left-hand side of the equation of the circle as $(y-5)^{2}$. However, the right hand side was often written as $\sqrt{5},-5$ or -45 instead of 5 . In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or ($0,-5$). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing $2 x^{2}$ instead of $(2 \mathrm{x})^{2}$, struggled to establish the given quadratic equation. Also, quite a few made errors in their working but miraculously wrote down the given equation on their final line. A surprising number derived an equation in y. Quite a few simply solved the given quadratic equation in this part and thus failed to show an understanding of what was required. In part (c)(ii), it was necessary to state that the equation had a repeated root of $x=2$, or to use the zero value of the discriminant to show that the equation had equal roots, and hence to conclude that the line was a tangent to the circle. In part (d), far too many simply substituted the coordinates of the point Q into the equation of the circle obtaining a nonsensical statement such as " $-3=0$ so the point lies inside the circle". It was necessary to see that the distance CQ was being calculated and then concluded that this distance was less than the radius of the circle, and hence the point Q must lie inside the circle.

a) $9-8 x-x^{2}=(9+x)(1-x)$
b) $25-(x+4)^{2}=25-\left(x^{2}+8 x+16\right)$

$$
=-x^{2}-8 x+9
$$

c) $y=25-(x+4)^{2}$
i) Line of symmetry: $x=-4$
ii) Vertex $(-4,25)$
iii) The graph crosses the x-axis at $(-9,0)$ and $(1,0)$ the y-axis at $(0,9)$

Candidates did not seem confident working with a quadratic expression where the coefficient of x^{2} was negative. Throughout this question, candidates chose instead to work with the expression
$x^{2}+8 x-9$, or the equation $x^{2}+8 x-9=0$, and lost quite a lot of marks.
In part (a), a large number of candidates could not factorise the given quadratic correctly, a few clearly not even recognising what was required.
In part (b), those who kept brackets in their working were usually successful in proving the identity. Some able candidates started with $9-8 x-x^{2}$ and showed their skill in completing the square. In part (c), quite a large number of candidates seemed unfamiliar with the terms "line of symmetry" and "vertex" and certainly failed to see the link with part (b) of the question. Some stated that the coordinates of the maximum point were $(-4,25)$ and then wrote the coordinates of the vertex as something entirely different. The sketches were somewhat varied: some found the wrong x intercepts and drew a curve through these points; those who had completely changed the question into $y=x^{2}+8 x-9$ had a U shaped graph. Those who drew a graph with the vertex in the correct position and with the correct shape usually had the y intercept marked correctly as 9 . However some drew their curve with a maximum point on the y-axis.

Question 6:

a) $p(x)=x^{3}-7 x-6$

i) Work out $p(-1)$:

$$
(-1)^{3}-7 \times(-1)-6=-1+7-6=0
$$

-1 is a root of p, so $(x+1)$ is a factor of p
ii) $p(x)=(x+1)\left(x^{2}-x-6\right)=(x+1)(x-3)(x+2)$
b)i) $A(-2,0) \quad($ root of $p)$
ii) $\int_{-1}^{3}\left(x^{3}-7 x-6\right) d x=\left[\frac{1}{4} x^{4}-\frac{7}{2} x^{2}-6 x\right]_{-1}^{3}$
$=\left(\frac{81}{4}-\frac{63}{2}-18\right)-\left(\frac{1}{4}-\frac{7}{2}+6\right)$
$=\left(20 \frac{1}{4}-31 \frac{1}{2}-18\right)-\left(\frac{1}{4}-3 \frac{1}{2}+6\right)$
$=20-28-24=-32$
iii) Area shaded $=32$
iv) The gradient of the curve at B is $\frac{d y}{d x}(x=-1)$ $\frac{d y}{d x}=3 x^{2}-7$ and for $x=-1, \frac{d y}{d x}=3-7=-4$
$v)$ The normal has gradient $-\frac{1}{m_{B}}=-\frac{1}{-4}=\frac{1}{4}$
The equation of the normal at B: $y-0=\frac{1}{4}(x+1)$

$$
y=\frac{1}{4}(x+1)
$$

Exam report

In part (a)(i), a few candidates ignored the request to use the factor theorem and scored no marks for using long division. It was necessary to make a statement that " $x+1$ is a factor", after showing that $\mathrm{f}(-1)=0$, in order to score full marks.
Part (a)(ii) was not answered as well as similar questions in previous years. Perhaps the sketch lured some into trying to write down three factors without any further working, rather than using the intermediate step of showing that $p(x)=(x+1)\left(x^{2}-x-6\right)$ before writing $p(x)$ as a product of three factors. Many who tried long division were flummoxed by there being no x^{2} term. In part (b)(i), those who had the correct linear factors in part (a)(ii) usually wrote down correctly that A had coordinates $(-2,0)$, although some carelessly wrote the point as ($0,-2$). Many candidates simply found an indefinite integral in part (b)(ii) and then a definite integral in part (b)(iii). The two parts were generously treated holistically when candidates did this. The fractions once again caused problems to most candidates who are so used to having a calculator to do this work for them. It was very rare to see the correct answer of -32 for the definite integral.
In part (b)(iii), many lost out on an easy mark because they rolled their two sections into one: those who wrote "integral $=-32=32$ " gained full credit for part (b)(ii) but did not score the mark in part (b)(iii). It was necessary to give a positive value for the area of the region and to make this explicit. In anticipation of a lot of wrong answers in part (b)(ii), a follow through mark was awarded in part (b)(iii): for example, if a candidate's answer in part (b)(ii) was -20 and they concluded that the area was 20 in part (b)(iii), they scored the mark.
In part (b)(iv), most candidates differentiated correctly, but quite a few thought that $3(-1)^{2}-7$ was equal to -10 and thus obtained the wrong gradient of the curve.
In part (b)(v), a large number of candidates found the correct equation of the normal but some still confused tangents and normals and consequently thought that the gradient of the normal was equal to -4. It was quite common for weaker candidates to either negate their gradient or take the reciprocal but to fail to do both.

GRADE BOUNDARIES							
Component title	Max mark	A	B	C	D	E	
Core 1 - Unit PC1	75	59	51	43	36	29	

Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\mathrm{M} & \text { mark is for method } & \\ \hline \mathrm{m} \text { or dM } & \text { mark is dependent on one or more } \mathrm{M} \text { marks and is for method } \\ \hline \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } \mathrm{m} \text { marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{aligned} \mathrm{p}(-1) & =-1+7-6 \\ & =0 \quad \text { therefore } x+1 \text { is a factor } \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	Finding $\mathrm{p}(-1)$ Shown to $=0$ plus statement
(ii)	$\mathrm{p}(x)=(x+1)\left(x^{2}-x-6\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Long division/inspection (2 terms correct) Quadratic factor correct
	$\mathrm{p}(x)=(x+1)(x+2)(x-3)$	A1	3	May earn M1,A1 for correct second factor then Al for $(x+1)(x+2)(x-3)$
(b)(i)	$A(-2,0)$	B1	1	Condone $x=-2$
(ii)	$\underline{x^{4}}-\frac{7 x^{2}}{2}-6 x \quad(+c)$	M1		One term correct
	$\overline{4}-\frac{2}{2}$	A1		Another term correct
	(may have $+c$ or not)	A1		All correct unsimplified
	$\left[\frac{81}{4}-\frac{63}{2}-18\right]-\left[\frac{1}{4}-\frac{7}{2}+6\right]$	m1		$F(3)-F(-1)$ attempted in correct order
	$=-32$	A1	5	CSO; OE
(iii)	Area of shaded region $=32$	$B 1 \checkmark$	1	FT their (b)(ii) but positive value needed
(iv)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-7$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		One term correct All correct (no $+c$ etc)
	When $x=-1$, gradient $=-4$	A1	3	CSO
(v)	$\text { Gradient of normal }=\frac{1}{4}$			
	$y=$ "their gradient" $(x \pm 1)$	M1		Must be finding normal, not tangent
	$y=\frac{1}{4}(x+1)$	A1	3	CSO; any correct form eg $4 y-x=1$
	Total		18	
7(a)	$x^{2}+7=k(3 x+1) \Rightarrow x^{2}-3 k x+7-k=0$	B1	1	AG
(b)	$b^{2}-4 a c=(-3 k)^{2}-4(7-k)$ (2 distinct roots when) $b^{2}-4 a c>0$ $9 k^{2}+4 k-28>0$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	3	Clear attempt at $b^{2}-4 a c$ Condone slip in one term of expression Must involve k $\mathrm{CSO} ; \mathrm{AG}$
(c)	$(9 k-14)(k+2)$	M1		Factors or formula correct unsimplified
	Critical points -2 and $\frac{14}{9}$	A1		
	Sketch \cup or sign diagram correct	M1		+ ve ${ }_{-2}$ -ve$+$ ve
	$k<-2, k>\frac{14}{9}$	A1	4	
	Total		8	
	TOTAL		75	

General Certificate of Education June 2008
Advanced Subsidiary Examination

MATHEMATICS
 Unit Pure Core 1

Thursday 15 May 20089.00 am to 10.30 am

| For this paper you must have: |
| :--- | :--- |
| - an 8-page answer book |
| - the blue AQA booklet of formulae and statistical tables. |
| You must not use a calculator. |

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75
- The marks for questions are shown in brackets.

Advice
Unless stated otherwise, you may quote formulae, without proof, from the booklet.

AQA
assessmenta...
oualificatio

For this paper you must have

- an 8-page answer book

You must not use a calculator.

MPC1

(5 marks)
Sketch on the same axes the line L and the curve C, showing the values of the intercepts on the x-axis and the y-axis.
(2 marks)
equation $x^{2}-x-2=0$.
(c) Hence find the coordinates of the points of intersection of L and C.

2 It is given that $x=\sqrt{3}$ and $y=\sqrt{12}$.
Find, in the simplest form, the value of:
(a) $x y$;
(1 mark)
(b) $\frac{y}{x}$;
(2 marks)
(c) $(x+y)^{2}$.
(3 marks)

3 Two numbers, x and y, are such that $3 x+y=9$, where $x \geqslant 0$ and $y \geqslant 0$.
It is given that $V=x y^{2}$.
(a) Show that $V=81 x-54 x^{2}+9 x^{3}$.
(2 marks)
(b) (i) Show that $\frac{\mathrm{d} V}{\mathrm{~d} x}=k\left(x^{2}-4 x+3\right)$, and state the value of the integer k. (4 marks)
(ii) Hence find the two values of x for which $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$.
(2 marks)
(c) Find $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$.
(2 marks)
(d) (i) Find the value of $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ for each of the two values of x found in part (b)(ii).
(ii) Hence determine the value of x for which V has a maximum value.
(1 mark)
(iii) Find the maximum value of V.

1 mark)

4 (a) Express $x^{2}-3 x+4$ in the form $(x-p)^{2}+q$, where p and q are rational numbers.
(b) Hence write down the minimum value of the expression $x^{2}-3 x+4$. (1 mark)
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}-3 x+4$.

5 The curve with equation $y=16-x^{4}$ is sketched below.

The points $A(-2,0), B(2,0)$ and $C(1,15)$ lie on the curve.
(a) Find an equation of the straight line $A C$.
(3 marks)
(b) (i) Find $\int_{-2}^{1}\left(16-x^{4}\right) \mathrm{d} x$.
(5 marks)
(ii) Hence calculate the area of the shaded region bounded by the curve and the line $A C$.
(3 marks)

6 The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}+x^{2}-8 x-12$.
(a) Use the Remainder Theorem to find the remainder when $\mathrm{p}(x)$ is divided by $x-1$.
(2 marks)
(b) (i) Use the Factor Theorem to show that $x+2$ is a factor of $\mathrm{p}(x)$. (2 marks)
(ii) Express $\mathrm{p}(x)$ as the product of linear factors. (3 marks)
(c) (i) The curve with equation $y=x^{3}+x^{2}-8 x-12$ passes through the point $(0, k)$. State the value of k.
(1 mark)
(ii) Sketch the graph of $y=x^{3}+x^{2}-8 x-12$, indicating the values of x where the curve touches or crosses the x-axis.
(3 marks)

7 The circle S has centre $C(8,13)$ and touches the x-axis, as shown in the diagram.

(a) Write down an equation for S, giving your answer in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(b) The point P with coordinates $(3,1)$ lies on the circle.
(i) Find the gradient of the straight line passing through P and C.
(ii) Hence find an equation of the tangent to the circle S at the point P, giving your answer in the form $a x+b y=c$, where a, b and c are integers.
(iii) The point Q also lies on the circle S, and the length of $P Q$ is 10 . Calculate the shortest distance from C to the chord $P Q$.

8 The quadratic equation $(k+1) x^{2}+4 k x+9=0$ has real roots.
(a) Show that $4 k^{2}-9 k-9 \geqslant 0$.
(b) Hence find the possible values of k.

END OF QUESTIONS

Question 1:	Exam report
Line L: $y=3 x-1$	
Curve C: $y=(x+3)(x-1)=x^{2}+2 x-3$	
a) The line crosses the y-axis at $(0,-1)$ and the x-axis at $\left(\frac{1}{3}, 0\right)$	
The curve crosses the y -axis at $(0,-3)$ and the x -axis at $(-3,0)$ and $(1,0)$	
b) Solve simultaneously $\left\{\begin{array}{l}y=3 x-1 \\ y=x^{2}+2 x-3\end{array}\right.$ by identification	
$(y=) x^{2}+2 x-3=3 x-1$	
$x^{2}-x-2=0$	
c) $x^{2}-x-2=(x-2)(x+1)=0$	
$x=2$ or $x=-1$	
and $y=3 x-1 \quad y=5$ or $y=-4$	
The line and the curve cross at (2,5) and ($-1,-4$)	

Question 2:	
$x=\sqrt{3}$ and $y=\sqrt{12}$	
a) $x y=\sqrt{3} \times \sqrt{12}=\sqrt{36}=6$	
b) $\frac{y}{x}=\frac{\sqrt{12}}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{3}}=2$	
c) $(x+y)^{2}=(\sqrt{3}+\sqrt{12})^{2}=3+12+2 \sqrt{36}=27$	

Question 3:	Exam report
$3 x+y=9 \quad x \geq 0, y \geq 0$	
$V=x y^{2}$	
a) $y=9-3 x$ so $V=x y^{2}=x(9-3 x)^{2}$	
$V=x\left(81+9 x^{2}-54 x\right)$	
$V=9 x^{3}-54 x^{2}+81 x$	
b) i) $\frac{d V}{d x}=9 \times 3 x^{2}-54 \times 2 x+81=27 x^{2}-108 x+81$	
$\frac{d V}{d x}=27\left(x^{2}-4 x+3\right)$	
ii) $\frac{d V}{d x}=0$ when $x^{2}-4 x+3=0$	
$(x-3)(x-1)=0$	
$x=3$ or $x=1$	
c) $\frac{d^{2} V}{d x^{2}}=27(2 x-4)=54 x-108$	
d)i) $\frac{d^{2} V}{d x^{2}}(x=3)=27(2 \times 3-4)=27 \times 2=54>0$	
$\frac{d^{2} V}{d x^{2}}(x=1)=27(2 \times 1-4)=27 \times-2=-54<0$	
ii) There is a maximum for $x=1$	
iii) For $x=1, V=81-54+9=36$	

a) $x^{2}-3 x+4=\left(x-\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+4=\left(x-\frac{3}{2}\right)^{2}+\frac{7}{4}$
b) For all $x,\left(x-\frac{3}{2}\right)^{2} \geq 0$ so $\left(x-\frac{3}{2}\right)^{2}+\frac{7}{4} \geq \frac{7}{4}$

The minimum value is $\frac{7}{4}$

$y=x^{2}$ is mapped into $y=x^{2}-3 x+4$
by the translation vector $\left[\begin{array}{c}\frac{3}{2} \\ \frac{7}{4}\end{array}\right]$

Question 5:

$y=16-x^{4}$
$A(-2,0), B(2,0)$ and $C(1,15)$
a) Gradient of $A C=m_{A C}=\frac{15-0}{1+2}=5$

Equation of $A C: y-0=5(x+2)$

$$
y=5 x+10
$$

b) i) $\int_{-2}^{1}\left(16-x^{4}\right) d x=\left[16 x-\frac{1}{5} x^{5}\right]_{-2}^{1}=\left(16-\frac{1}{5}\right)-\left(-32+\frac{32}{5}\right)$

$$
=48-\frac{33}{5}=48-6 \frac{3}{5}=41 \frac{2}{5}
$$

ii) Call the point $H(1,0)$
the area of the shaded region is
(area beneath the curve)-(area of triangle AHC)

$$
41 \frac{2}{5}-\frac{1}{2} \times 3 \times 15=41 \frac{2}{5}-22 \frac{1}{2}=18 \frac{9}{10}
$$

$p(x)=x^{3}+x^{2}-8 x-12$
$a)$ The remainder of the division by $(x-1)$ is $p(1)$

$$
p(1)=1+1-8-12=-18
$$

b)i) $p(-2)=(-2)^{3}+(-2)^{2}-8 \times(-2)-12$

$$
=-8+4+16-12=0
$$

-2 is a root of p, so $(x+2)$ is a factor of p.
ii) $x^{3}+x^{2}-8 x-12=(x+2)\left(x^{2}-x-6\right)$

$$
\begin{aligned}
& =(x+2)(x-3)(x+2) \\
& =(x+2)^{2}(x-3)
\end{aligned}
$$

c)i) By substituting x by 0 , we have

$$
p(0)=-12
$$

The curve passes through the point $(0,-12)$
ii) The curve crosses the x-axis at $(3,0)$ and it is tangent to it at $(-2,0)$.

Circle S has centre $C(8,13)$ and touches the x -axis
The radius is 13 (y -coordinate of C)
a) Equation of S: $(x-8)^{2}+(y-13)^{2}=13^{2}$
b) $P(3,1)$ lies on the circle
i) gradient $=m_{P C}=\frac{13-1}{8-3}=\frac{12}{5}$
ii) The tangent at P is perpendicular to the radius PC the gradient of the tangent is $-\frac{1}{m_{P C}}=-\frac{5}{12}$
The equation of the tangent is : $y-1=-\frac{5}{12}(x-3)$

$$
\begin{aligned}
& 12 y-12=-5 x+15 \\
& 5 x+12 y=27
\end{aligned}
$$

iii) Call I the midpoint of PQ. The triangle PIC
is a right-angled triangle and the shortest distance from C to the chord PQ is the distance CI.
Using pythagoras' theorem: $\mathrm{CI}^{2}=C P^{2}-P I^{2}$

$$
\begin{aligned}
& \quad=13^{2}-5^{2}=169-25=144 \\
& C I=\sqrt{144}=12
\end{aligned}
$$

Question 8:	Exam report
$(k+1) x^{2}+4 k x+9=0$ has real roots which means that the discriminant ≥ 0. a) $(4 k)^{2}-4 \times(k+1) \times 9 \geq 0$ $16 k^{2}-36 k-36 \geq 0$ b) $4 k^{2}-9 k-9 \geq 0$ $(4 k+3)(k-3) \geq 0$ critical values $-\frac{3}{4}$ and 3 $(4 k+3)(k-3) \geq 0$ for $k \leq-\frac{3}{4}$ or $k \geq 3$	

GRADE BOUNDARIES						
Component title	Max mark	A	B	C	D	E
Core 1 - Unit PC1	75	59	51	43	35	28

Q	Solution	Marks	Total	Comments
(a)	L : straight line with positive gradient and	B1		Line must cross both axes but need not
	cutting at $\left(\frac{1}{3}, 0\right)$ and $(0,-1)$	B1		Condone 0.33 or better for $\frac{1}{3}$
	C: attempt at parabola \cup or \cap through $(-3,0)$ and $(1,0)$ or values -3 and 1 stated as intercepts on x-axis	B1		
	axis and cutting x-axis twice through $(0,-3)$ and minimum point to left of y-axis	M1 A1	5	
(b)	$(x+3)(x-1)=3 x-1$	M1		
	$\begin{aligned} & x^{2}+3 x-x-3-3 x+1=0 \\ & \Rightarrow x^{2}-x-2=0 \end{aligned}$	A1	2	AG; must have " $=0$ " and no errors
(c)	$\begin{aligned} & (x-2)(x+1)=0 \\ & \Rightarrow x=2,-1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		$(x \pm 1)(x \pm 2)$ or use of formula (one slip) correct values imply M1A1
	Substitute one value of x to find y	m1		
	Points of intersection (2,5) and (-1,-4)	A1	4	$\begin{aligned} & \text { May say } x=2, y=5 \text { etc } \\ & \text { SC: }(2,5) \Rightarrow \mathrm{B} 2 \\ & \quad(-1,-4) \Rightarrow \mathrm{B} 2 \text { without working } \end{aligned}$
	Total		11	
2(a)	$x y=6$	B1	1	B0 for $\sqrt{36}$ or ± 6
(b)	$\begin{aligned} \frac{y}{x} & =\frac{2 \sqrt{3}}{\sqrt{3}} \text { or } \sqrt{\frac{12}{3}} \text { or } \sqrt{\frac{4}{1}} \text { or } \frac{\sqrt{12}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\ & =2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Allow M1 for ± 2
(c)	$x^{2}+2 x y+y^{2}$ or $(\sqrt{3}+2 \sqrt{3})^{2}$ correct	M1		or $(\sqrt{3}+\sqrt{12})(\sqrt{3}+\sqrt{12})$ expanded as 4 terms - no more than one slip
	Correct with 2 of $x^{2}, y^{2}, 2 x y$ simplified $3+2 \sqrt{36}+12$ or $3^{2} \times 3$ or $(3 \sqrt{3})^{2}$	A1		Correct but unsimplified - one more step
	$=27$	A1	3	
	Total		6	

Q	Solution	Marks	Total	Comments
3(a)	$V=x(9-3 x)^{2}$	M1		Attempt at V in terms of x (condone slip when rearranging formula for $y=9-3 x$) or $(9-3 x)^{2}=81-54 x+9 x^{2}$
	$\begin{aligned} V & =x\left(81-54 x+9 x^{2}\right) \\ & =81 x-54 x^{2}+9 x^{3} \end{aligned}$	A1	2	AG; no errors in algebra
(b)(i)	$\frac{\mathrm{d} V}{\mathrm{~d} x}=81-108 x+27 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		One term correct Another correct All correct (no $+c$ etc)
	$=27\left(x^{2}-4 x+3\right)$	A1	4	CSO; all algebra and differentiation correct
(ii)	$\begin{aligned} & (x-3)(x-1) \text { or }(27 x-81)(x-1) \text { etc } \\ & \Rightarrow x=1,3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	"Correct" factors or correct use of formula
				$\mathrm{SC}: \mathrm{B} 1, \mathrm{~B} 1$ for $x=1, x=3$ found by inspection (provided no other values)
(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-108+54 x \quad$ (condone one slip)	M1		ft their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ (may have cancelled 27 etc)
		A1	2	CSO; all differentiation correct
(d)(i)	$x=3 \Rightarrow \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}=54 ; \quad x=1 \Rightarrow \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}=-54$	$\mathrm{BI} \sqrt{ }$	1	ft their $\frac{\mathrm{d}^{2} V}{\mathrm{dx}^{2}}$ and their two x-values
(ii)	($x=$) 1 (gives maximum value)	E1	1	Provided their $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}<0$
(iii)	$V_{\text {max }}=36$	B1	1	CAO
	Total		13	
4(a)	$\left(x-\frac{3}{2}\right)^{2}$	B1		Must have ($)^{2} \quad p=1.5$
	$+\frac{7}{4}$	B1	2	$q=1.75$
(b)	Minimum value is $\frac{7}{4}$	$B 1 \checkmark$	1	ft their q or correct value
(c)	Translation (and no other transformation stated)	E1		(not shift, move, transformation etc)
	$\left[\frac{3}{2}\right]$	M1		M1 for one component correct or ft their p or q values
	$\left\lfloor\frac{7}{4}\right\rfloor$	A1	3	CSO; condone 1.5 right and 1.75 up etc
	Total		6	

Q	Solution	Marks	Total	Comments
7(a)	$\begin{array}{r} (x-8)^{2}+(y-13)^{2} \\ =13^{2} \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Exactly this with + and squares Condone 169
(b)(i)	$\operatorname{grad} P C=\frac{12}{5}$	B1	1	Must simplify $\frac{-12}{-5}$
(ii)	$\text { grad of tangent }=\frac{-1}{\operatorname{grad} P C}=-\frac{5}{12}$	$\mathrm{BI} \sqrt{ }$		Condone $-\frac{1}{2.4}$ etc
	tangent has equation $y-1=-\frac{5}{12}(x-3)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		ft gradient but M0 if using grad $P C$ Correct - but not in required final form
	$5 x+12 y=27$ OE	A1	4	MUST have integer coefficients
(iii)	$\text { half chord }=5$	B1		Seen or stated
	$P=\begin{aligned} & d^{2}=(\text { their } r)^{2}-5^{2} \\ & (\text { provided } r>5) \end{aligned}$	M1		Pythagoras used correctly $d^{2}=13^{2}-5^{2}$
	Distance $=12$	A1	3	CSO
	Total		10	
$8(\mathrm{a})$	$b^{2}-4 a c=16 k^{2}-36(k+1)$	M1		Condone one slip
	Real roots: discriminant $\geqslant 0$ $\Rightarrow 16 k^{2}-36 k-36 \geqslant 0$	B1		
	$\Rightarrow 4 k^{2}-9 k-9 \geqslant 0$	A1	3	AG (watch signs)
(b)	$(4 k+3)(k-3)$	M1		Or correct use of formula (unsimplified)
	critical points $\quad(k=)-\frac{3}{4}, 3$	A1		Not in a form involving surds Values may be seen in inequalities etc
	sketch	M1		Or sign diagram
	$k \geqslant 3, \quad k \leqslant-\frac{3}{4}$	A1	4	NMS full marks
				Condone use of word "and" but final answer in a form such as $3 \leqslant k \leqslant-\frac{3}{4}$ scores A0
	Total		7	
	TOTAL		75	

MATHEMATICS

Unit Pure Core 1

Friday 9 January 20099.00 am to 10.30 am

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The points A and B have coordinates $(1,6)$ and $(5,-2)$ respectively. The mid-point of $A B$ is M.
(a) Find the coordinates of M.
(2 marks)
(b) Find the gradient of $A B$, giving your answer in its simplest form. (2 marks)
(c) A straight line passes through M and is perpendicular to $A B$.
(i) Show that this line has equation $x-2 y+1=0$.
(ii) Given that this line passes through the point $(k, k+5)$, find the value of the constant k.
(2 marks)
(a) Factorise $2 x^{2}-5 x+3$. (1 mark)
(b) Hence, or otherwise, solve the inequality $2 x^{2}-5 x+3<0$.
(3 marks)
(a) Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $m+n \sqrt{5}$, where m and n are integers. (4 marks)
(b) Express $\sqrt{45}+\frac{20}{\sqrt{5}}$ in the form $k \sqrt{5}$, where k is an integer. (3 marks)
(a) (i) Express $x^{2}+2 x+5$ in the form $(x+p)^{2}+q$, where p and q are integers.
(2 marks)
(ii) Hence show that $x^{2}+2 x+5$ is always positive.
(1 mark)
(b) A curve has equation $y=x^{2}+2 x+5$.
(i) Write down the coordinates of the minimum point of the curve.
(2 marks)
(ii) Sketch the curve, showing the value of the intercept on the y-axis.
(2 marks)
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+2 x+5$.
(3 marks)

5 A model car moves so that its distance, x centimetres, from a fixed point O after time t seconds is given by

$$
x=\frac{1}{2} t^{4}-20 t^{2}+66 t, \quad 0 \leqslant t \leqslant 4
$$

(a) Find:
(i) $\frac{\mathrm{d} x}{\mathrm{~d} t}$;
(3 marks)
(ii) $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$.
(2 marks)
(b) Verify that x has a stationary value when $t=3$, and determine whether this stationary value is a maximum value or a minimum value.
(4 marks)
(c) Find the rate of change of x with respect to t when $t=1$.
(2 marks)
(d) Determine whether the distance of the car from O is increasing or decreasing at the instant when $t=2$.
(2 marks)
(a) The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}+x-10$.
(i) Use the Factor Theorem to show that $x-2$ is a factor of $\mathrm{p}(x)$
(2 marks)
(ii) Express $\mathrm{p}(x)$ in the form $(x-2)\left(x^{2}+a x+b\right)$, where a and b are constants.
(2 marks)
(b) The curve C with equation $y=x^{3}+x-10$, sketched below, crosses the x-axis at the point $Q(2,0)$.

(i) Find the gradient of the curve C at the point Q.
(4 marks)
(ii) Hence find an equation of the tangent to the curve C at the point Q. (2 marks)
(iii) Find $\int\left(x^{3}+x-10\right) \mathrm{d} x$.
(3 marks)
(iv) Hence find the area of the shaded region bounded by the curve C and the coordinate axes.
(2 marks)

7 A circle with centre C has equation $x^{2}+y^{2}-6 x+10 y+9=0$.
(a) Express this equation in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(3 marks)
(b) Write down:
(i) the coordinates of C;
(ii) the radius of the circle.
(2 marks)
(c) The point D has coordinates $(7,-2)$.
(i) Verify that the point D lies on the circle.
(ii) Find an equation of the normal to the circle at the point D, giving your answer in the form $m x+n y=p$, where m, n and p are integers.
(3 marks)
(d) (i) A line has equation $y=k x$. Show that the x-coordinates of any points of intersection of the line and the circle satisfy the equation

$$
\left(k^{2}+1\right) x^{2}+2(5 k-3) x+9=0
$$

(2 marks)
(ii) Find the values of k for which the equation

$$
\left(k^{2}+1\right) x^{2}+2(5 k-3) x+9=0
$$

has equal roots.
(iii) Describe the geometrical relationship between the line and the circle when k takes either of the values found in part (d)(ii).
(1 mark)

end of Questions

\mid Question 1:
a) $A(1,6) B(5,-2)$
The mid-point $M\left(\frac{5+1}{2} ; \frac{-2+6}{2}\right)=M(3,2)$

b) Gradient of $A B=m_{A B}=\frac{-2-6}{5-1}=-2$
c) i)The gradient of the perpendicular to AB is $-\frac{1}{m_{A B}}=\frac{1}{2}$

The equation of the perpendicular bisector is :

$$
\begin{aligned}
& y-2=\frac{1}{2}(x-3) \\
& 2 y-4=x-3 \\
& x-2 y+1=0
\end{aligned}
$$

ii) Substitute x by k and y by $k+5$ in the equation:

$$
\begin{gathered}
k-2(k+5)+1=0 \\
k-2 k-10+1=0 \\
k=-9
\end{gathered}
$$

Exam report

In part (a) most candidates were able to find the correct coordinates of the mid point, although a few transposed the coordinates and others subtracted rather than adding the coordinates before halving the results.
Full marks were only awarded in part (b) for a gradient of 2 and quite a few candidates did not give their answer in this simplest form.
In part (c)(i) most candidates realised that the product of the gradients should be -1 . However, not all were able to calculate the negative reciprocal. Others used an incorrect point such as A
or B and therefore found an equation of the wrong line. The most successful used an equation of the form $y-y_{1}=m(x-$ x_{1}) as flagged above. The printed answer helped most candidates to be successful in finding the correct equation of the line.
In part (c)(ii) most candidates made an attempt at this part of the question, but the failure to use brackets for the second term caused the majority to find an incorrect value for k. Others foolishly tried to substitute $x=k$ and $y=k+5$ into their own incorrect line equation rather than using the printed answer from part (c)(i).

Question 2:	Exam report
a) $2 x^{2}-5 x+3=(2 x-3)(x-1)$	In part (a) it was quite alarming to see the number of candidates who were unable to factorise this quadratic. Most candidates scored only a single mark in part (b) for attempting to find the criticil values. Many would benefit from practising the solution of inequalities of this type by drawing a suitable sketch or by familiarising themselves with the technique of using a sign diagram as indicated in previous mark schemes
$2 x^{2}-5 x+3<0$ for $1<x<\frac{3}{2}$	

Question 3:	Exam report
a) $\frac{7+\sqrt{5}}{3+\sqrt{5}}=\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}=\frac{21-7 \sqrt{5}+3 \sqrt{5}-5}{9-5}$	
$=\frac{16-4 \sqrt{5}}{4}=4-\sqrt{5}$	In part (a) it was pleasing to see that most candidates were familiar with the technique for rationalising the denominator in this type of problem and, although there were some who made slips when multiplying out the two brackets in the numerator, most obtained the correct answer in the given form. In part (b) the term $\sqrt{45}$ was usually expressed as $3 \sqrt{5}$,
b) but the $\sqrt{45}+\frac{20}{\sqrt{5}}=\sqrt{9 \times 5}+\frac{20 \sqrt{5}}{5}=3 \sqrt{5}+4 \sqrt{5}=7 \sqrt{5}$	term $\frac{20}{\sqrt{5}}$ caused far more difficulties than expected. Consequently, the final correct answer was only obtained by the better candidates.

a)i) $y=x^{2}+2 x+5=(x+1)^{2}-1+5=(x+1)^{2}+4$
ii) For all $x,(\mathrm{x}+1)^{2} \geq 0$ so $(x+1)^{2}+4 \geq 4$
y is always positive.
b) i) The minimum point is $(-1,4)$
ii) The curve crosses the y-axis at $(0,5)$

summary:Translation vector $\left[\begin{array}{l}-1 \\ 4\end{array}\right]$

In part (a)(i) the completion of the square was done successfully by most candidates, although occasionally the value 6 was seen instead of 4 for q.
In part (a)(ii) it was necessary to comment on both parts of the expression; $(x+1)^{2} \geq 0$ and hence adding 4 implies that $(x+1)^{2}+4>0$ for all values of x. Because of the word "hence", an argument based on algebra rather than the features of a curve was required; for instance, an answer explaining that $(x+1)^{2}+4$ has a minimum value of 4 was acceptable, but a statement about the curve having a minimum point at $(-1,4)$ was not.
In part (b)(i) most candidates were able to write down the correct minimum point. A few chose to use differentiation but sometimes made arithmetic slips in finding the coordinates of the stationary point. In part (b)(ii) those with the correct minimum point were usually able to produce a correct sketch, although the value of the y-intercept was sometimes missing. Some credit was given to candidates with an incorrect minimum point, usually (1,4), provided their graph was consistent with this minimum point.
The more able candidates earned full marks in part (c). The term translation was required but generally the wrong word was used or it was accompanied by another transformation such as a stretch. A very common (but incorrect) vector stated was $\left[\begin{array}{l}2 \\ 5\end{array}\right]$.

Question 5:

$x=\frac{1}{2} t^{4}-20 t^{2}+66 t \quad 0 \leq t \leq 4$
a) i) $\frac{d x}{d t}=\frac{1}{2} \times 4 t^{3}-20 \times 2 t+66$

$$
\frac{d x}{d t}=2 t^{3}-40 t+66
$$

ii) $\frac{d^{2} x}{d t^{2}}=6 t^{2}-40$
$b)$ Verify that $\frac{d x}{d t}(t=3)=0$.

$$
\begin{aligned}
\frac{d x}{d t}(t=3) & =2 \times 3^{3}-40 \times 3+66 \\
& =54-120+66=0
\end{aligned}
$$

There is a stationary point when $t=3$.

$$
\frac{d^{2} x}{d t^{2}}(t=3)=6 \times 3^{2}-40=54-40=14>0
$$

This point is a MINIMUM.
c) The rate of change is $\frac{d x}{d t}(t=1)=2-40+66=28$
d) $\frac{d x}{d t}(t=2)=2 \times 2^{3}-40 \times 2+66=16-80+66=2>0$

The distance is INCREASING when $t=2$.

Exam report

In part (a) almost all candidates were able to find the first and second derivative correctly, although there was an occasional arithmetic slip and some could not cope with the fraction term. Those who substituted $\mathrm{t}=3$ into $\frac{d x}{d t}$ in part (b) did not always explain that $\frac{d x}{d t}$ is the condition for a stationary point. Some assumed that a stationary point occurred when $t=3$ and went straight to the test for maximum or minimum and only scored half the marks. It was advisable to use the second derivative test here; those who considered values of $\frac{d x}{d t}$ on either side of $t=3$ usually reached an incorrect conclusion because of the proximity of another stationary point.
In part (c) the concept of "rate of change" was not understood by many. Approximately equal numbers of candidates
substituted $\mathrm{t}=1$ into the expression for $\frac{d x}{d t}$ or $\frac{d^{2} x}{d t^{2}}$ and so only about half of the candidates were able to score any marks on this part. Those who used $\frac{d x}{d t}$ often made careless arithmetic errors when adding three numbers.
In part (d), as in part (c), candidates did not realise which expression to use and many wrongly selected the second derivative. It is a general weakness that candidates do not realise that the sign of the first derivative indicates whether a function is increasing or decreasing at a particular point.

Question 6:

Exam report

a) $p(x)=x^{3}+x-10$
i) $p(2)=2^{3}+2-10=8+2-10=p(2)=0$

2 is a root of p, so $(x-2)$ is a factor of p.
ii) $x^{3}+x-10=(x-2)\left(x^{2}+2 x+5\right)$
$b) i$) The gradient of the curve at Q is $\frac{d y}{d x}(x=2)$
$\frac{d y}{d x}=3 x^{2}+1$ and for $x=2, \frac{d y}{d x}=m_{Q}=13$
ii) The equation of the tangent at Q is :

$$
\begin{gathered}
y-0=13(x-2) \\
y=13 x-26
\end{gathered}
$$

iii) $\int\left(x^{3}+x-10\right) d x=\frac{1}{4} x^{4}+\frac{1}{2} x^{2}-10 x+c$
$i v$) The curve is below the x-axis, so the area of the shaded part is

$$
\begin{aligned}
-\int_{0}^{2}\left(x^{3}+x-10\right) & d x
\end{aligned}=\left[-\frac{1}{4} x^{4}-\frac{1}{2} x^{2}+10 x\right]_{0}^{2} 0(-4-2+20)-(0)=14
$$

Area $=14$

In part (a)(i) the majority of candidates realised the need to find the value of $f(x)$ when $x=2$. However, it was also necessary, after showing that $f(2)=0$, to write a statement that the zero value implied that $x-$ 2 was a factor. It was good to see more candidates being aware of this.
In part (a)(ii), those who used inspection were the most successful here. Methods involving long division or equating coefficients usually contained algebraic errors.
In part (b)(i) a surprising number of candidates failed to see the need to differentiate in order to find the gradient at Q . Those who attempted to find $\frac{d y}{d x}$ sometimes wrote it as $3 x^{2}+\mathrm{x}$, but usually were aware of the need to substitute $x=2$.
In part (b)(ii) those who had the correct gradient in part (b)(i) were usually successful in finding the correct equation of the tangent, and most obtained at least a method mark here.
In part (b)(iii) most were well drilled in integration and earned full marks, although some wrote $\frac{x^{4}}{4}+\frac{x^{2}}{2}-10$ and others gave $\frac{x^{4}}{4}+\frac{x^{2}}{2}-\frac{10^{2}}{2}$ as their answer.

For part (b)(iv) the correct limits were usually used, although many sign/arithmetic slips occurred after substitution of the numbers 0 and 2 and it was incredible how many could not evaluate 6-20 without a calculator. Very few candidates realised the need to show clearly that, although the integral from 0 to 2 gave a value of -14 , the area of the shaded region was 14. A separate statement was needed and those who simply wrote $4+2-20=-14=14$ did not score full marks. Those more able candidates who made a statement about the region being entirely below the x-axis and who subsequently evaluated the integral from 2 to 0 correctly scored full marks.
Question 7: \quad Exam report
$x^{2}+y^{2}-6 x+10 y+9=0$
a) $(x-3)^{2}-9+(y+5)^{2}-25+9=0$

$$
(x-3)^{2}+(y+5)^{2}=5^{2}
$$

b) i) The centre $C(3,-5)$
ii) radius $r=5$
c) $D(7,-2)$
i) Substitute x and y by 7 and -2 :

$$
\begin{aligned}
& (x-3)^{2}+(y+5)^{2} \\
= & (7-3)^{2}+(-2+5)^{2}=16+9=25
\end{aligned}
$$

D belongs to the circle.
ii) The normal to to circle at D is the line CD

$$
\mathrm{m}_{C D}=\frac{-2+5}{7-3}=\frac{3}{4}
$$

The equation of the normal: $y+2=\frac{3}{4}(x-7)$

$$
\begin{aligned}
& 4 y+8=3 x-21 \\
& 3 x-4 y=29
\end{aligned}
$$

d) i) Solve simultaneously $\left\{\begin{array}{l}y=k x \\ (x-3)^{2}+(y+5)^{2}=25\end{array}\right.$ by substitution, we have $(x-3)^{2}+(k x+5)^{2}=25$

$$
\begin{aligned}
& x^{2}+9-6 x+k^{2} x^{2}+25+10 k x=25 \\
& \left(1+k^{2}\right) x^{2}+(10 k-6) x+9=0 \\
& \left(1+k^{2}\right) x^{2}+2(5 k-3) x+9=0
\end{aligned}
$$

$i i)$ This equation has equal roots
if the discriminant $=0$.

$$
\begin{aligned}
& (10 k-6)^{2}-4 \times\left(1+k^{2}\right) \times 9=0 \\
& 100 k^{2}+36-120 k-36 k^{2}-36=0 \\
& 64 k^{2}-120 k=0 \\
& k(64 k-120)=0 \\
& \quad k=0 \text { or } k=\frac{120}{64}=\frac{15}{8}
\end{aligned}
$$

iii) When $k=0$ or $\frac{15}{8}$, the line is tangent to the circle.

In part (a) most candidates found the correct values of a and b, but correct values for r^{2} were not so common. Some sloppiness was again evident with candidates failing to write squared outside the brackets or omitting the plus sign between the terms on the left hand side. It was common to see things such as $25=25=\sqrt{25}=5^{2}$ and this could be penalised in the future.

In part (b) the coordinates of the centre, C and the radius r, although not always correct, usually gained full credit when following through from part (a).

In part (c)(i) most candidates attempted to verify that the point D was on the circle, although some, who had obviously worked a previous examination question, were keen to show that the distance from C to D was less than the radius and that D lay inside the circle. This verification was marked fairly strictly and the argument had to be correct including a final concluding statement. Those who simply wrote $4^{2}+3^{2}=25$, for example, did not earn the mark.

In part (c)(ii) many candidates found the gradient of CD and then assumed they had to find the negative reciprocal of this since the question asked for the normal at D. Reference to a sketch might have prevented this incorrect assumption.

In part (d)(i) most candidates made errors by not using brackets; the expression kx^{2} was seen almost as often as the correct form $k^{2} x^{2}$ after substituting $y=k x$ into their circle equation.

In part (d)(ii), although there were some correct solutions seen, the discriminant often contained algebraic slips and the condition for equal roots was rarely stated. Often it was several lines into the working before an " $=0$ " appeared and many times this was omitted entirely. The value $k=0$ was often ignored in otherwise correct solutions, but it was more common to see a three term quadratic because of previous algebraic errors.

In part (d)(iii) several candidates realised that the line would be a tangent for each of the two values of k, but many completely missed the point and talked about transformations, often giving vectors in their answer.

GRADE BOUNDARIES							
Component title	Max mark	A	B	C	D	E	
Core 1- Unit PC1	75	62	54	46	39	32	

Q	Solution	Marks	Total	Comments
4(a)(i)	$(x+1)^{2}$	B1		$p=1$
	+ 4	B1	2	$q=4$
(ii)	$\begin{aligned} & (x+1)^{2} \geqslant 0 \Rightarrow(x+1)^{2}+4>0 \\ & \left(\Rightarrow x^{2}+2 x+5>0 \text { for all values of } x\right) \end{aligned}$	E1	1	Condone if they say $(x+1)^{2}$ positive and adding 4 so always positive
(b)(i)	$x=-1$ or $y=4$	M1		ft their $x=-p$ or $y=q$
	Minimum point is ($-1,4$)	A1	2	
(ii)		B1		Sketch roughly as shown
	\qquad	B1	2	y-intercept 5 or $(0,5)$ marked or stated
(c)	Translation (not shift, move etc)	E1		and NO other transformation stated
	through $\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ (or 1 left, 4 up etc)	M1		either component correct or ft their $-p, q$
		A1	3	correct translation $\mathrm{M} 1, \mathrm{Al}$ independent of E mark
	Total		10	
5(a)(i)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=2 t^{3}-40 t+66$	M1		one term correct
		A1	3	another term correct
(ii)	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=6 t^{2}-40$	M1		ft one term correct
		Alv	2	ft all "correct", 2 terms equivalent
(b)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=54-120+66$	M1		substitute $t=3$ into their $\frac{\mathrm{d} x}{\mathrm{~d} t}$
	$=0 \Rightarrow \text { stationary value }$	A1		CSO shown $=0(54$ or 2×27 seen $)$ and statement
	Substitute $t=3$ into $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}(=14)$	M1		
	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}>0 \quad \Rightarrow \text { minimum value }$	A1	4	CSO; all values (if stated) must be correct
	Substitute $t=1$ into their $\frac{\mathrm{d} x}{\mathrm{~d} t}$	M1		must be their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ NOT $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$ etc
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=28$	Al \checkmark	2	ft their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when $t=1$
(d)	Substitute $t=2$ into their $\frac{\mathrm{d} x}{\mathrm{~d} t}$	M1		must be their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ NOT $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$ or x
	$=16-80+66=2 \quad(>0)$			Interpreting their value of $\frac{\mathrm{d} x}{\mathrm{~d} t}$
	\Rightarrow increasing when $t=2$	E1 \checkmark	2	Allow decreasing if their $\frac{\mathrm{d} x}{\mathrm{~d} t}<0$
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\mathrm{p}(2)=8+2-10$	M1		Must find p(2) NOT long division
	$\Rightarrow \mathrm{p}(2)=0 \Rightarrow(x-2)$ is factor	A1	2	Shown $=0$ plus a statement
(ii)	Attempt at long division (generous)	M1		Obtaining a quotient $x^{2}+c x+d$ or equating coefficients (full method)
	$\mathrm{p}(x)=(x-2)\left(x^{2}+2 x+5\right)$	A1	2	$a=2, b=5$ by inspection B1, B1
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+1$	M1		One term correct All correct - no $+c$ etc
	When $x=2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \times 4+1$	m1		Sub $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	Therefore gradient at Q is 13	A1	4	CSO
(ii)	$y=13(x-2)$	M1		Tangent (NOT normal) attempted ft their gradient answer from (b)(i)
		Al	2	CSO; correct in any form
(iii)	$\int \ldots \mathrm{d} x=\frac{x^{4}}{4}+\frac{x^{2}}{2}-10 x(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	one term correct second term correct \qquad
(iv)	$[4+2-20]-[0]=-14$	M1		F (2) attempted and possibly $\mathrm{F}(0)$ Must have earned M1 in (b)(iii)
	Area of shaded region $=14$	Al	2	CSO; separate statement following correct evaluation of limits
	Total		15	

1 The line $A B$ has equation $3 x+5 y=11$
(a) (i) Find the gradient of $A B$.
(2 marks)
(ii) The point A has coordinates $(2,1)$. Find an equation of the line which passes through the point A and which is perpendicular to $A B$.
(3 marks)
(b) The line $A B$ intersects the line with equation $2 x+3 y=8$ at the point C. Find the coordinates of C.
(3 marks)
(a) Express $\frac{5+\sqrt{7}}{3-\sqrt{7}}$ in the form $m+n \sqrt{7}$, where m and n are integers.
(4 marks)
(b) The diagram shows a right-angled triangle.

The hypotenuse has length $2 \sqrt{5} \mathrm{~cm}$. The other two sides have lengths $3 \sqrt{2} \mathrm{~cm}$ and $x \mathrm{~cm}$. Find the value of x.

3 The curve with equation $y=x^{5}+20 x^{2}-8$ passes through the point P, where $x=-2$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(3 marks)
(b) Verify that the point P is a stationary point of the curve.
(2 marks)
(c) (i) Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at the point P.
(3 marks)
(ii) Hence, or otherwise, determine whether P is a maximum point or a minimum point. (l mark)
(d) Find an equation of the tangent to the curve at the point where $x=1$.
(4 marks)
(a) The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}-x+6$.
(i) Find the remainder when $\mathrm{p}(x)$ is divided by $x-3$.
(2 marks)
(ii) Use the Factor Theorem to show that $x+2$ is a factor of $\mathrm{p}(x)$.
(2 marks)
(iii) Express $\mathrm{p}(x)=x^{3}-x+6$ in the form $(x+2)\left(x^{2}+b x+c\right)$, where b and c are integers.
(2 marks)
(iv) The equation $\mathrm{p}(x)=0$ has one root equal to -2 . Show that the equation has no other real roots.
(2 marks)
(b) The curve with equation $y=x^{3}-x+6$ is sketched below.

The curve cuts the x-axis at the point $A(-2,0)$ and the y-axis at the point B
(i) State the y-coordinate of the point B.
(1 mark)
(ii) Find $\int_{-2}^{0}\left(x^{3}-x+6\right) \mathrm{d} x$.
(iii) Hence find the area of the shaded region bounded by the curve $y=x^{3}-x+6$ and the line $A B$.
(3 marks)

5 A circle with centre C has equation

$$
(x-5)^{2}+(y+12)^{2}=169
$$

(a) Write down:
(i) the coordinates of C;
(1 mark)
(ii) the radius of the circle.
(1 mark)
(b) (i) Verify that the circle passes through the origin O.
(1 mark)
(ii) Given that the circle also passes through the points $(10,0)$ and $(0, p)$, sketch the circle and find the value of p.
(3 marks)
(c) The point $A(-7,-7)$ lies on the circle.
(i) Find the gradient of $A C$.
(2 marks)
(ii) Hence find an equation of the tangent to the circle at the point A, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers. (3 marks)

6 (a) (i) Express $x^{2}-8 x+17$ in the form $(x-p)^{2}+q$, where p and q are integers.
(2 marks)
(ii) Hence write down the minimum value of $x^{2}-8 x+17$. (1 mark)
(iii) State the value of x for which the minimum value of $x^{2}-8 x+17$ occurs.
(1 mark)
(b) The point A has coordinates $(5,4)$ and the point B has coordinates $(x, 7-x)$.
(i) Expand $(x-5)^{2}$.
(1 mark)
(ii) Show that $A B^{2}=2\left(x^{2}-8 x+17\right)$.
(3 marks)
(iii) Use your results from part (a) to find the minimum value of the distance $A B$ as x varies.
(2 marks)

7 The curve C has equation $y=k\left(x^{2}+3\right)$, where k is a constant.
The line L has equation $y=2 x+2$
(a) Show that the x-coordinates of any points of intersection of the curve C with the line L satisfy the equation

$$
k x^{2}-2 x+3 k-2=0
$$

(1 mark)
(b) The curve C and the line L intersect in two distinct points.
(i) Show that

$$
\begin{equation*}
3 k^{2}-2 k-1<0 \tag{4marks}
\end{equation*}
$$

(ii) Hence find the possible values of k.

END OF QUESTIONS

The gradient of $A B=m_{A B}=-\frac{3}{5}$
ii) $A(2,1)$.

The gradient of the line perpendicular to $A B$ is

$$
-\frac{1}{m_{A B}}=\frac{5}{3}
$$

The equation of the line is : $y-1=\frac{5}{3}(x-2)$

$$
\begin{aligned}
& 3 y-3=5 x-10 \\
& 5 x-3 y=7
\end{aligned}
$$

b) Solve simultaneously $\left\{\begin{array}{ll}3 x+5 y=11 & (\times 2) \\ 2 x+3 y=8 & (\times-3)\end{array}\right.$ gives

$$
\left\{\begin{aligned}
6 x+10 y & =22 \\
-6 x-9 y & =-24
\end{aligned}\right. \text { and by adding }
$$

and $3 x+5 y=11 \quad 3 x-10=11 \quad x=7$
The lines intersect at $(7,-2)$

In part (a)(i) many candidates were unable to make y the subject of the equation $3 x+5 y=11$ and, as a result, many incorrect answers for the gradient were seen. Those who tried to use two points on the line to find the gradient were rarely successful.

In part (a)(ii) most candidates realised that the product of the gradients of perpendicular lines should be -1 and credit was given for using this result together with their answer from part(a)(i). Although many correct answers for the coordinates of C were seen in part (b)(i), the simultaneous equations defeated a large number of candidates. No credit was given for mistakenly using their equation from part (a)(ii) instead of the correct equation for $A B$.

Question 2:	Exam report
$\text { a) } \begin{aligned} \frac{5+\sqrt{7}}{3-\sqrt{7}} & =\frac{5+\sqrt{7}}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}=\frac{15+5 \sqrt{7}+3 \sqrt{7}+7}{9-7} \\ & =\frac{22+8 \sqrt{7}}{2}=11+4 \sqrt{7} \end{aligned}$ b) Using pythagoras'theorem, we have $\begin{aligned} x^{2} & =(2 \sqrt{5})^{2}-(3 \sqrt{2})^{2} \\ & =4 \times 5-9 \times 2=2 \\ x & =\sqrt{2} \text { or } x=-\sqrt{2} \end{aligned}$ but x is a length, $x>0$, so $x=\sqrt{2}$ is the answer.	In part (a) most candidates recognised the first crucial step of multiplying the numerator and denominator by $3+\sqrt{7}$ and many obtained $\frac{22+8 \sqrt{7}}{2}$, but then poor cancellation led to a very common incorrect answer of $11+8 \sqrt{7}$. Candidates found part (b) more difficult than part (a) and revealed a lack of understanding of surds. Most candidates realised the need to use Pythagoras' Theorem but many could not square $2 \sqrt{5}$ and $3 \sqrt{2}$ correctly. Little credit was given for those who wrote things such as $x=\sqrt{20}-\sqrt{18}=\sqrt{2}$ and candidates need to realise that "getting the right answer" is not always rewarded with full marks. Although the equation $x^{2}=2$ has the solution $x= \pm \sqrt{2}$, it was necessary to consider the context and to give the value of x as $\sqrt{2}$.

Question 3:	\quad Exam report

$$
y=x^{5}+20 x^{2}-8 \quad P\left(-2, y_{P}\right)
$$

a) $\frac{d y}{d x}=5 x^{4}+40 x$
b) for $x=-2, \frac{d y}{d x}=5 \times(-2)^{4}+40 \times(-2)$

$$
\frac{d y}{d x}=5 \times 16-80=0
$$

$$
P \text { is a stationary point. }
$$

c) i) $\frac{d^{2} y}{d x^{2}}=20 x^{3}+40$ and for $x=-2$

$$
=20 \times(-2)^{3}+40=-160+40=-120<0
$$

ii) P is a MAXIMUM point.
d) when $x=1, y=1^{5}+20 \times 1^{2}-8=1+20-8=13$

$$
\frac{d y}{d x}(x=1)=5+40=45
$$

the equation of the tangent at $(1,13)$ is $y-13=45(x-1)$

$$
y=45 x-32
$$

In part (a) almost everyone obtained the correct expression for $\frac{d y}{d x}$,
although a few spoiled their solution by dividing each term by 5 or adding " + $c^{\prime \prime}$ to their answer.
In part (b) most candidates substituted $\mathrm{x}=-2$ into their expression for $\frac{d y}{d x}$,
but, in order to score full marks, it was necessary to show
$(-2)^{4}$ written as 16 or to show that $\frac{d y}{d x}=80-80=0$ and
then to write an appropriate conclusion about P being a stationary point.
For part (c) many candidates simply wrote down an expression for
$\frac{d^{2} y}{d x^{2}}$ in terms of x when answering part (i) and only evaluated the second
derivative when determining the nature of the stationary point in part (ii). On this occasion full credit was given, but candidates need to realise what is meant by the demand to "find the value of" since this may be penalized in future examinations.
In part (d) some candidates failed to find the y-coordinate of P, which was necessary in order to find the equation of the tangent. It was pleasing to see most candidates using the value of $\frac{d y}{d x}$ when $\mathrm{x}=1$, but unfortunately many
tried to find the equation of the normal instead of the tangent to the curve.

Question 4:

a) $p(x)=x^{3}-x+6$
i) The remainder is p (3)

$$
p(3)=3^{3}-3+6=27-3+6=30
$$

ii) $p(-2)=(-2)^{3}-(-2)+6$

$$
=-8+2+6=0
$$

-2 is a root of p, so $(x+2)$ is a factor of p.
iii) $p(x)=(x+2)\left(x^{2}-2 x+3\right)$
iv) $p(x)=0$ means $(x-2)\left(x^{2}-2 x+3\right)=0$

$$
\begin{array}{cc}
\begin{array}{cc}
\text { so } x-2=0 & \text { or } \\
x^{2}-2 x+3=0 \\
x=2 & \text { the discriminant } \\
& =(-2)^{2}-4 \times 1 \times 3=-8<0 \\
& \text { no solution. }
\end{array}
\end{array}
$$

b)i) $B(0,6) \quad(p(0)=0-0+6=6)$

$$
\text { ii) } \int_{-2}^{0}\left(x^{3}-x+6\right) d x=\left[\frac{1}{4} x^{4}-\frac{1}{2} x^{2}+6 x\right]_{-2}^{0}
$$

$$
=(0)-(4-2-12)=10
$$

iii) The shaded area
= area beneath the curve - area of triangle ABO
$=10-\frac{1}{2} \times 2 \times 6=4$

Exam report

Those candidates who used the remainder theorem in part (a)(i) were usually successful in finding the correct remainder. Those who tried to use long division were usually confused by the lack of an x^{2} term and were rarely successful in showing that the remainder was 30 .
Those who used long division in part (a)(ii) scored no marks. Most candidates realised the need to show that $\mathrm{p}(-2)=0$, but quite a few omitted sufficient working such as $p(-2)=-8+2+6=0$ together with a concluding statement about $\mathrm{x}+2$ being a factor and therefore failed to score full marks.
Many candidates have become quite skilled at writing down the correct product of a linear and quadratic factor and these scored full marks in part (a)(iii). Others used long division effectively but lost a mark for failing to write $p(x)$ in the required form. Others tried methods involving comparing coefficients, but often after several lines of working were unable to find the correct values of b and c because of poor algebraic manipulation. In part (a)(iv), although many candidates tried to consider the value of the discriminant of their quadratic factor, quite a few used $\mathrm{a}=1, \mathrm{~b}=-1$ and $\mathrm{c}=6$ (from the cubic equation) and scored no marks for this part of the question. Others drew a correct conclusion using the quadratic equation formula, indicating that it was not possible to find the square root of -8 and others, after completing the square showed that the equation $(x-1)^{2}=-2$ has no real solutions. Some wrongly concluded that because it was not possible to factorise their quadratic then the corresponding quadratic equation had no real roots.
Most obtained the correct y-coordinate of B in part (b)(i).
In part (b)(ii) it was pleasing to see most candidates being able to integrate correctly but a large number did not answer the question set and simply found the indefinite integral in this part. Many candidates use poor techniques when finding a definite integral and it was often difficult to see the evaluation of $F(0)$ -$F(-2)$ in their solution. Many obtained an answer of -10 which was miraculously converted into +10 with some comment about an area being positive. This and similar dubious working was penalized.
In part (b)(iii) some obtained an answer of -6 for the area of the triangle by using -2 as the base. Credit was given to candidates who later realised that the area of the triangle was actually 6 . Unless candidates had scored full marks in part(ii) they were not able to score full marks in this part either, even if they obtained a correct value of 4 for the shaded area.

Question 5:

Exam report
$(x-5)^{2}+(y+12)^{2}=169$
a) i) $C(5,-12)$
ii) $r=\sqrt{169}=13$
b) i) $O(0,0)$

$$
(0-5)^{2}+(0+12)^{2}=25+144=169
$$

O belongs to the circle.

$$
\begin{gathered}
\text { ii })(0, p):(0-5)^{2}+(p+12)^{2}=169 \\
25+(p+12)^{2}=169 \\
(p+12)^{2}=144 \\
p+12= \pm 12 \\
p=0 \text { or } p=-24
\end{gathered}
$$

$(0,-24)$ belongs to the circle.
c) $A(-7,-7)$ lies on the circle
i) gradient of $A C=m_{A C}=\frac{-12+7}{5+7}=-\frac{5}{12}$
ii) The tangent is perpendicular to the radius AC

The gradient of the tangent is $\frac{12}{5}$
The equation of the tangent is $y+7=\frac{12}{5}(x+7)$

$$
\begin{aligned}
& 5 y+35=12 x+94 \\
& 12 x-5 y+49=0
\end{aligned}
$$

In part (a)(i) most candidates realised what the correct coordinates of the centre were, although some wrote these as $(-5,12)$ instead of $(5,-12)$.
Some gave the radius as 169 and others evaluated $\sqrt{169}$ incorrectly in part (a)(ii). The majority of candidates obtained the correct value of the radius.
In part (b)(i) most were able to verify that the circle passed through the origin, although some neglected to make a statement as a conclusion to their calculation and so failed to earn this mark. A surprisingly large number made no attempt at this part.
Most sketches were correct in part (b)(ii), though some were very untidy with some making several attempts at the circle so the diagram resembled the chaotic orbit of a planet. In spite of being asked to verify that the circle passed through the origin many sketches did not do so. Credit was given for freehand circles with the centre in the correct quadrant and which passed through the origin, although it was good to see some circles drawn using compasses. Many used algebraic methods, putting $x=0$, but often their poor algebra prevented them from finding the value of p. Those using the symmetry, doubling the y-coordinate, were usually more successful, although an answer of -25 (from -12-13) was common.
In part (c)(i) the majority of candidates tried to find the gradient of AC but careless arithmetic meant that far fewer actually succeeded in finding its correct simplified value.
In part (c)(ii), in order to find the tangent, it was necessary to use the negative reciprocal of the answer from part (c)(i) in order to find the gradient. Although some did, many chose to use the same gradient obtained in the previous part of the question and scored no marks at all.

Question 6:	Exam report
a)i) $x^{2}-8 x+17=(x-4)^{2}-16+17=(x-4)^{2}+1$ ii) For all $x,(x-4)^{2} \geq 0$ so $(x-4)^{2}+1 \geq 1$ The minimum value is 1 iii) the minimum occurs when $(x-4)^{2}=0$ i.e. $x=4$ b) $A(5,4) \quad B(x, 7-x)$ i) $(x-5)^{2}=x^{2}+25-10 x$ ii) $\begin{aligned} A B^{2} & =\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2} \\ & =(x-5)^{2}+(3-x)^{2} \\ & =x^{2}+25-10 x+9+x^{2}-6 x \\ & =2 x^{2}-16 x+34 \\ A B^{2} & =2\left(x^{2}+8 x+17\right) \end{aligned}$ iii) The minimum value of $x^{2}+8 x+17$ is 1 so the minimum value of $A B^{2}$ is 2 the minimum value of AB is $\sqrt{2}$	Completing the square was done well by most candidates in part (a)(i), although quite a few wrote q as 17 instead of 1. Part (a)(ii) of this question was answered very badly with many giving their answer as coordinates. Candidates were either "hedging their bets" or were simply presenting the coordinates of a minimum point of a curve as their answer. In part (a)(iii) many candidates obtained the correct value for x in this part, but there was confusion with many about how to answer parts (i) and (ii). The question was deliberately designed to test the understanding of the minimum value of a quadratic expression and when this occurred. Those who wrote "(ii) 4 and (iii)1" scored no marks at all for these two parts of the question. In part (b)(i) practically everyone scored a mark for multiplying out $(x-5)^{2}$ correctly. In part (b)(ii) only the best candidates obtained a correct expression for $A B^{2}$ and then completed the resulting algebra to obtain the printed answer. It was good to see that many saw the link between the various parts in part (b)(iii). Many more able candidates substituted $x=4$ into the expression and obtained $A B^{2}=2$, but they then failed to take the positive square root in order to find the minimum distance.

Question 7:
curve $C: y=k\left(x^{2}+3\right)$
line $L: y=2 x+2$
a) By indentifying the y 's:
$\qquad$$k\left(x^{2}+3\right)=2 x+2$ $k x^{2}-2 x+3 k-2=0$

b) The curve and the line have
two distinct points of intersection,
this means that the discriminant >0.

$$
\begin{aligned}
& (-2)^{2}-4 \times k \times(3 k-2)>0 \\
& 4-12 k^{2}+8 k>0 \quad(\div-4) \\
& 3 k^{2}-2 k-1<0
\end{aligned}
$$

iii) $\quad(3 k+1)(k-1)<0$
critical values $-\frac{1}{3}$ and 1
$(3 k+1)(k-1)<0$ for $-\frac{1}{3}<k<1$

Most candidates scored the mark for the correct printed equation in part (a), but some omitted "=0" and others made algebraic slips when taking terms from one side of their equation to the other. In part (b)(i) only the more able candidates were able to obtain the printed inequality using correct algebraic steps. Many began by stating that the discriminant was less than 0 , clearly being influenced by the answer. Not all assigned the correct terms to a, b and c in the expression $b^{2}-4 a c$ and others made sign errors when removing brackets.
The factorisation was usually correct in part (b)(ii), but many wrote down one of the critical values as $1 / 3$. Most found critical values and either stopped or immediately tried to write down a solution without any working. Candidates are strongly advised to use a sign diagram or a sketch showing their critical values when solving a quadratic inequality.

GRADE BOUNDARIES							
Component title	Max mark	A	B	C	D	E	
Core 1 - Unit PC1	75	63	55	48	41	34	

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2009 examination - June series

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x \mathrm{EE}$	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown
Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$y=-\frac{3}{5} x+\frac{11}{5}$ Or correct expression for gradient using two correct points	M1		Attempt at $y=\mathrm{f}(x)$ Or answer $=\frac{3}{5}$ or $-\frac{3}{5} x$ gets M1 But answer of $\frac{3}{5} x$ gets M0
	(Gradient of $A B=$) $-\frac{3}{5}$	A1	2	Correct answer scores 2 marks . Condone error in rearranging formula if answer for gradient is correct.
(ii)	$m_{1} m_{2}=-1$	M1		Used or stated
	$\text { Gradient of perpendicular }=\frac{5}{3}$	A1 \checkmark		ft their answer from (a)(i) or correct
	$y-1=\frac{5}{3}(x-2) \quad \mathrm{OE}$	A1	3	$5 x-3 y=7 ;$ or $y=\frac{5}{3} x+c, \quad c=-\frac{7}{3}$ etc CSO
(b)	Eliminating x or y but must use $3 x+5 y=11 \quad \& \quad 2 x+3 y=8$	M1		An equation in x only or y only
	$\begin{aligned} & x=7 \\ & y=-2 \end{aligned}$	$\mathrm{A} 1$	3	Answer only of (7,-2) scores 3 marks
	Total		8	
2(a)	$\frac{5+\sqrt{7}}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$	M1		
	Numerator $=15+5 \sqrt{7}+3 \sqrt{7}+7$	m1		Condone one error or omission
	Denominator $=9-7(=2)$	B1		Must be seen as the denominator
	$\text { (Answer }=) 11+4 \sqrt{7}$	A1	4	
(b)	$(2 \sqrt{5})^{2}=20 \text { or } \quad(3 \sqrt{2})^{2}=18$	B1		Either correct
	$\begin{aligned} & \text { their }(2 \sqrt{5})^{2}-(3 \sqrt{2})^{2} \\ & \left(x^{2}=20-18\right) \end{aligned}$	M1		Condone missing brackets and x^{2} $x^{2}=2 \Rightarrow \mathrm{Bl}, \mathrm{M1}$
	$(\Rightarrow x=) \sqrt{2}$	A1	3	$\pm \sqrt{2}$ scores A0
				Answer only of 2 scores B0, M0 Answer only of $\sqrt{2}$ scores 3 marks
	Total		7	

Q	Solution	Marks	Total	Comments
5(a)(i)	$C(5,-12)$	B1	1	
(ii)	Radius $=13($ or $\sqrt{169})$	B1	1	$\pm \sqrt{169}$ or ± 13 as final answer scores B0
(ii)	$\begin{aligned} & (-5)^{2}+12^{2} \quad \text { or } \quad 25+144 \\ & =169 \quad \Rightarrow \text { circle passes through } O \end{aligned}$	B1	1	Correct arithmetic plus statement Eg " O lies on circle", "as required" etc
	Sketch	B1		Freehand circle through origin and cutting positive x-axis with centre in $4^{\text {th }}$ quadrant Condone value 10 missing or incorrect
	$25+(p+12)^{2}=169$	M1		Or doubling their y_{C}-coordinate
	$(p+12)= \pm 12 \quad p=-24$	A1	3	Condone use of y instead of p SC B2 for correct value of p stated or marked on diagram
(c)(i)	$\operatorname{grad} A C=\frac{-12+7}{5+7}$	M1		correct expression, but ft their C
	$=-\frac{5}{12}$	A1	2	Condone $\frac{5}{-12}$
(ii)	$\text { grad tangent }=\frac{12}{5}$	B1 \checkmark		$\frac{-1}{\text { their } \operatorname{grad} A C}$
	$y+7=\frac{12}{5}(x+7)$	M1		ft "their $\frac{12}{5}$ " must be tangent and not $A C$
	$\Rightarrow 12 x-5 y+49=0$	A1	3	OE with integer coefficients with all terms on one side of the equation
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(i)	$(x-4)^{2} \quad$ or $p=4$	B1		ISW for $p=-4$ if $(x-4)^{2}$ seen
	$+1 \quad$ or $q=1$	B1	2	
(ii)	(Minimum value is) 1	B1 \checkmark	1	Correct or FT "their q " (NOT coords)
(iii)	(Minimum occurs when $x=$) 4	$\mathrm{B} 1 \checkmark$	1	Correct or FT "their p " - may use calculus Condone ($p,{ }^{* *}$) for this B1 mark
(b)(i)	$(x-5)^{2}=x^{2}-10 x+25$	B1	1	
(ii)	$\begin{aligned} & (x-5)^{2}+(7-x-4)^{2} \\ & =(x-5)^{2}+(3-x)^{2} \end{aligned}$	M1		Condone one slip in one bracket May be seen under $\sqrt{ }$ sign
	$\begin{aligned} & =x^{2}-10 x+25+9-6 x+x^{2} \\ A B^{2} & =2 x^{2}-16 x+34 \end{aligned}$	Al		From a fully correct expression
	$=2\left(x^{2}-8 x+17\right)$	A1	3	AG CSO
(iii)	Minimum $A B^{2}=2 \times$ "their (a)(ii)"	M1		Or use of their $x=4$ in expression Or use of their $B(4,3)$ and $A(5,4)$ in distance formula
				M0 if calculus used Answer only of $2 \times$ "their (a)(ii)" scores M1, A0
	Minimum $A B=\sqrt{2}$	A1	2	
	Total		10	

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & k\left(x^{2}+3\right)=2 x+2 \\ & \Rightarrow k x^{2}-2 x+3 k-2=0 \end{aligned}$	B1	1	AG OE all terms on one side and $=0$
(b)(i)	$\begin{aligned} \text { Discriminant } & =(-2)^{2}-4 k(3 k-2) \\ & =4-12 k^{2}+8 k \end{aligned}$ $\begin{aligned} & \text { Two distinct real roots } \Rightarrow b^{2}-4 a c>0 \\ & 4-12 k^{2}+8 k>0 \\ & \Rightarrow 12 k^{2}-8 k-4<0 \\ & \Rightarrow 3 k^{2}-2 k-1<0 \end{aligned}$	M1 A1 B1 $\sqrt{ }$	4	Condone one slip (including x is one slip) Condone 2^{2} or 4 as first term condone recovery from missing brackets "their discriminant in terms of k " >0 Not simply the statement $b^{2}-4 a c>0$ Change from >0 to <0 and divide by 4 AG CSO
(ii)	$(3 k+1)(k-1)$ Critical values 1 and $-\frac{1}{3}$	M1 A1		Correct factors or correct use of formula May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working
	Use of sign diagram or sketch $\Rightarrow-\frac{1}{3}<k<1 \quad \text { or } 1>k>-\frac{1}{3}$ condone $-\frac{1}{3}<k$ AND $k<1$ for full marks but not OR or "," instead of AND	M1 A1	4	If previous A1 earned, sign diagram or sketch must be correct for M1 Otherwise, M1 may be earned for an attempt at the sketch or sign diagram using their critical values. Full marks for correct final answer with or without working \leqslant loses final A mark Answer only of $\quad 1<k<-\frac{1}{3}$ or $k<-\frac{1}{3} ; k<1$ etc scores M1,A1, M0 since the correct critical values are evident Answer only of $\frac{1}{3}<k<1$ etc where critical values are not both correct gets M0,M0
	Total		9	
	TOTAL		75	

General Certificate of Education Advanced Subsidiary Examination
January 2010

Mathematics

MPC1

Unit Pure Core 1
Monday 11 January 20109.00 am to 10.30 am

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1
- Answer all questions
- Show all necessary working; otherwise marks for method may be lost
- The use of calculators (scientific and graphics) is not permitted.

Information

- The marks for questions are shown in brackets
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}-13 x-12$
(a) Use the Factor Theorem to show that $x+3$ is a factor of $\mathrm{p}(x)$
(2 marks)
(b) Express $\mathrm{p}(x)$ as the product of three linear factors.
(3 marks)

2 The triangle $A B C$ has vertices $A(1,3), B(3,7)$ and $C(-1,9)$.
(a) (i) Find the gradient of $A B$.
(2 marks)
(ii) Hence show that angle $A B C$ is a right angle. (2 marks)
(b) (i) Find the coordinates of M, the mid-point of $A C$.
(2 marks)
(ii) Show that the lengths of $A B$ and $B C$ are equal.
(3 marks)
(iii) Hence find an equation of the line of symmetry of the triangle $A B C$.
(3 marks)

3 The depth of water, y metres, in a tank after time t hours is given by

$$
y=\frac{1}{8} t^{4}-2 t^{2}+4 t, \quad 0 \leqslant t \leqslant 4
$$

(a) Find
(i) $\frac{\mathrm{d} y}{\mathrm{~d} t}$;
(3 marks)
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$.
(2 marks)
(b) Verify that y has a stationary value when $t=2$ and determine whether it is a maximum value or a minimum value.
(c) (i) Find the rate of change of the depth of water, in metres per hour, when $t=1$.
(2 marks)
(ii) Hence determine, with a reason, whether the depth of water is increasing or decreasing when $t=1$.
(1 mark)

4 (a) Show that $\frac{\sqrt{50}+\sqrt{18}}{\sqrt{8}}$ is an integer and find its value.
(3 marks)
(b) Express $\frac{2 \sqrt{7}-1}{2 \sqrt{7}+5}$ in the form $m+n \sqrt{7}$, where m and n are integers.
(4 marks)

5 (a) Express $(x-5)(x-3)+2$ in the form $(x-p)^{2}+q$, where p and q are integers.
(3 marks)
(b) (i) Sketch the graph of $y=(x-5)(x-3)+2$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis.
(3 marks)
(ii) Write down an equation of the tangent to the graph of $y=(x-5)(x-3)+2$ at its vertex.
(2 marks)
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=(x-5)(x-3)+2$.
(3 marks)

7 A circle with centre C has equation $x^{2}+y^{2}-4 x+12 y+15=0$
(a) Find:
(i) the coordinates of C;

(2 marks)

(ii) the radius of the circle.
(b) Explain why the circle lies entirely below the x-axis.
(c) The point P with coordinates $(5, k)$ lies outside the circle.
(i) Show that $P C^{2}=k^{2}+12 k+45$
(ii) Hence show that $k^{2}+12 k+20>0$.
(iii) Find the possible values of k.

6 The curve with equation $y=12 x^{2}-19 x-2 x^{3}$ is sketched below.

The curve crosses the x-axis at the origin O, and the point $A(2,-6)$ lies on the curve
(a) (i) Find the gradient of the curve with equation $y=12 x^{2}-19 x-2 x^{3}$ at the point A.
(ii) Hence find the equation of the normal to the curve at the point A, giving your answer in the form $x+p y+q=0$, where p and q are integers.
(b) (i) Find the value of $\int_{0}^{2}\left(12 x^{2}-19 x-2 x^{3}\right) \mathrm{d} x$.
(5 marks)
(ii) Hence determine the area of the shaded region bounded by the curve and the line $O A$.
(3 marks)

Question 1:

$$
p(x)=x^{3}-13 x-12
$$

a) $p(-3)=(-3)^{3}-13 \times(-3)-12$

$$
p(-3)=-27+39-12=0
$$

-3 is a root of p , so $(x+3)$ is a factor of p
b) $p(x)=x^{3}-13 x-12=(x+3)\left(x^{2}-3 x-4\right)$

$$
=(x+3)(x-4)(x+1)
$$

Exam report

In part (a), most candidates realised the need to find the value of $\mathrm{f}(x)$ when $x=-3$. However, it was also necessary, after showing that $f(-3)=0$, to write a statement that the zero value implied that $x+3$ was a factor. It was good to see quite a large number of candidates being aware of this but others lost a valuable mark. In part (b), some candidates used long division effectively to find the quadratic factor and, although this was the most successful method, some were confused by the lack of an x^{2} term; others used the method of comparing coefficients or found the terms of the quadratic by inspection; a number used the Factor Theorem to find another linear factor, but seldom found both of the remaining factors. Very able candidates were able to write down the correct product of three linear factors but many more were unsuccessful when they tried to do this without any discernible method.

Question 2:
$A(1,3), B(3,7), C(-1,9)$

a) i) Gradient of $A B=m_{A B}=\frac{7-3}{3-1}=2$
ii) Gradient of $\mathrm{BC}=m_{\mathrm{BC}}=\frac{9-7}{-1-3}=-\frac{1}{2}$

$$
m_{B C} \times m_{A B}=2 \times-\frac{1}{2}=-1
$$

$B C$ and $A B$ are perpendicular so the traingle $A B C$ is a right-angled triangle
b) i) Mid-point of AC $=M\left(\frac{1-1}{2}, \frac{3+9}{2}\right)=M(0,6)$
ii) $A B=\sqrt{(3-1)^{2}+(7-3)^{2}}=\sqrt{4+16}=\sqrt{20}$

$$
B C=\sqrt{(-1-3)^{2}+(9-7)^{2}}=\sqrt{16+4}=\sqrt{20}
$$

$$
\text { length } A B=\text { length } B C
$$

iii) The triangle ABC is an isosceles right-angled triangle The line of symmetry is the line BM.

$$
\begin{aligned}
& \text { gradient of } B M=m_{B M}=\frac{7-6}{3-0}=\frac{1}{3} \\
& \text { Equation of } B M: y-7=\frac{1}{3}(x-3) \\
& 3 y-21=x-3 \\
& x-3 y+18=0
\end{aligned}
$$

Exam report

In part (a)(i), although some made arithmetic errors when finding the gradient of $A B$, the majority of answers were correct. It was necessary to reduce fractions such as $4 / 2$ in order to score full marks. In part (a)(ii), those who chose to use Pythagoras' Theorem, calculating lengths of sides to prove that the triangle was right angled, scored no marks here. The word "hence" indicated that the gradient of AB needed to be used in the proof that angle $A B C$ was a right angle. A large number of those using gradients failed to score full marks on this part of the question. It was not sufficient to show that the gradient of $B C$ was $-1 / 2$ and then to simply say "therefore $A B C$ is a right angle"; an explanation that the product of the gradients was equal to - 1 was required.

In part (b)(i), most candidates were able to find the correct coordinates of the mid point, although a few transposed the coordinates and others subtracted, rather than added, the coordinates before halving the results.
In part (b)(ii), it was rare to see a solution with all mathematical statements correct. Too often candidates wrote things like
$A B=2^{2}+4^{2}=20=\sqrt{20}$ and, although this was not penalised on this occasion, examiners in the future might not be quite so generous. It was surprising how many candidates did not know the distance formula. Some wrote down vectors but, unless their lengths were calculated, no marks were scored.
In part (b)(iii), many candidates found an equation of the wrong line. The line of symmetry was actually BM, although some chose an equivalent method using the gradient of a line perpendicular to AC. The most successful candidates often used an equation of the form $y-y_{1}=m\left(x-x_{1}\right)$; far too often those using $y=m x+c$ were unable to find the correct value of c, usually because of poor arithmetic.
$y=\frac{1}{8} t^{4}-2 t^{2}+4 t \quad 0 \leq t \leq 4$
a)i) $\frac{d y}{d t}=\frac{1}{2} t^{3}-4 t+4$
ii) $\frac{d^{2} y}{d t^{2}}=\frac{3}{2} t^{2}-4$
b) $\frac{d y}{d t}(t=2)=\frac{1}{2} \times(2)^{3}-4 \times(2)+4$

$$
=4-8+4=0
$$

At $t=2, \frac{d y}{d x}=0$, there is a stationary point.

$$
\frac{d^{2} y}{d t^{2}}(t=2)=\frac{3}{2} \times(2)^{2}-4=6-4=2>0
$$

The stationary point is a MINIMUM.

c) i) The rate of change is $\frac{d y}{d t}(t=1)=\frac{1}{2}-4+4=\frac{1}{2}=0.5 \mathrm{~m} / \mathrm{s}$
ii) $\frac{d y}{d t}(t=1)>0$, so the depth is INCREASING at $t=1$.

In part (a), almost all candidates were able to find the first and second derivative correctly, although there was an occasional arithmetic slip and some could not cope with the fraction term.
In part (b), those who substituted $t=2$ into $\frac{d y}{d x}$ did not always explain that $\frac{d y}{d x}=0$ is the condition for a
stationary point. Some assumed that a stationary point occurred when $t=2$, went straight to the test for maximum or minimum and only scored half the marks. It was advisable to use the second derivative test here; those who considered values of $\frac{d y}{d x}$ on either side of t $=2$ usually reached an incorrect conclusion because of the proximity of another stationary point.
In part (c)(i), the concept of 'rate of change' was not understood by many who failed to realise the need to substitute $t=1$ into $\frac{d y}{d x}$. Some candidates wrongly substituted $t=1$ into the initial expression for y or into their expression for $\frac{d^{2} y}{d x^{2}}$ and these candidates were unable to score any marks at all on this part. Even those who used $\frac{d y}{d x}$ sometimes made careless arithmetic errors when adding three numbers.
In part (c)(ii), it was not enough to simply write the word "increasing": some explanation about $\frac{d y}{d x}$ being positive was also required. Some candidates erroneously found the value of the second derivative when $t=1$ or calculated the value of y on either side of $t=1$.

Question 4:	Exam report
a) $\frac{\sqrt{50}+\sqrt{18}}{\sqrt{8}}=\frac{5 \sqrt{2}+3 \sqrt{2}}{2 \sqrt{2}}=\frac{8 \sqrt{2}}{2 \sqrt{2}}=\frac{8}{2}=4$	
b) $\frac{2 \sqrt{7}-1}{2 \sqrt{7}+5}=\frac{2 \sqrt{7}-1}{2 \sqrt{7}+5} \times \frac{2 \sqrt{7}-5}{2 \sqrt{7}-5}=\frac{28-10 \sqrt{7}-2 \sqrt{7}+5}{28-25}$	In part (a), there were far more mistakes than had been anticipated; for example, $\sqrt{50}=2 \sqrt{5}$ and $\sqrt{18}=2 \sqrt{3}$. It $=\frac{33-12 \sqrt{7}}{3}=11-4 \sqrt{7}$
was also common to see poor cancelling such as $\frac{8 \sqrt{2}}{2 \sqrt{2}}=4 \sqrt{2}$. Examiners had to take care that totally incorrect work leading to the correct answer was not rewarded. For instance, $\frac{\sqrt{50}+\sqrt{18}}{\sqrt{8}}=\frac{2 \sqrt{5}+2 \sqrt{9}}{2 \sqrt{4}}=\frac{10+6}{4}=4$ was seen on a number of occasions. In part (b), it was pleasing to see that most candidates were familiar with the technique for rationalising the denominator in this type of problem and, although there were some who made slips when multiplying out the two brackets in the numerator, particularly when trying to calculate $2 \sqrt{7} \times 2 \sqrt{7}$, many obtained the correct answer in the given form and it was good to see most getting the final step correct by dividing both terms by 3.	

Question 5:

$$
\text { a) }(x-5)(x-3)+2=x^{2}-8 x+15+2=x^{2}-8 x+17
$$

$$
x^{2}-8 x+17=(x-4)^{2}-16+17=(x-4)^{2}+1
$$

b) i) The minimum point/vertex is $(4,1)$

The curve crosses the y-axis at $(0,17)$
ii) At the vertex, the tangent to the curve is "horizontal"

The transformation is a translation vector $\left[\begin{array}{l}4 \\ 1\end{array}\right]$.

Exam report

In part (a), the slightly unusual form of the initial quadratic caused problems to those who forgot to add 2 after multiplying out the brackets. The first term in the completion of the square was done successfully by most candidates, although the answer $(x-4)^{2}-3$ was seen almost as often as the correct form. It was unfortunate that an error at this stage was seldom picked up by candidates when they went on to sketch the curve.
In part (b)(i), the sketch was usually of the correct shape but many drew a parabola with the vertex in the wrong quadrant, or the y-intercept was incorrect. The question did ask for the coordinates of the minimum point and this was not always stated by candidates. In part (b)(ii), a few candidates immediately wrote down the correct equation for the tangent, whereas many felt the need to differentiate in order to find the gradient of the curve at the vertex. Many candidates seemed unaware that the vertex was actually the minimum point and that the tangent at the vertex would be parallel to the line $y=0$.
In part (c), the more able candidates earned full marks. The term translation was required and, although there seemed to be an improvement in candidates' using the correct word, it was still common to see words such as "shift" or "move" being used instead. Others thought that simply writing down a vector was enough. A very commonly stated, but incorrect, vector was $\left[\begin{array}{l}-4 \\ 1\end{array}\right]$

Question 6:	Exam report	
$y=12 x^{2}-19 x-2 x^{3}$	$O(0,0)$ and $A(2,-6)$	

a)i) $\frac{d y}{d x}=24 x-19-6 x^{2}$
$\frac{d y}{d x}(x=2)=m_{A}=24 \times 2-19-6 \times 2^{2}=5$
The gradient of the curve at A is 5 .
ii) The gradient of the normal at A is $-\frac{1}{m_{A}}=-\frac{1}{5}$

The eqaution of the normal: $y+6=-\frac{1}{5}(x-2)$

$$
\begin{aligned}
& 5 y+30=-x+2 \\
& x+5 y+28=0
\end{aligned}
$$

b) i) $\int_{0}^{2}\left(12 x^{2}-19 x-2 x^{3}\right) d x=\left[4 x^{3}-\frac{19}{2} x^{2}-\frac{1}{2} x^{4}\right]_{0}^{2}$

$$
=(32-38-8)-(0)=-14
$$

ii) The area comprised between the curve and the x -axis is 14 .

The area of the triangle is $\frac{1}{2} \times 2 \times 6=6$.
The area of the shaded region is $14-6=8$

In part (a)(i), many candidates did not realise that differentiation was required in order to find the gradient of the curve, but instead erroneously used the coordinates of O and A . Some tried to rearrange the terms but usually made sign errors in doing so. In part (a)(ii), those who had the correct gradient in part (a)(i) were usually successful in finding the correct equation of the normal, though not everyone followed through to the required form, and sign errors were common. However, most obtained at least a method mark here, unless they found the equation of the tangent. The main casualties were once again those who always use the $y=m x+c$ form for the equation of a straight line.
In part (b)(i), most candidates were well drilled in integration and scored full marks, although some wrote down terms with incorrect denominators. The limits 2 and 0 were usually substituted correctly, but it was incredible how many could not evaluate 32-38-8 without a calculator. The correct value of the integral was -14 , but far too many thought that they had to change their answer to +14 and so lost a mark. A small number of candidates differentiated or substituted into the expression for y rather than the integrated function.
In part (b)(ii), there was still some apparent confusion about area when a region lies below the x-axis. The area of the triangle was 6 units and hence the area of the shaded region was $14-6=8$ but, not surprisingly, there were all kinds of combinations of positive and negative quantities seen here. It was worrying to see so many candidates failing to calculate the triangle area, with several finding the length of OA instead. Some able candidates found the equation of OA and the area under it by integration, but this was not the expected method.
Question 7
$x^{2}+y^{2}-4 x+12 y+15=0$
$(x-2)^{2}-4+(y+6)^{2}-36+15=0$
$(x-2)^{2}+(y+6)^{2}=25$
a)i) Centre C(2,-6)
ii) radius $r=\sqrt{25}=5$
b) The distance from C to the x-axis is 6 , which is more that the radius 5 .
c) $P(5, k)$ lies outside the circle

$$
\begin{aligned}
\text { i) } P C^{2} & =(2-5)^{2}+(-6-k)^{2}=9+36+k^{2}+12 k \\
P C^{2} & =k^{2}+12 k+45
\end{aligned}
$$

ii) P lies outside the circle so $P C>5$ or $P C^{2}>25$

$$
\text { we have then } k^{2}+12 k+45>25
$$

$$
k^{2}+12 k+20>0
$$

$$
\text { iii) } k^{2}+12 k+20>0
$$

$$
(k+2)(k+10)>0
$$

critical values:-10 and -2

$$
(k+2)(k+10)>0 \text { for } k<-10 \text { or } k>-2
$$

In part (a), most candidates found at least one of the correct coordinates for the centre C , with the most common error being at least one sign error or writing the centre as $(4,-12)$. However, the correct value for the radius was not so common, with $\sqrt{15}$ being frequently seen.
In part (b), most explanations involving a comparison of the ycoordinate of the centre and the radius of the circle earned at least one mark. In order to score the second mark, some of the better answers explained why the y-coordinate of the "highest" point of the circle was -1 , but most comments were insufficient. Those who proved that the circle did not intersect the x-axis needed to state that the y-coordinate of the centre was negative in order to score full marks.
Part (c)(i) was very poorly done. Many candidates tried to use their circle equation and essentially faked the given result instead of correctly using the distance formula. Once again, if candidates are asked to "show that ..." then the full equation needs to be seen in the final line of the proof and an essential part of the working was to see a statement such as $\mathrm{PC}^{2}=3^{2}+(\mathrm{k}+6)^{2}$, leading to the printed answer.
In part (c)(ii), the word "hence" indicated that the expression for $P C^{2}$ in part (c)(i) needed to be used. Candidates needed to realise that the point P lies outside the circle when PC > r and that using this result immediately leads to the given inequality. The inequality sign here caused confusion with many looking for a discriminant. In part (c)(iii), many candidates scored only the two marks available for finding the critical values -2 and -10 . No doubt some would have benefited from practising the solution of inequalities of this type by drawing a suitable sketch, or by familiarising themselves with the technique of using a sign diagram as indicated in previous mark schemes.

GRADE BOUNDARIES						
Component title	Max mark	A	B	C	D	E
Core 1 - Unit PC1	75	62	54	47	40	33

Q	Solution	Marks	Total	Comments
1(a) (b)	$\begin{aligned} &\left.\begin{array}{rl} \mathrm{p}(-3) & = \\ & (-3)^{3}-13(-3)-12 \\ & =-27+39-12 \\ & =0 \quad \Rightarrow x+3 \text { is factor } \end{array}\right\} \\ &(x+3)\left(x^{2}+b x+c\right) \\ &\left(x^{2}-3 x-4\right) \text { obtained } \\ &(x+3)(x-4)(x+1) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	2	must attempt $\mathrm{p}(-3)$ NOT long division shown $=0$ plus statement Full long division, comparing coefficients or by inspection either $b=-3$ or $c=-4$ or M1A1 for either $(x-4)$ or $(x+1)$ clearly found using factor theorem CSO; must be seen as a product of 3 factors NMS full marks for correct product SC B1 for $(x+3)(x-4)()$ or $(x+3)(x+1)()$ or $(x+3)(x+4)(x-1)$ NMS
	Total		5	
2(a)(i) (ii)	$\begin{aligned} \operatorname{grad} A B & =\frac{7-3}{3-1} \\ & =2^{(\text {must simplify } 4 / 2)} \\ \operatorname{grad} B C & =\frac{7-9}{3+1}=-\frac{2}{4} \\ \operatorname{grad} A B & \times \operatorname{grad} B C=-1 \\ \Rightarrow \angle A B C & =90^{\circ} \text { or } A B \& B C \text { perpendicular } \end{aligned}$	MI A1 M1 AI	2	$\frac{\Delta y}{\Delta x}$ correct expression, possibly implied Condone one slip NOT Pythagoras or cosine rule etc convincingly proved plus statement SC B1 for $-1 /$ (their grad $A B$) or statement that $m_{1} m_{2}=-1$ for perpendicular lines if M0 scored
(b)(i) (ii) (iii)	$\left.\begin{array}{ll} M(0,6) & \\ \left(A B^{2}=\right) & (3-1)^{2}+(7-3)^{2} \\ \left(B C^{2}=\right) & (3+1)^{2}+(7-9)^{2} \end{array}\right\}$	B2 M1	2	BI + B1 each coordinate correct either expression correct, simplified or unsimplified
	$\left.\begin{array}{r} A B^{2}=2^{2}+4^{2} \text { or } B C^{2}=4^{2}+2^{2} \\ \quad \text { or } \sqrt{20} \text { found as a length } \\ A B^{2}=B C^{2} \Rightarrow A B=B C \\ \text { or } A B=\sqrt{20} \text { and } B C=\sqrt{20} \end{array}\right\}$	Al Al	3	Must see either $A B^{2}=.$. , or $B C^{2}=\ldots$,
	$\begin{aligned} \operatorname{grad} B M= & \frac{7-6}{3-0} \\ & \text { or }-1 /(\operatorname{grad} A C) \text { attempted } \\ & =\frac{1}{3} \end{aligned}$	M1 Al		ft their M coordinates correct gradient of line of symmetry
	$B M$ has equation $y=\frac{1}{3} x+6$	A1	3	CSO, any correct form
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$x^{2}-8 x+15+2$	B1		Terms in x must be collected, PI
	their $(x-4)^{2} \quad(+k)$	M1		$\mathrm{ft}(x-p)^{2}$ for their quadratic
	$=(x-4)^{2}+1$	Al	3	ISW for stating $p=-4$ if correct expression seen
(b)(i)	y_{4}	M1		U shape in any quadrant (generous)
		A1		correct with min at $(4,1)$ stated or 4 and 1 marked on axes condone within first quadrant only
		B1	3	crosses y-axis at $(0,17)$ stated or 17 marked on y-axis
(ii)	$y=k$	M1		$y=$ constant
	$y=1$	A1	2	Condone $y=0 x+1$
(c)	Translation (not shift, move etc)	E1		and no other transformation
	with vector	M1		One component correct or ft either their p or q
		A1	3	CSO; condone 4 across, 1 up; or two separate vectors etc
	Total		11	

0	Solution	Marks	Total	Comments
6(a)(i)	$\underline{\text { d } y}=24 x-19-6 x^{2}$	M1		2 terms correct
	$\mathrm{d} x=24 x-10-6 x^{2}$	A1		all correct (no $+c$ etc)
	when $x=2, \frac{d y}{d y}=48-19-24$	ml		
	\Rightarrow gradient $=5$	A1	4	CSO
	$\text { grad of normal }=-\frac{1}{5}$	$\mathrm{Bl} \checkmark$		ft their answer from (a)(i)
	$y+6=\left(\text { their }-\frac{1}{5}\right)(x-2)$			ft grad of their normal using correct
	or $y=\left(\right.$ their $\left.-\frac{1}{5}\right) x+c$ and c evaluated using $x=2$ and $y=-6$	M1		coordinates BUT must not be tangent condone omission of brackets
	$x+5 y+28=0$	A1	3	CSO; condone all on one side in different order
(b)(i)	$\frac{12}{3} x^{3}-\frac{19}{2} x^{2}-\frac{2}{4} x^{4}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		one term correct another term correct all correct (ignore $+c$ or limits)
	$=32-38-8$	mI		F(2) attempted
	$=-14$	A1	5	CSO; withhold A1 if changed to +14 here
(ii)	$\text { Area } \Delta=\frac{1}{2} \times 2 \times 6=6$	B1		condone -6
	Shaded region area $=14-6$	M1		difference of \pm \| $\| \pm\|\Delta\|$
	$=8$	A1	3	CSO
	Total		15	

Q	Solution	Marks	Total	Comments
7(a)(i)	$x= \pm 2$ or $y= \pm 6$ or $(x-2)^{2}+(y+6)^{2}$	M1		
	$C(2,-6)$	A1	2	correct
(ii)	$\left(r^{2}=\right) 4+36-15$	M1		(RHS =) their $(-2)^{2}+$ their $(6)^{2}-15$
	$\Rightarrow r=5$	A1	2	Not ± 5 or $\sqrt{25}$
(b)	explaining why $\left\|y_{c}\right\|>r ; 6>5$	E1		Comparison of y_{C} and r, eg $-6+5=-1$ or indicated on diagram
	full convincing argument, but must have correct y_{C} and r	E1	2	Eg "highest point is at $y=-1$ " scores E2 E1: showing no real solutions when $y=0$ + El stating centre or any point below x axis
(c)(i)	$\left(P C^{2}=\right)(5-2)^{2}+(k+6)^{2}$			ft their C coords
	$=9+k^{2}+12 k+36$	M1		and attempt to multiply out
	$P C^{2}=k^{2}+12 k+45$	A1	2	AG CSO (must see $P C^{2}=$ at least once)
(ii)	$\left.\begin{array}{l} P C>r \Rightarrow P C^{2}>25 \\ \Rightarrow k^{2}+12 k+20>0 \end{array}\right\}$	B1	1	AG Condone $\left.\quad \begin{array}{l}k^{2}+12 k+45>25 \\ \Rightarrow k^{2}+12 k+20>0\end{array}\right\}$
(iii)	$(k+2)(k+10)$	M1		Correct factors or correct use of formula
	$k=-2, k=-10$ are critical values	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sketch or sign diagram:			
		M1		If previous A1 earned, sign diagram or sketch must be correct for M1, otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$\Rightarrow k>-2, k<-10$	A1	4	$k \geqslant-2, k \leqslant-10$ loses final A mark
	Condone $k>-2$ OR $k<-10$ for full marks but not AND instead of OR			Answer only of $k>-2, k>-10$ etc scores M1, A1, M0 since the critical values are evident.
				Answer only of $k>2, k<-10$ etc scores M0, M0 since the critical values are not both correct.
	Total		13	
	TOTAL		75	

General Certificate of Education Advanced Subsidiary Examination June 2010

Mathematics

MPC1

Unit Pure Core 1

Monday 24 May 20101.30 pm to 3.00 pm

For this paper you must have

- the blue AQA booklet of formulae and statistical tables. You must not use a calculator

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is not permitted.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

The trapezium $A B C D$ is shown below

The line $A B$ has equation $2 x+3 y=14$ and $D C$ is parallel to $A B$.
(a) Find the gradient of $A B$. (2 marks)
(b) The point D has coordinates $(3,7)$
(i) Find an equation of the line $D C$.
(2 marks)
(ii) The angle $B A D$ is a right angle. Find an equation of the line $A D$, giving your answer in the form $m x+n y+p=0$, where m, n and p are integers.
(4 marks)
(c) The line $B C$ has equation $5 y-x=6$. Find the coordinates of B
(3 marks)

2 (a) Express $(3-\sqrt{5})^{2}$ in the form $m+n \sqrt{5}$, where m and n are integers. (2 marks)
(b) Hence express $\frac{(3-\sqrt{5})^{2}}{1+\sqrt{5}}$ in the form $p+q \sqrt{5}$, where p and q are integers.
(4 marks)

3
The polynomial $\mathrm{p}(x)$ is given by

$$
\mathrm{p}(x)=x^{3}+7 x^{2}+7 x-15
$$

(a) (i) Use the Factor Theorem to show that $x+3$ is a factor of $\mathrm{p}(x)$
(ii) Express $\mathrm{p}(x)$ as the product of three linear factors.
(3 marks)
(b) Use the Remainder Theorem to find the remainder when $\mathrm{p}(x)$ is divided by $x-2$.
(2 marks)
(c) (i) Verify that $\mathrm{p}(-1)<\mathrm{p}(0)$.
(1 mark)
(ii) Sketch the curve with equation $y=x^{3}+7 x^{2}+7 x-15$, indicating the values where the curve crosses the coordinate axes.

4 marks)

The curve with equation $y=x^{4}-8 x+9$ is sketched below.

The point $(2,9)$ lies on the curve.
(a) (i) Find $\int_{0}^{2}\left(x^{4}-8 x+9\right) \mathrm{d} x$.
(5 marks)
(ii) Hence find the area of the shaded region bounded by the curve and the line $y=9$.
(2 marks)
(b) The point $A(1,2)$ lies on the curve with equation $y=x^{4}-8 x+9$.
(i) Find the gradient of the curve at the point A.
(4 marks)
(ii) Hence find an equation of the tangent to the curve at the point A.

5 A circle with centre $C(-5,6)$ touches the y-axis, as shown in the diagram

(a) Find the equation of the circle in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(3 marks)
(b) (i) Verify that the point $P(-2,2)$ lies on the circle.
(ii) Find an equation of the normal to the circle at the point P.
(3 marks)
(iii) The mid-point of $P C$ is M. Determine whether the point P is closer to the point M or to the origin O.

The diagram shows a block of wood in the shape of a prism with triangular cross-section. The end faces are right-angled triangles with sides of lengths $3 x \mathrm{~cm}$, $4 x \mathrm{~cm}$ and $5 x \mathrm{~cm}$, and the length of the prism is $y \mathrm{~cm}$, as shown in the diagram.

The total surface area of the five faces is $144 \mathrm{~cm}^{2}$.
(a) (i) Show that $x y+x^{2}=12$.
(3 marks)
(ii) Hence show that the volume of the block, $V \mathrm{~cm}^{3}$, is given by

$$
V=72 x-6 x^{3}
$$

(b) (i) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
(2 marks)
(ii) Show that V has a stationary value when $x=2$.
(2 marks)
(c) Find $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ and hence determine whether V has a maximum value or a minimum value when $x=2$.

7 (a) (i) Express $2 x^{2}-20 x+53$ in the form $2(x-p)^{2}+q$, where p and q are integers.
(ii) Use your result from part (a)(i) to explain why the equation $2 x^{2}-20 x+53=0$ has no real roots.
(b) The quadratic equation $(2 k-1) x^{2}+(k+1) x+k=0$ has real roots.
(i) Show that $7 k^{2}-6 k-1 \leqslant 0$.
(4 marks)
(ii) Hence find the possible values of k.

Question 1:
$A B: 2 x+3 y=14$
a) $3 y=-2 x+14 \quad y=-\frac{2}{3} x+\frac{14}{3}$
The gradient of AB is $-\frac{2}{3}$.
b) i) $D(3,7)$ and Dc is paralle to AB so $\mathrm{m}_{D C}=m_{A B}=-\frac{2}{3}$

The equation of DC: $y-7=-\frac{2}{3}(x-3)$

$$
\begin{aligned}
& 3 y-21=-2 x+6 \\
& 2 x+3 y=27
\end{aligned}
$$

ii) The line AD is perpendicular to AB so $m_{A D}=-\frac{1}{m_{A B}}=\frac{3}{2}$

The eqaution of $\mathrm{AD}: y-7=\frac{3}{2}(x-3)$

$$
\begin{aligned}
& 2 y-14=3 x-9 \\
& 3 x-2 y+5=0
\end{aligned}
$$

c) The point B is the intersection of AB and BC .

Solve simultaneously $\left\{\begin{array}{l}2 x+3 y=14 \\ -x+5 y=6\end{array}\right.$
$(\times 2)\left\{\begin{array}{l}2 x+3 y=14 \\ -2 x+10 y=12\end{array}\right.$ $13 y=26$ so $y=2$
and $x=5 y-6=10-6=4$
The coordinates of B are $(4,2)$.

Question 2:	Exam report
a) $(3-\sqrt{5})^{2}$	$=9+5-6 \sqrt{5}=14-6 \sqrt{5}$
b)$1+\sqrt{5})^{2}$	$=\frac{(3-\sqrt{5})^{2}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}=\frac{(14-6 \sqrt{5})(1-\sqrt{5})}{1-5}$
	$=\frac{14-14 \sqrt{5}-6 \sqrt{5}+30}{-4}=\frac{44-20 \sqrt{5}}{-4}$
	Part (a) Many candidates were succesfful with this part, although sign erros and drithmeti clisp were common. Part (b) Most candidates recognised the first crucial step of multiplying the numerator and denominator by $1-\sqrt{5}$ and
many obtained $\frac{44-20 \sqrt{5}}{-4}$, but then inaccurate evaluation of the numerator or poor cancellation led to many failing to obtain the correct final answer.	

$p(x)=x^{3}+7 x^{2}+7 x-15$
a) i) $p(-3)=(-3)^{3}+7 \times(-3)^{2}+7 \times(-3)-15$

$$
=-27+63-21-15=63-63=0
$$

-3 is a root of p, so $(x+3)$ is a foacto of p
ii) $x^{3}+7 x^{2}+7 x-15=(x+3)\left(x^{2}+4 x-5\right)$

$$
=(x+3)(x+5)(x-1)
$$

b) The remainder of the division by $(x-2)$ is $\mathrm{p}(2)$

$$
\begin{aligned}
& p(2)=2^{3}+7 \times 2^{2}+7 \times 2-15 \\
& p(2)=8+28+14-15=35
\end{aligned}
$$

c) i) $p(-1)=-1+7-7-15=-16$

$$
p(0)=-15
$$

$$
p(-1)<p(0)
$$

ii) The curve crosses the x -axis at $(-3,0),(-5,0),(1,0)$

The curve crosses the y -axis at $(0,-15)$

Part (a)(i) Those who used long division instead of the Factor Theorem scored no marks. Most candidates realised the need to show that p($3)=0$. However quite a few omitted sufficient working such as $p(-3)=$ $-27+63-21-15=0$, together with a concluding statement about $x+$ 3 being a factor, and therefore failed to score full marks.
Part (a)(ii) Many candidates have become quite skilled at writing down the correct product of a linear and quadratic factor and then writing $p(x)$ as the product of three linear factors and these scored full marks. Others used long division or the Factor Theorem effectively but lost a mark for failing to write $p(x)$ as a product of linear factors. Others tried methods involving comparing coefficients, but often after several lines of working were unable to find the correct values of the coefficients because of poor algebraic manipulation. Speculative attempts to write down $\mathrm{p}(\mathrm{x})$ immediately as the product of three factors were rarely successful.
Part (b) Those candidates who used the Remainder Theorem were usually able to find the correct remainder, though once again arithmetic errors abounded. Those who used long division, synthetic division or other algebraic methods again scored no marks since the question specifically asked candidates to use the Remainder Theorem. Part (c)(i) This part of the question was intended to help candidates when sketching the curve. Those who found the correct values of $p(-$ 1) and $p(0)$ usually scored the mark but in future a carefully written proof may be called for. Here again many arithmetic errors were seen. Part (c)(ii) The sketch was intended to bring various parts of the question together but even very good candidates ignored the hint from part (c)(i) and showed a minimum point on the y-axis. A few lost the final mark when their curve stopped on the x-axis. Confusion between roots and factors spoiled many sketches and several showed the y-intercept of -15 on the positive y-axis. It was disappointing that many candidates did not recognize the shape of a cubic curve at all.

Question 4:

$y=x^{4}-8 x+9$
a) i) $\int_{0}^{2}\left(x^{4}-8 x+9\right) d x=\left[\frac{1}{5} x^{5}-4 x^{2}+9 x\right]_{0}^{2}$

$$
=\left(\frac{32}{5}-16+18\right)-(0)=8 \frac{2}{5}
$$

ii) The area of the shaded region is
area rectangle - area beneath the curve

$$
9 \times 2-8 \frac{2}{5}=9 \frac{3}{5}
$$

b) $A(1,2)$ lies on the curve.
$i)$ The gradient of the curve at a is $\frac{d y}{d x}(x=1)$. $\frac{d y}{d x}=4 x^{3}-8 \quad$ and
for $x=1, m_{A}=4 \times 1^{3}-8=-4$
ii) The equation of the tangent at A is :

$$
\begin{gathered}
y-2=-4(x-1) \\
y=-4 x+6
\end{gathered}
$$

Exam report

Part (a)(i) Most candidates were able to integrate the expression with only the weakest candidates unable to do this basic integration. Poor notation was used with many including the integral sign after integrating. It would have been thought that this bad habit would have been corrected by the time of the examination. Many candidates did not find the actual value of the definite integral until part (a)(ii) and on this occasion full credit was given. It was alarming that many candidates who had correct fractions were unable to combine these to give a value of 8.4 or equivalent. Weaker candidates were seen substituting values into the expression for y or
$\frac{d y}{d x}$ showing a complete lack of understanding.
Part (a)(ii) It was necessary to consider a rectangle of area 18 and then to subtract their answer from part (a)(i) in order to obtain the area of the shaded region. Many believed that the area of the rectangle was 9 and others failed to do this basic subtraction correctly, even when their answer to part (a)(i) was correct.

Part (b)(i) Many candidates did not realise the need to find $\frac{d y}{d x}$ before substituting the value $x=1$ and thus failed to score some easy marks for finding the gradient of the curve. A substantial number of candidates tried to calculate the gradient of the straight line between two points on the curve and scored no marks for this.
Part (b)(ii) Unfortunately many candidates tried to find the equation of the normal instead of the tangent to the curve. Otherwise, since there was a generous follow through in this part of the question, most were able to score this final mark. The only exceptions were those who insisted on using $y=m x$ +c where poor arithmetic often prevented them from finding a value for c .

Question 5:

Exam report

a) Centre of the circle $C(-5,6)$
the circle touches the y-axis, the radius is 5 .
The equation of the circle is

$$
(x+5)^{2}+(y-6)^{2}=5^{2}
$$

b) i) $P(-2,2)$

$$
\begin{aligned}
& (-2+5)^{2}+(2-6)^{2} \\
= & 3^{2}+(-4)^{2}=9+16=25=5^{2}
\end{aligned}
$$

P lies on the circle.
ii) The normal to the circle at P is the line CP

$$
\text { Gradient of } C P=m_{C P}=\frac{2-6}{-2+5}=\frac{-4}{3}
$$

The equation of the normal is : $y-2=-\frac{4}{3}(x+2)$

$$
\begin{aligned}
& 3 y-6=-4 x-8 \\
& 4 x+3 y=-2
\end{aligned}
$$

iii) The distance $P M=\frac{1}{2} r=2.5$

The distance $P O=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{8}=2 \sqrt{2}>2.5$

$$
(\sqrt{2} \approx 1.4)
$$

The point P is closer to M .

Part (a) Most candidates obtained the correct left hand side of the circle equation but many failed to recognize that the radius was 5 . Alarmingly many thought that r was equal to -5 or wrote down the right hand side of the equation as -5^{2}, thus displaying a fundamental misunderstanding of the idea of radius as a length. Part (b)(i) Most who had the correct circle equation were able to verify that the circle passed through the point P, although those who neglected to make a statement as a conclusion to their calculation failed to earn this mark.
Part (b)(ii) The negative signs caused problems for many when finding the gradient of PC and only the better candidates obtained the correct value. Many candidates then found the negative reciprocal of this fraction instead of using the gradient of PC to find the normal to the circle at the point P.
Part (b)(iii) There were basically two approaches to this question, although some candidates were merely guessing and no credit was given for a correct answer without supporting working. The most common method involved distances or squares of distances; many made errors in finding the coordinates of M and then struggled with the fractions when squaring and adding to find the length of PM; whereas others noted that the length of PM was simply half the radius. A simple comparison with the length of PO led to the correct conclusion.
The second approach was essentially one using vectors or the differences of coordinates, but this method was not always explained correctly and left examiners in some doubt as to whether candidates really understood what they were doing. The best candidates wrote down the correct vectors PM and OP and reasoned that these vectors had the same y-component but different x-components and it was then easy to deduce that P was closer to the point M.

Question 6:

a) i) The surface area is

$$
\begin{align*}
& S=\frac{1}{2} \times 3 x \times 4 x+\frac{1}{2} \times 3 x \times 4 x+5 x \times y+4 x \times y+3 x \times y \\
& S=12 x^{2}+12 x y=144 \mathrm{~cm}^{2} \\
& \quad x^{2}+x y=12 \tag{1}
\end{align*}
$$

ii) The volume $\mathrm{V}=\left(\frac{1}{2} \times 3 x \times 4 x\right) \times y=6 x^{2} y$

Making y the subject in (1): $y=\frac{12-x^{2}}{x}$
Now, substituting y in V, we have

$$
V=6 x^{2} y=6 x^{2} \times \frac{12-x^{2}}{x}=72 x-6 x^{3}
$$

b) i) $\frac{d V}{d x}=72-18 x^{2}$
ii)When $x=2, \frac{d V}{d x}=72-18 \times 2^{2}=72-72=0$

There is a stationary point when $x=2$.
c) $\frac{d^{2} V}{d x^{2}}=-36 x$ and when $x=2, \frac{d^{2} V}{d x^{2}}=-72<0$

For $x=2$, The value of V is a MAXIMUM.

Exam report

Part (a)(i) Usually after a few abortive attempts many candidates realised that they had to add together the areas of the various faces. Once they had the correct expression for the total surface area most candidates were able to obtain the printed result.
There was clearly some fudging on the part of weaker candidates and they could earn little more than a single method mark.
Part (a)(ii) This was surprisingly one of the biggest discriminators on the paper with only the best candidates being able to obtain the correct expression for V. Trying to make y the subject of the equation from part (a)(i) caused problems for many who took this approach; others substituted for $x y$ in the formula $V=6 x(x y)$ and were often more successful. Once again it was quite common to see totally incorrect expressions being miraculously transformed into the printed answer.
Part (b)(i) Most candidates scored full marks for this basic differentiation although it was not always clearly identified as $\frac{d V}{d x}$ in their working.
Part (b)(ii) Most substituted $\mathrm{x}=2$ into their expression for $\frac{d V}{d x}$
and found the value to be zero. It was then necessary to make a statement about the implication of there being a stationary value in order to score full marks.
Part (c) Some made a sign error when finding the second derivative, but the majority of candidates scored full marks in this part. Credit was given if the correct conclusion was drawn from the sign of their second derivative, provided no further arithmetic errors occurred.

$$
\begin{aligned}
& \text { Question 7: } \\
& \begin{aligned}
\text { a)i) } 2 x^{2}-20 x+53 & =2\left(x^{2}-10 x\right)+53 \\
& =2\left[(x-5)^{2}-25\right]+53 \\
& =2(x-5)^{2}-50+53 \\
& =2(x-5)^{2}+3
\end{aligned}
\end{aligned}
$$

Exam report

ii) $2 x^{2}-20 x+53=0$ is equivalent to

$$
2(x-5)^{2}+3=0 \text { or }(x-5)^{2}=-\frac{3}{2}
$$

For all $x,(x-5)^{2} \geq 0$ so there is no solution.
b) $(2 k-1) x^{2}+(k+1) x+k=0$ has real roots, This means that the discriminant ≥ 0

$$
\begin{aligned}
& \text { i.e }(k+1)^{2}-4 \times(2 k-1) \times(k) \geq 0 \\
& k^{2}+2 k+1-8 k^{2}+4 k \geq 0 \\
& -7 k^{2}+6 k+1 \geq 0 \quad(\times-1) \\
& 7 k^{2}-6 k-1 \leq 0
\end{aligned}
$$

iii) $7 k^{2}-6 k-1 \leq 0$

$$
(7 k+1)(k-1) \leq 0
$$

critical values $-\frac{1}{7}$ and 1
$(7 k+1)(k-1) \leq 0$ for $-\frac{1}{7} \leq k \leq 1$

Part (a)(i) Candidates did not seem well drilled in completing the square when the coefficient of x^{2} is not equal to 1 . It was very rare to see a correct answer here although a few did realise that $p=5$. Clearly further practice is required at this type of question. Part (a)(ii) Only the more able candidates were able to reason sufficiently well using the result from part (a)(i) as well as providing a concluding statement. No credit was given for using the discriminant to show that the equation had no real roots since the wording of the question excluded this approach.
Part (b)(i) This kind of question has been set several times before and the usual errors were seen. Candidates should state the condition for real roots ($b^{2}-4 a c \geq 0$) and find an expression in terms of k for the discriminant using the correct inequality throughout. The inequality is then reversed when multiplying by a negative number. Again, many candidates would benefit from practising this technique, using brackets where appropriate to avoid algebraic errors.
Part (b)(ii) The factorisation of the quadratic was usually correct, but several candidates wrote down one of the critical values as $1 / 7$. Most found critical values and either stopped or immediately tried to write down a solution without any working. Candidates are strongly advised to use a sign diagram or a sketch graph showing their critical values when solving a quadratic inequality.

GRADE BOUNDARIES							
Component title	Max mark	A	B	C	D	E	
Core 1 - Unit PC1	75	63	55	47	40	33	

Q	Solution	Marks	Total	Comments
4(a)(i)		M1		One term correct
	$\frac{x^{5}}{5}-\frac{8}{2} x^{2}+9 x$	A1		Another term correct
	$\frac{32}{5}-16+18$	m1		$F(2)$ attempted
	$=8 \frac{2}{5}$	A1	5	$\frac{42}{5}, 8.4$
(ii)	Shaded area $=18-$ 'their integral'	M1		PI by 18 - (a)(i) NMS
	$=9 \frac{3}{5}$	A1	2	$\frac{48}{5}, 9.6$ NMS full marks
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}-8$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		One term correct All correct (no $+c$ etc)
	$x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=4-8$	m1		$\operatorname{sub} x=1 \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} x}$
	$($ Gradient of curve $)=-4$	Alcso	4	No ISW
(ii)	$y-2=-4(x-1) ; \quad y=-4 x+c, c=6$	B1V	1	any correct form ; FT their answer from (b)(i) but must use $x=1$ and $y=2$
	Total		12	

Q	Solution	Marks	Total	Comments
5 (a)	$(x+5)^{2}+(y-6)^{2}=5^{2}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	3	One term correct LHS LHS all correct RHS correct: condone $=25$
(b)(i)	sub $x=-2, y=2$ into circle equation $3^{2}+(-4)^{2}=25$			Circle equation must be correct
	\Rightarrow lies on circle	B1	1	Must have concluding statement
(ii)	$\operatorname{Grad} P C=-\frac{4}{3}$ Normal to circle has equation	B1		Condone $\frac{4}{-3}$
	$\begin{aligned} & y-6=\text { 'their gradient } P C^{\prime}(x+5) \\ & \text { or } \quad y-2=\text { 'their gradient } P C^{\prime}(x+2) \end{aligned}$	M1		M0 if tangent attempted or incorrect coordinates used
	$\begin{aligned} & y-6=-\frac{4}{3}(x+5) \\ & \text { or } \quad y-2=-\frac{4}{3}(x+2) \end{aligned}$	Alcso	3	Any correct form eg $4 x+3 y+2=0$ $y=-\frac{4}{3} x+c, \quad c=-\frac{2}{3}$
(iii)	$P M=\frac{1}{2} \times$ radius $\begin{aligned} & =2.5 \\ P O & =\sqrt{8} \end{aligned}$ P is closer to the point M		4	Alternative 1
		M1		Attempt at $M\left(-\frac{7}{2}, 4\right)$ with at least one
		Alcso		$P M^{2}=\frac{9}{4}+4=\frac{25}{4}$
		B1		$P O^{2}=4+4=8$
		E1cso		Statement following correct values
	P is closer to the point M			Alternative 2
		(M1)		Attempt at $M\left(-\frac{7}{2}, 4\right)$ with at least one correct coordinate and attempt at vectors or difference of coordinates
		$\begin{gathered} \text { (Alcso } \\) \end{gathered}$		$\overrightarrow{P M}=\binom{-1.5}{2} \mathrm{OE}$
		(E1cso)		P is closer to the point M
		(E1)	(4)	Components of their $\overrightarrow{P M}$ and $\overrightarrow{O P}$ considered - totally independent of M1
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\begin{aligned} \text { S.A. } & =4 x y+5 x y+3 x y+6 x^{2}+6 x^{2} \quad \text { OE } \\ & =12 x y+12 x^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Condone one slip or omission
	$144=12 x y+12 x^{2}$			Must see this line
	$\Rightarrow x y+x^{2}=12$	Alcso	3	AG
(ii)	$($ Volume $=) \frac{1}{2} \times 3 x \times 4 x \times y \quad$ OE	M1		
	$=6 x^{2} \times \frac{\left(12-x^{2}\right)}{x}$			Must see $(y=) \frac{\left(12-x^{2}\right)}{x}$ or $x y=12-x^{2}$ for Al
	$(V=) 72 x-6 x^{3}$	Al	2	AG must be convinced not working back from answer
(b)(i)	$\frac{\mathrm{d} V}{\mathrm{~d} x}=72-18 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	One term correct All correct (no $+c$ etc)
(ii)	$\begin{aligned} x & =2 \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} x}=72-18 \times 2^{2} \\ & \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} x}=72-72=0 \end{aligned}$	M1		Substitute $x=2$ into their $\frac{\mathrm{d} V}{\mathrm{~d} x}$
	\Rightarrow stationary (value when $x=2$)	A1	2	Shown $=0$ plus statement Statement may appear first
(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-36 x$	B1 \checkmark		$\text { FT their } \frac{\mathrm{d} V}{\mathrm{~d} x}$
	$\begin{aligned} \frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-72 \text { or } \text { when } x=2 & \Rightarrow \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}<0 \\ & \Rightarrow \text { maximum } \end{aligned}$	E1 \checkmark	2	FT their $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ value when $x=2$ with appropriate conclusion
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)(i)	$2(x-5)^{2}$	B1		$p=5$
	+ 3	B1	2	$q=3$
(ii)	$\begin{aligned} & \text { Stating both }(x-5)^{2} \geqslant 0 \quad \text { and } \quad 3>0 \\ & \Rightarrow 2 x^{2}-20 x+53>0 \text { or } 2(x-5)^{2}+3>0 \end{aligned}$	M1		FT their p \& q, but must have $q>0$
	$\Rightarrow 2 x^{2}-20 x+53=0$ has no real roots	Alcso	2	Must have statement and correct p \& q.
(b)(i)	$b^{2}-4 a c=(k+1)^{2}-4 k(2 k-1)$	M1		Condone one slip (including x is one slip)
	$\begin{array}{r} \quad=-7 k^{2}+6 k+1 \\ \text { real roots } \Rightarrow b^{2}-4 a c \geqslant 0 \end{array}$	A1		Condone recovery from missing brackets Their discriminant $\geqslant 0$ (in terms of k)
	$-7 k^{2}+6 k+1 \geqslant 0$	B1v		Need not be simplified \& may earn earlier
	$\Rightarrow 7 k^{2}-6 k-1 \leqslant 0$	Alcso	4	AG (must see sign change)
(ii)	$(7 k+1)(k-1)$	M1		Correct factors or correct use of formula
	Critical values $k=1,-\frac{1}{7}$	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sign diagram or sketch	M1		If previous A1 earned, sign diagram or sketch must be correct for M1
				Otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$-\frac{1}{7} \leqslant k \leqslant 1$	A1	4	$\left(-\frac{1}{7}<k<1\right),\left(k \geqslant-\frac{1}{7} \text { OR } k \leqslant 1\right),$
	Full marks for correct answer NMS			$\left(k \geqslant-\frac{1}{7}, k \leqslant 1\right)$ score M1A1M1A0
	Condone $-\frac{2}{14}$ throughout			Answer only of $k<-\frac{1}{7}, \quad k<1$ etc
	Condone $k \geqslant-\frac{1}{7}$ AND $k \leqslant 1$ for full			values are evident.
				7
	Take their final line as their answer.			are not both correct.
	Total		12	
	TOTAL		75	

