AQA - Core 1 - Revision booklet

Key dates

Core 1 exam: 13th May 2013 am

Term dates:	
Term 1: Monday 3 September 2012 - Wednesday	Term 4: Monday 18 February 2013 - Friday 22
24 October 2012 (38 teaching days)	March 2013 (25 teaching days)
Term 2: Monday 5 November 2012 - Friday 21	Term 5: Monday 8 April 2013 - Friday 24 May
December 2012 (35 teaching days)	2013 (34 teaching days)
Term 3: Monday 7 January 2013 - Friday 8	Term 6: Monday 3 June 2013 - Wednesday 24
February 2013 (25 teaching days)	July 2013 (38 teaching days)

Scheme of Assessment Mathematics Advanced Subsidiary (AS) Advanced Level (AS + A2)

The Scheme of Assessment has a modular structure. The A Level award comprises four compulsory Core units, one optional Applied unit from the AS scheme of assessment, and one optional Applied unit either from the AS scheme of assessment or from the A2 scheme of assessment.

For the written papers, each candidate will require a copy of the AQA Booklet of formulae and statistical tables issued for this specification.

All the units count for 331/3% of the total AS marks	
16 ₂ / ₃ % of the total A level marks	
	Written Paper
	1hour 30 minutes
	75 marks

Grading System

The AS qualifications will be graded on a five-point scale: A, B, C, D and E. The full A level qualifications will be graded on a six-point scale: A*, A, B, C, D and E.

To be awarded an A* in Further Mathematics, candidates will need to achieve grade A on the full A level qualification and 90% of the maximum uniform mark on the aggregate of the best three of the A2 units which contributed towards Further Mathematics. For all qualifications, candidates who fail to reach the minimum standard for grade E will be recorded as U (unclassified) and will not receive a qualification certificate.

CORE 1 subject content

Algebra Coordinates geometry Differentiation Integration

Core 1 specifications

Candidates will be required to demonstrate:

a) construction and presentation of mathematical arguments through appropriate use of logical deduction and precise statements involving correct use of symbols and appropriate connecting language;

b) correct understanding and use of mathematical language and grammar in respect of terms such as "equals", "identically equals", "therefore", "because", "implies", "is implied by", "necessary", "sufficient" and notation such as \therefore , \Rightarrow , \Leftarrow and \Leftrightarrow .

Candidates are **not** allowed to use a calculator in the assessment unit for this module.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates **should learn** the following formulae, which are **not** included in the formulae booklet, but which may be required to answer questions.

Quadratic equations	$ax^{2} + bx + c = 0 \text{ has roots } \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
Circles	A circle, centre (a,b) and radius r , has equation
	$(x-a)^{2} + (y-b)^{2} = r^{2}$
Differentiation	if $y = ax^n$ then $\frac{dy}{dx} = anx^{n-1}$
	if $y = f(x) + g(x)$ then $\frac{dy}{dx} = f'(x) + g'(x)$
Integration	if $\frac{dy}{dx} = ax^n$ then $y = \frac{a}{n+1}x^{n+1} + c$
	$if \frac{dy}{dx} = f'(x) = g'(x) then y = f(x) + g(x) + c$
Area	Area under a curve = $\int_{a}^{b} y dx$ ($y \ge 0$)

Algebra	
Use and manipulation of surds.	To include simplification and rationalisation of the denominator of
	a fraction. <i>e.g.</i> $\sqrt{12} + 2\sqrt{27} = 8\sqrt{3}$; $\frac{1}{1-\sqrt{2}} = \sqrt{2}+1$; $\frac{2\sqrt{3}+\sqrt{2}}{3\sqrt{2}+\sqrt{3}} = \frac{\sqrt{6}}{3}$
Quadratic functions and their graphs.	To include reference to the vertex and line of symmetry of the graph.
The discriminant of a quadratic	To include the conditions for equal roots, for distinct real roots and
function.	for no real roots
Factorisation of quadratic	E.g. factorisation of 2x ² +x-6
polynomials.	
Completing the square.	<i>e.g.</i> $x^{2} + 6x - 1 = (x+3)^{2} - 10$; $2x^{2} - 6x + 2 = 2(x-1.5)^{2} - 2.5$
Solution of quadratic equations.	Use of any factorisation, $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ or
	completing the square will be accepted.
Simultaneous equations,	
e.g. one linear and one quadratic,	
analytical solution by substitution.	
Solution of linear and quadratic inequalities.	$e.g.\ 2x^2 + x \ge 6$
Algebraic manipulation of	
polynomials, including expanding	
brackets and collecting like terms.	
Simple algebraic division.	Applied to a quadratic or a cubic polynomial divided by a linear
	term of the form $(x + a)$ or $(x - a)$ where a is a small whole number.
	Any method will be accepted, e.g. by inspection, by equating
	$x^3 - x^2 - 5x + 2$
	coefficients of by formal division e.g. $\frac{x+2}{x+2}$.
Use of the Remainder Theorem.	Knowledge that when a quadratic or cubic polynomial f (x) is
	divided by $(x - a)$ the remainder is f (a) and, that when f (a) = 0,
	then (x – a) is a factor and vice versa.
Use of the Factor Theorem.	Greatest level of difficulty as indicated by $x^3 - 5x^2 + 7x - 3$, i.e. a
	cubic always with a factor $(x + a)$ or $(x - a)$ where a is a small whole
	number but including the cases of three distinct linear factors,
	repeated linear factors or a quadratic factor which cannot be
	factorized in the real numbers.
Graphs of functions; sketching	Linear, quadratic and cubic functions. The $f(x)$ notation may be
curves defined by simple	used but only a very general idea of the concept of a function is
equations.	required. Domain and range are not included. Graphs of circles are
	Included.
Geometrical Interpretation of	Interpreting the solutions of equations as the intersection points of
algebraic solution of equations and	graphs and vice versa.
use of intersection points of	
graphis of functions to solve	
Equations.	Applied to quadratic graphs and circles, i.e. $y = (y = x)^2 + b$ as a
translations on granhs and their	Translation of $y = y^2$ and $(y = a)^2 + (y = b)^2 = r^2$ as a translation of
equations.	$x^{2} + y^{2} = r^{2}$.

Coordinates geometry	
Equation of a straight line, including	To include problems using gradients, mid-points and the distance
the forms	between two points. The form y = mx + c is also included.
$y - y_1 = m(x - x_1)$ and $ax + by + c = 0$	
Conditions for two straight	Knowledge that the product of the gradients of two
lines to be parallel or perpendicular	perpendicular lines is -1.
to each other.	
Coordinate geometry of the circle.	Candidates will be expected to complete the square to find the
	centre and radius of a circle where the equation of the circle is
	for example given as $x^2 + 4x + y^2 - 6y - 12 = 0$.
The equation of a circle in the	The use of the following circle properties is required:
form $(x - x)^2 + (x - b)^2 = r^2$	(i) the angle in a semicircle is a right angle;
(x - u) + (y - b) - i.	(ii) the perpendicular from the centre to a chord bisects the
	(iii) the tangent to a circle is perpendicular to the radius at its
	point of contact.
The equation of the tangent	Implicit differentiation is not required. Candidates will be
and normal at a given point	expected to use the coordinates of the centre and a point on the
to a circle.	circle or of other appropriate points to find relevant gradients.
The intersection of a straight	Using algebraic methods. Candidates will be expected to
line and a curve.	interpret the geometrical implication of equal roots, distinct real
	roots or no real roots. Applications will be to either circles or
	graphs of quadratic functions.
Differentiation	
The derivative of f(x) as the gradient	The notations f'(x) or $\frac{dy}{dx}$ will be used.
of the tangent to the graph of $y =$	$\frac{dx}{dx}$
f(x) at a point; the gradient of the	A general appreciation only of the derivative when interpreting it
tangent as a limit; interpretation as	is required. Differentiation from first principles will not be tested.
a rate of change.	
Differentiation of polynomials.	Questions will not be set requiring the determination of er
applications of differentiation to	Questions will not be set requiring the determination of or
maxima and minima and stationary	form of a practical problem where a function of a single variable
noints increasing and decreasing	has to be ontimised
functions	hus to be optimised.
Second order derivatives.	
	Application to determining maxima and minima.
	Application to determining maxima and minima.
Integration	Application to determining maxima and minima.
Integration Indefinite integration as the reverse	Application to determining maxima and minima.
Integration Indefinite integration as the reverse of differentiation Integration of	Application to determining maxima and minima.
Integration Indefinite integration as the reverse of differentiation Integration of polynomials.	Application to determining maxima and minima.
Integration Indefinite integration as the reverse of differentiation Integration of polynomials. Evaluation of definite integrals.	Application to determining maxima and minima.
Integration Indefinite integration as the reverse of differentiation Integration of polynomials. Evaluation of definite integrals. Interpretation of the definite	Application to determining maxima and minima. Integration to determine the area of a region between a curve and the <i>x</i> -axis. To include regions wholly below the <i>x</i> -axis, i.e.
Integration Indefinite integration as the reverse of differentiation Integration of polynomials. Evaluation of definite integrals. Interpretation of the definite integral as the area under a curve.	Application to determining maxima and minima. Integration to determine the area of a region between a curve and the <i>x</i> -axis. To include regions wholly below the <i>x</i> -axis, i.e. knowledge that the integral will give a negative value.
Integration Indefinite integration as the reverse of differentiation Integration of polynomials. Evaluation of definite integrals. Interpretation of the definite integral as the area under a curve.	Application to determining maxima and minima. Integration to determine the area of a region between a curve and the <i>x</i> -axis. To include regions wholly below the <i>x</i> -axis, i.e. knowledge that the integral will give a negative value. Questions involving regions partially above and below the <i>x</i> -axis
Integration Indefinite integration as the reverse of differentiation Integration of polynomials. Evaluation of definite integrals. Interpretation of the definite integral as the area under a curve.	Application to determining maxima and minima. Integration to determine the area of a region between a curve and the <i>x</i> -axis. To include regions wholly below the <i>x</i> -axis, i.e. knowledge that the integral will give a negative value. Questions involving regions partially above and below the <i>x</i> -axis will not be set. Questions may involve finding the area of a region

Mensuration

Surface area of sphere $= 4\pi r^2$ Area of curved surface of cone $= \pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a + (n-1)d]$$

Geometric series

$$u_n = a r^{n-1}$$
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Summations

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$
$$\sum_{r=1}^{n} r^{2} = \frac{1}{6}n(n+1)(2n+1)$$
$$\sum_{r=1}^{n} r^{3} = \frac{1}{4}n^{2}(n+1)^{2}$$

Trigonometry – the Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial Series

$$\begin{aligned} (a+b)^n &= a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \ldots + \binom{n}{r} a^{n-r}b^r + \ldots + b^n \qquad (n \in \mathbb{N}) \\ &\text{where } \binom{n}{r} = {}^n \mathcal{C}_r = \frac{n!}{r!(n-r)!} \\ (1+x)^n &= 1 + nx + \frac{n(n-1)}{1.2} x^2 + \ldots + \frac{n(n-1)\dots(n-r+1)}{1.2\dots r} x^r + \ldots \quad (|x| < 1, n \in \mathbb{R}) \end{aligned}$$

Logarithms and exponentials

 $a^x = e^{x \ln a}$

Complex numbers

 $\{r(\cos\theta + i\sin\theta)\}^n = r^n(\cos n\theta + i\sin n\theta)$ e^{iθ} = cos θ + i sin θ The roots of $z^n = 1$ are given by $z = e^{\frac{2\pi ki}{n}}$, for k = 0, 1, 2, ..., n-1

Maclaurin's series

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^r}{r!} f^{(r)}(0) + \dots$$

$$e^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots \quad \text{for all } x$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots \quad (-1 < x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots \quad \text{for all } x$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots \quad \text{for all } x$$

Hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2\sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\cosh^{-1} x = \ln \left\{ x + \sqrt{x^{2} - 1} \right\} \quad (x \ge 1)$$

$$\sinh^{-1} x = \ln \left\{ x + \sqrt{x^{2} + 1} \right\}$$

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad (|x| < 1)$$

Conics

Conics				
	Ellipse	Parabola	Hyperbola	Rectangular hyperbola
Standard form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Trigonometric identities

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad \left(A \pm B \neq (k + \frac{1}{2})\pi\right)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

Differentiation

$\mathbf{f}(\mathbf{x})$	$\mathbf{f}'(x)$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$
tan kx	$k \sec^2 kx$
cosec x	$-\csc x \cot x$
sec x	$\sec x \tan x$
cot x	$-\csc^2 x$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
tanh x	$\operatorname{sech}^2 x$
$\sinh^{-1} x$	$\frac{1}{\sqrt{1+x^2}}$
$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2-1}}$
$\tanh^{-1} x$	$\frac{1}{1-x^2}$
$\frac{f(x)}{g(x)}$	$\frac{\mathbf{f}'(x)\mathbf{g}(x) - \mathbf{f}(x)\mathbf{g}'(x)}{\left(\mathbf{g}(x)\right)^2}$

Integration

-	
(+ constant; a > 0)	where relevant)
$\mathbf{f}(x)$	$\int \mathbf{f}(x) \mathrm{d}x$
tan x	ln sec x
cot x	$\ln \sin x$
cosec x	$-\ln \csc x + \cot x = \ln \tan(\frac{1}{2}x) $
sec x	$\ln \sec x + \tan x = \ln \tan(\frac{1}{2}x + \frac{1}{4}\pi) $
$\sec^2 kx$	$\frac{1}{k} \tan kx$
$\sinh x$	cosh x
$\cosh x$	sinh x
tanh x	$\ln \cosh x$

$$\begin{aligned} \frac{1}{\sqrt{a^2 - x^2}} & \sin^{-1}\left(\frac{x}{a}\right) \quad (|x| < a) \\ \frac{1}{a^2 + x^2} & \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) \\ \frac{1}{\sqrt{x^2 - a^2}} & \cosh^{-1}\left(\frac{x}{a}\right) \text{ or } \ln\left\{x + \sqrt{x^2 - a^2}\right\} \quad (x > a) \\ \frac{1}{\sqrt{a^2 + x^2}} & \sinh^{-1}\left(\frac{x}{a}\right) \text{ or } \ln\left\{x + \sqrt{x^2 + a^2}\right\} \\ \frac{1}{a^2 - x^2} & \frac{1}{2a}\ln\left|\frac{a + x}{a - x}\right| = \frac{1}{a}\tanh^{-1}\left(\frac{x}{a}\right) \quad (|x| < a) \\ \frac{1}{x^2 - a^2} & \frac{1}{2a}\ln\left|\frac{x - a}{x + a}\right| \\ \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx \end{aligned}$$

Area of a sector

$$A = \frac{1}{2} \int r^2 \, \mathrm{d}\theta \qquad \text{(polar coordinates)}$$

Arc length

$$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \quad \text{(cartesian coordinates)}$$
$$s = \int \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \quad \text{(parametric form)}$$

Surface area of revolution

$$S_x = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \quad \text{(cartesian coordinates)}$$
$$S_x = 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \quad \text{(parametric form)}$$

Numerical integration

The trapezium rule: $\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_{0} + y_{n}) + 2(y_{1} + y_{2} + ... + y_{n-1})\}$, where $h = \frac{b-a}{n}$ The mid-ordinate rule: $\int_{a}^{b} y \, dx \approx h(y_{\frac{1}{2}} + y_{\frac{3}{2}} + ... + y_{n-\frac{3}{2}} + y_{n-\frac{1}{2}})$, where $h = \frac{b-a}{n}$ Simpson's rule: $\int_{a}^{b} y \, dx \approx \frac{1}{3} h\{(y_{0} + y_{n}) + 4(y_{1} + y_{3} + ... + y_{n-1}) + 2(y_{2} + y_{4} + ... + y_{n-2})\}$ where $h = \frac{b-a}{n}$ and n is even

Content

Algebra	
Indices and surds	
Quadratic functions	
Quadratic inequalities	
Simultaneous equations	21
Polynomials	

	0	,	
Straight lines			. 27
Circles			. 30
Transformations	of graphs		. 33

Calculus	S	36
Different	tiation	36
Using dif	ferentiation	39
Integrati	on	42
Integrati	on and area	45

t Papers

Algebra

Indices and surds

KEY POINTS

Definition : for n integer and $a \neq 0$, $a^n = a \times a \times a \dots \times a$ (n factors)			
	$a^1 = a$ and $a^0 = 1$		
	(<i>a</i> is called the base)		
Multiplication	$: a^n \times a^p = a^{n+p}$		
Division	$: a^n \div a^p = \frac{a^n}{a^p} = a^{n-p}$		
Negative index	: $a^{-n} = \frac{1}{a^n}$ and $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$		
Power of a power	$: (a^n)^p = a^{n \times p}$		
Fractional index	: $a^{\frac{1}{n}} = \sqrt[n]{a}$ and $a^{\frac{n}{p}} = \sqrt[p]{a^n} = \left(\sqrt[p]{a}\right)^n$		
Different bases	: $a^n \times b^n = (ab)^n$ and $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$		

KEY POINTS

 $Definition : for \ a \ge 0, \ \sqrt{a} \text{ is the positive number so that } \left(\sqrt{a}\right)^2 = a$ $Multiplication : \sqrt{ab} = \sqrt{a} \times \sqrt{b}$ in particular $\sqrt{a^2} = \sqrt{a} \times \sqrt{a} = \left(\sqrt{a}\right)^2 = a$ (for $a \ge 0$) $Division : \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ (for $a \ge 0, b > 0$) $Difference \ of \ squares : \ (x + y)(x - y) = x^2 - y^2$ $hence \ (\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$ $\sqrt{a} \pm \sqrt{b} \text{ is called the conjugate (expression) to } \sqrt{a} \mp \sqrt{b}$ $Rationalise \ the \ denominator:$ $\bullet \frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$ $\bullet \frac{1}{\sqrt{a} \pm \sqrt{b}} = \frac{1}{\sqrt{a} \pm \sqrt{b}} \times \frac{\sqrt{a} \mp \sqrt{b}}{\sqrt{a} \mp \sqrt{b}} = \frac{\sqrt{a} \mp \sqrt{b}}{a - b}$ (Multiple numerator and denominator by the conjugate or expression)

(Multiple numerator and denominator by the conjugate expression)

Question 1:

Simplify the following as far as possible

a)
$$\sqrt{28}$$
 b) $\sqrt{63}$ c) $\sqrt{32}$ d) $\sqrt{150}$

Question 2:

Expand and simplify

$$a)\sqrt{2}(\sqrt{8}-2\sqrt{3}) \quad b)\sqrt{3}(\sqrt{6}-\sqrt{27}) \quad c)(\sqrt{5}-1)^{2} \quad d)(\sqrt{3}+\sqrt{6})^{2} \quad e)(\sqrt{5}+2)(\sqrt{5}-2)$$

Question 3:

Rationalise the denominator and simplify

$$a)\frac{10}{\sqrt{5}} \quad b)\frac{2}{\sqrt{3}+1} \quad c)\frac{1}{\sqrt{5}-2} \quad d)\frac{\sqrt{2}}{\sqrt{8}-\sqrt{6}} \quad e)\frac{39}{4-\sqrt{3}} \quad f)\frac{1-\sqrt{2}}{2\sqrt{2}-3}$$

$$g)\frac{\sqrt{6} \times \sqrt{12}}{\sqrt{2} + \sqrt{8}} \quad h)\frac{3 - 2\sqrt{2}}{(1 + \sqrt{2})^2} \quad i)\frac{\sqrt{300} - \sqrt{75}}{\sqrt{12} + \sqrt{3}}$$

Question 4: Exam June 2006

a) Express
$$(4\sqrt{5}-1)(\sqrt{5}+3)$$
 in the form $p+q\sqrt{5}$, where p and q are integers. (3marks)
b) Show that $\frac{\sqrt{75}-\sqrt{27}}{\sqrt{3}}$ is an integer and find its value. (3marks)

Question 5: Exam Jan 2006

a) Simplify
$$(\sqrt{5}+2)(\sqrt{5}-2)$$
. (2 marks)

b) Express
$$\sqrt{8} + \sqrt{18}$$
 in the form $n\sqrt{2}$, where *n* is an integer (2 marks)

Question 6: Exam June 2007

a) Express
$$\frac{\sqrt{63}}{3} + \frac{14}{\sqrt{7}}$$
 in the form $n\sqrt{7}$, where *n* is an integer. (3 marks)

b) Express
$$\frac{\sqrt{7}+1}{\sqrt{7}-2}$$
 in the form $p\sqrt{7}+q$, where p and q are integers. (4 marks)

Question 7: Exam Jan 2007

a) Express
$$\frac{\sqrt{5}+3}{\sqrt{5}-2}$$
 in the form $p\sqrt{5}+q$, where p and q are integers. (4 marks)

b)*i*) Express $\sqrt{45}$ in the form $n\sqrt{5}$, where *n* is an integer. (1*mark*)

ii)Solve the equation
$$x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$$

giving your answer in its simplest form. (3*marks*)

Surds - exercises' answers

Question 1:

a) $\sqrt{28} = \sqrt{4 \times 7} = \sqrt{4} \times \sqrt{7} = 2\sqrt{7}$ b) $\sqrt{63} = \sqrt{9 \times 7} = \sqrt{9} \times \sqrt{7} = 3\sqrt{7}$ c) $\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$ d) $\sqrt{150} = \sqrt{25 \times 6} = 5\sqrt{6}$ Question 2: a) $\sqrt{2}(\sqrt{8} - 2\sqrt{3}) = \sqrt{16} - 2\sqrt{6} = 4 - 2\sqrt{6}$ b) $\sqrt{3}(\sqrt{6} - \sqrt{27}) = \sqrt{18} - \sqrt{81} = 3\sqrt{2} - 9$ c) $(\sqrt{5} - 1)^2 = (\sqrt{5} - 1)(\sqrt{5} - 1) = 5 - \sqrt{5} - \sqrt{5} + 1 = 6 - 2\sqrt{5}$ d) $(\sqrt{3} + \sqrt{6})^2 = (\sqrt{3} + \sqrt{6})(\sqrt{3} + \sqrt{6}) = 3 + \sqrt{18} + \sqrt{18} + 6 = 9 + 2\sqrt{18}$ e) $(\sqrt{5} + 2)(\sqrt{5} - 2) = 5 - 2\sqrt{5} + 2\sqrt{5} - 4 = 1$

Question 3:

a)
$$\frac{10}{\sqrt{5}} = \frac{10}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{10\sqrt{5}}{5} = 2\sqrt{5}$$

b) $\frac{2}{\sqrt{3}+1} = \frac{2}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{2(\sqrt{3}-1)}{3-1} = \sqrt{3}-1$
c) $\frac{1}{\sqrt{5}-2} = \frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} = \frac{\sqrt{5}+2}{5-2} = \sqrt{5}+2$
d) $\frac{\sqrt{2}}{\sqrt{8}-\sqrt{6}} = \frac{\sqrt{2}}{\sqrt{8}-\sqrt{6}} \times \frac{\sqrt{8}+\sqrt{6}}{\sqrt{8}-\sqrt{6}} = \frac{\sqrt{16}-\sqrt{12}}{8-6} = \frac{4-2\sqrt{3}}{2} = 2-\sqrt{3}$
e) $\frac{39}{4-\sqrt{3}} = \frac{39}{4-\sqrt{3}} \times \frac{4+\sqrt{3}}{4+\sqrt{3}} = \frac{156+39\sqrt{3}}{16-3} = 12+3\sqrt{3}$
f) $\frac{1-\sqrt{2}}{2\sqrt{2}-3} = \frac{1-\sqrt{2}}{2\sqrt{2}-3} \times \frac{2\sqrt{2}+3}{2\sqrt{2}+3} = \frac{2\sqrt{2}+3-4-3\sqrt{2}}{8-9} = \sqrt{2}+1$
g) $\frac{\sqrt{6}\times\sqrt{12}}{\sqrt{2}+\sqrt{8}} = \frac{6\sqrt{2}}{\sqrt{2}+2\sqrt{2}} = \frac{6\sqrt{2}}{3\sqrt{2}} = 2$
h) $\frac{3-2\sqrt{2}}{(1+\sqrt{2})^2} = \frac{3-2\sqrt{2}}{3+2\sqrt{2}} = \frac{(3-2\sqrt{2})^2}{(3+2\sqrt{2})(3-2\sqrt{2})} = \frac{9+8-12\sqrt{2}}{9-8} = 17-12\sqrt{2}$
i) $\frac{\sqrt{300}-\sqrt{75}}{\sqrt{12}+\sqrt{3}} = \frac{10\sqrt{3}-5\sqrt{3}}{2\sqrt{3}+\sqrt{3}} = \frac{5\sqrt{3}}{3\sqrt{3}} = \frac{5}{3}$

Question 4: June 2006

a)
$$(4\sqrt{5}-1)(\sqrt{5}+3) = 4 \times 5 + 12\sqrt{5} - \sqrt{5} - 3$$

= $20 - 3 + 12\sqrt{5} - \sqrt{5}$
= $17 + 11\sqrt{5}$
b) $\frac{\sqrt{75} - \sqrt{27}}{\sqrt{3}} = \frac{\sqrt{25 \times 3} - \sqrt{9 \times 3}}{\sqrt{3}}$
= $\frac{5\sqrt{3} - 3\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$

Question 5: Jan 2006

$$a)(\sqrt{5}+2)(\sqrt{5}-2) = 5 - 2\sqrt{5} + 2\sqrt{5} - 4 = 1$$

$$b)\sqrt{8} + \sqrt{18} = \sqrt{4 \times 2} + \sqrt{9 \times 2} = 2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$$
Question 6: June 2007

$$a)\frac{\sqrt{63}}{3} + \frac{14}{\sqrt{7}} = \frac{\sqrt{9 \times 7}}{3} + \frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{3\sqrt{7}}{3} + \frac{14\sqrt{7}}{7}$$

$$= \sqrt{7} + 2\sqrt{7} = 3\sqrt{7}$$

$$b)\frac{\sqrt{7}+1}{\sqrt{7}-2} = \frac{\sqrt{7}+1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2} = \frac{7+2\sqrt{7}+\sqrt{7}+2}{7-4}$$

$$= \frac{9+3\sqrt{7}}{3}$$

Question 7: Jan 2007 a) $\frac{\sqrt{5}+3}{\sqrt{5}-2} = \frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} = \frac{5+2\sqrt{5}+3\sqrt{5}+6}{5-4} = 11+5\sqrt{5}$ b) i) $\sqrt{45} = \sqrt{9\times5} = 3\sqrt{5}$ ii) $x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$ $x \times 2\sqrt{5} = 7\sqrt{5} - 3\sqrt{5}$ $x = \frac{4\sqrt{5}}{2\sqrt{5}} = \frac{4}{2} = 2$

Quadratic functions

Quadratic functions - exercises

Question 1:

Find the coordinates of the points where the curve with equation $y = x^2 - 6x + 5$ intersects the coordinate axes.

Question 2:

The curve with equation $y = x^2 - 2x - 8$ cuts the x-axis at the point A and B. Calculate the distance AB.

Question 3:

a) Find the coordinates of the points where the parabola

with equation $y = 4x^2 - 8x$ crosses the *x* - *axis*.

b)i) Write $4x^2 - 8x$ in the form $a(x + p)^2 + q$ where a, p and q are integers

ii) Hence, work out the coordinates of the vertex.

iii) and give the equation of the axis of symmetry of this parabola.

Question 4:

a) Write $x^2 - 4x + 6$ in the form $(x - p)^2 + q$ where p and q are integers.

b) Hence find

i) the vertex of the parabola $y = x^2 - 4x + 6$,

ii) the equation of the axis of symmetry of this parabola.

Question 5:

The equation $kx^2 + 8x + (k - 6) = 0$ has equal roots. Work out the possible values of *k*.

Question 6:

Calculate the possible values of k, if $(k+1)x^2 + kx + k + 1 = 0$ has equal roots.

Question 7:

a) Factorise $7x^2 - 12x - 64$

b) The equation $kx^2 - (k+8)x + 2k + 1 = 0$ has a repeated root. Find the possible values of k.

Question 8:

a) Write $x^2 - 6x + 8$ in the form $(x - p)^2 + q$.

b) Describe the geometric transformation that maps

the graph $y = x^2$ onto the graph of $y = x^2 - 4x + 8$.

Question 9:

Find the equation of the graph of $y = x^2$ after it has been translated by the given vectors. Give your answer in the form $y = x^2 + bx + c$.

$$a)\begin{bmatrix}1\\0\end{bmatrix} \qquad b)\begin{bmatrix}0\\3\end{bmatrix} \qquad c)\begin{bmatrix}2\\5\end{bmatrix} \qquad d)\begin{bmatrix}-3\\-6\end{bmatrix}$$

Quadratic functions – exercises' answers

(x-5)(x-1) = 0

(5,0)(1,0)

Ouestion 1:

Intersection with the y-axis.

 $v=0^2-6\times0+5=5$ Substitute *x* by 0: (0,5)Intersection with the x-axis. Solve the equation y = 0: $x^2 - 6x + 5 = 0$

Ouestion 2:

Solve the equation $y = x^2 - 2x - 8 = 0$

(x-4)(x+2) = 0 x = 4 or x = -2A(4,0) and B(-2,0) The distance AB=6.

$$(4,0)$$
 and $B(-2,0)$ The distance AB=6.

Question 3:

a) $4x^2 - 8x = 0$ 4x(x-2) = 0x = 0 and x = 2

The parabola crosses the x-axis at (0,0) and (2,0).

$$b)i)4x^2 - 8x = 4(x^2 - 2x) = 4((x-1)^2 - 1) = 4(x-1)^2 - 4$$

ii) the vertex is V(1, -4) and the axis of symmetry of the parabola is x = 1.

Question 4:

a)
$$x^{2} - 4x + 6 = (x - 2)^{2} - 4 + 6 = (x - 2)^{2} + 2$$

b)i) The vertex V(2,2)

ii) The axis of symmetry has equation x = 2.

Question 5:

 $kx^{2}+8x+(k-6)=0$ has equal roots

means the discriminant = 0

$$8^{2}-4 \times k \times (k-6) = 0 \qquad 64-4k^{2}+24k = 0 \quad (\div -4)$$

$$k^{2}-6k-16 = 0 \qquad (k-8)(k+2) = 0$$

$$k = 8 \text{ or } k = -2$$

Ouestion 6:

 $(k+1)x^{2}+kx+(k+1)=0$ has equal roots *means* the discriminant = 0

$$k^{2} - 4 \times (k+1) \times (k+1) = 0 \qquad k^{2} - 4k^{2} - 8k - 4 = 0$$

$$3k^{2} + 8k + 4 = 0 \qquad (3k+2)(k+2) = 0$$

$$k = -\frac{2}{3} \text{ or } k = -2$$

Ouestion 7:

a) $7x^2 - 12x - 64 = (7x + 16)(x - 4)$ $b)kx^2 - (k+8)x + 2k + 1 = 0$ has repeated root so the discriminant = 0 $(-(k+8))^2 - 4 \times k \times (2k+1) = 0$ $k^{2} + 16k + 64 - 8k^{2} - 4k = 0 \qquad -7k^{2} + 12k + 64 = 0$ $7k^2 - 12k - 64 = 0$ (7k+16)(k-4) = 0 $k = -\frac{16}{7}$ or k = 4

Ouestion 8:

a)
$$x^2 - 6x + 8 = (x - 3)^2 - 9 + 8 = (x - 3)^2 - 1$$

b) The transformation is a translation of vector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$

Question 9: a) $y-0 = (x-1)^2$ $y = x^2 - 2x + 1$ b) $y-3 = (x-0)^2$ $y = x^2 + 3$ c) $y-5 = (x-2)^2$ $y = x^2 - 4x + 9$ d) $v + 6 = (x+3)^2$ $v = x^2 + 6x + 3$

Quadratic inequalities

Question 1:

Solve the following inequalities for *x*.

(In each case, support your answer with a sketch).

a)(x-3)(x+4) < 0	$b)(x-1)(x+3) \ge 0$
$c)(3-x)(x+1) \le 0$	$d)x^2 + 3x + 2 > 0$
$e)2x^2-3x-2<0$	$f)6-4x-2x^2 < 0$

Question 2:

Find the range of values for k that give each of these equations no real roots

a) $x^{2} - 2x + k$ b) $3x^{2} + kx + 7$ c) $kx^{2} = 2x - k$

Question 3:

Calculate the possible values of k, if $(k+1)x^2 + kx + k + 1 = 0$ has two distinct roots.

Question 4:

Calculate the possible values of k, if $(k+1)x^2 + 4kx + 9 = 0$ has no real roots.

Question 5:

The equation $x^2 - 3kx + 7 - k$ has two distinct roots. Find the possible values of *k*.

Question 6:

Find the condition of k for the equation $(x+1)(x^2 + kx + 4) = 0$ to only have one real root.

Question 7:

a) Simplify $(k+5)^2 - 12k(k+2)$ b) The quadratic equation $3(k+2)x^2 + (k+5)x + k = 0$ has real roots. i) Show that $(k-1)(11k+25) \le 0$

ii) Hence find the possible values of *k*.

Question 8:

The quadratic equation $(2k-3)x^2 + 2x + (k-1) = 0$	
where k is a constant, has real roots.	
a) Show that $2k^2 - 5k + 2 \le 0$.	(3 marks)
b)i) Factorise $2k^2 - 5k + 2$.	(1 <i>mark</i>)
<i>ii</i>) Hence or ortherwise, solve the quadratic inequality $2k^2 - 5k + 2 \le 0$	(3 marks)

Quadratic inequalities – exercises' answers

Question 1:

a) (x-3)(x+4) < 0 for -4 < x < 3b) $(x-1)(x+3) \ge 0$ for $x \le -3$ or $x \ge 1$ c) $(3-x)(x+1) \le 0$ for $x \le -1$ or $x \ge 3$ d) $x^2 + 3x + 2 = (x+2)(x+1) > 0$ for x < -2 or x > -1e) $2x^2 - 3x - 2 = (2x+1)(x-2) < 0$ for $-\frac{1}{2} < x < 2$ f) $6 - 4x - 2x^2 < 0$ $2x^2 + 4x - 6 > 0$ (2x-2)(x+3) > 0 for x < -3 or x > 1

Question 2:

a) $x^2 - 2x + k$ has no real roots: the discriminant < 0 $(-2)^2 - 4 \times 1 \times k < 0$ 4 - 4k < 0 k > 1b) $3x^2 + kx + 7$ has no real roots: the discriminant < 0 $k^2 - 4 \times 3 \times 7 < 0$ $k^2 - 84 < 0$ $(k + \sqrt{84})(k - \sqrt{84}) < 0$ $-\sqrt{84} < k < \sqrt{84}$ $-2\sqrt{21} < k < 2\sqrt{21}$ c) $kx^2 - 2x + k = 0$ has no real roots:

the discriminant < 0 $(-2)^2 - 4 \times k \times k < 0$ $4 - 4k^2 < 0$ $k^2 - 1 > 0$ (k + 1)(k - 1) > 0

$$k < -1$$
 or $k > 1$

Question 3:

 $(k+1)x^2 + kx + k + 1 = 0$ has two distinct roots:

```
the discriminant > 0
```

 $(k)^{2} - 4 \times (k+1)^{2} > 0$ $-3k^{2} - 8k - 4 > 0$ $3k^{2} + 8k + 4 < 0$ The roots of this quadratic expression are $k = \frac{-8 + \sqrt{28}}{6} = \frac{-4 + \sqrt{7}}{3} \text{ or } k = \frac{-8 - \sqrt{28}}{6} = \frac{-4 - \sqrt{7}}{3}$ so $3k^{2} + 8k + 4 < 0$ for $\frac{-4 - \sqrt{7}}{3} < k < \frac{-4 + \sqrt{7}}{3}$

Question 4:

 $(k+1)x^{2} + 4kx + 9 = 0 \text{ has no real roots}:$ the discriminant = 0 $(4k)^{2} - 4 \times (k+1) \times 9 = 0$ $16k^{2} - 36k - 36 = 0$ $4k^{2} - 9k - 9 = 0$ (4k+3)(k-3) = 0 $k = -\frac{3}{4} \text{ or } k = 3$

Question 5:

 $x^{2} - 3kx + 7 - k \text{ has two distinct roots:}$ Discriminant >0 $(-3k)^{2} - 4 \times 1 \times (7 - k) > 0$ $9k^{2} + 4k - 28 > 0$ (9k - 14)(k + 2) > 0 $k < -2 \text{ or } k > \frac{14}{9}$

Question 6:

 $(x+1)(x^{2}+kx+4) = 0$ has only one real root. This root is -1. This means that $x^{2}+kx+4$ has no real roots: discriminant < 0 $k^{2}-4\times1\times4<0$ $k^{2}-16<0$ (k+4)(k-4)<0-4 < k < 4

Question 7:

a) $(k+5)^2 - 12k(k+2) =$ $k^2 + 10k + 25 - 12k^2 - 24k =$ $-11k^2 - 14k + 25$ b) the discriminant ≥ 0 $(k+5)^2 - 4 \times 3(k+2) \times k \ge 0$ $(k+5)^2 - 12k(k+2) \ge 0$ $-11k^2 - 14k + 25 \ge 0$ $11k^2 + 14k - 25 \le 0$ $(11k+25)(k-1) \le 0$ $so -\frac{25}{11} \le k \le 1$

Simultaneous equations

SET OF LINEAR EQUATIONS

Consider the line $L_1: ax + by = c$ and the line $L_2: dx + ey = f$ To work out the coordinates of the point of INTERSECTION, solve the equations SIMULTANEOUSLY.

Solving by *combination* / elimination:

 $\begin{cases} ax + by = c \quad (\times d) \\ dx + ey = f \quad (\times -a) \end{cases} \qquad \begin{cases} adx + bdy = cd \\ -adx - aey = -af \end{cases}$

Then add the equations to find the value of *y*. Use any other equation to find the value of *x*.

Solving by *identification*:

Make *y* the subject in both equations and identify the values of *y* :

$$L_{1}: y = m_{1}x + c_{1}$$

$$L_{2}: y = m_{2}x + c_{2}$$
 this gives $(y =)m_{1}x + c_{1} = m_{2}x + c_{2}$ and solve.

Solving by *substitution*:

*M*ake *y* the subject in one of the equation then substitute *y* by this expression in the second equation:

$$L_1: y = mx + c$$

$$L_2: dx + ey = f this gives dx + e(mx + c) = f then solve.$$
SET OF QUADRATIC AND LINEAR EQUATIONS

A parabola C has equation $y = ax^2 + bx + c$, a line L has equation y = dx + e (make y the subject if it is an implict equation)

To work out the coordinates of the points of intersection of the parabola and the line, solve these equations simultaneoulsy

Solving by identification:

(y=) $ax^{2}+bx+c=dx+e$ then re-arrange into $ax^{2}+(b-d)x+c-e=0$ and solve.

Let's re-write as $Ax^2 + Bx + C = 0$

Question 1:

Solve these simultaneous equations

a)
$$\begin{cases} 3x + 2y = 7 \\ 5x + y = 7 \end{cases}$$
 b)
$$\begin{cases} 4x + 3y = 5 \\ 3x + 2y = 4 \end{cases}$$
 c)
$$\begin{cases} 4x - 5y = 1 \\ 2x - 3y = 1 \end{cases}$$

Question 2:

Solve these simultaneous equations

a)
$$\begin{cases} y = 3x - 4 \\ y = x^2 - 4x + 6 \end{cases}$$
b)
$$\begin{cases} y = 4x + 1 \\ y = 2x^2 - 3x + 4 \end{cases}$$
c)
$$\begin{cases} y = x^2 - 6x + 5 \\ y = x - 1 \end{cases}$$

Question 3:

a) Solve simultaneously

x + y + 3 = 0 and $y = 2x^2 + 3x - 1$

b) Interpret your solution graphically

Question 4:

Find the points of intersection of the curve $y = 7 - x^2$ and the line 2x + y = 4.

Question 5:

The line L has equation y + 2x = 12 and the curve C has equation $y = x^2 - 4x + 9$.

i)Show that the x-coordinate of the points of intersection of L and C satisfy the equation:

$$x^2 - 2x - 3 = 0$$

ii) Hence find the coordinates of the points of intersection of L and C.

Question 6:

Find the value of k such that the line y = 2x + k is a tangent to the curve $y = x^2 + 1$

Question 7:

A line has equation y = mx + 1, where *m* is a constant.

A curve has equation $y = x^2 - 3x + 10$.

a)Show that the x-coordinate of any point of intersection of

the line and the curve satisfies the equation

$$x^2 - (m+3)x + 9 = 0$$

b) Find the values of *m* for which the equation

 $x^2 - (m+3)x + 9 = 0$ has equal roots.

- c) Describe geometrically the case when *m* takes either of the values found in part *b*).
- d) Find the set of values of m such that the line y = mx + 1

intersects the curve $y = x^2 - 3x + 10$ in two distinct points.

Simultaneous equations – exercises'answers

Question 1:

a) $\begin{cases} 3x + 2y = 7 \\ 5x + y = 7 \end{cases} \Leftrightarrow \begin{cases} 3x + 2y = 7 \\ -10x - 2y = -14 \end{cases}$ By adding, we have $-7x = -7, x = 1 \text{ and } y = 7 - 5x = 7 - 5 \times 1 = 2$ The solution is (1, 2) b) $\begin{cases} 4x + 3y = 5 \\ 3x + 2y = 4 \end{cases} \Leftrightarrow \begin{cases} 8x + 6y = 10 \\ -9x - 6y = -12 \\ -x = -2, x = 2 \text{ and } 3 \times 2 + 2y = 4 \text{ gives } y = -1 \end{cases}$ The solution is (2, -1) c) $\begin{cases} 4x - 5y = 1 \\ 2x - 3y = 1 \end{cases} \Leftrightarrow \begin{cases} 4x - 5y = 1 \\ -4x + 6y = -2 \\ y = -1 \text{ and } 2x - 3 \times -1 = 1 \text{ gives } x = -2 \end{cases}$ The solution is (-2, -1)

Question 2:

a) $\begin{cases} y = 3x - 4 \\ y = x^{2} - 4x + 6 \end{cases}$ by subtraction, we obtain $x^{2} - 7x + 10 = 0$ (x - 2)(x - 5) = 0x = 2 and $y = 3 \times 2 - 4 = 2$ or x = 5 and $y = 3 \times 5 - 4 = 11$ The solutions are (2, 2) and (5, 11)b) $\begin{cases} y = 4x + 1 \\ y = 2x^{2} - 3x + 4 \end{cases}$ by subtraction, we obtain $2x^{2} - 7x + 3 = 0$ (2x - 1)(x - 3) = 0 $x = \frac{1}{2}$ and $y = 4 \times \frac{1}{2} + 1 = 3$ or x = 3 and $y = 4 \times 3 + 1 = 13$ The solutions are $(\frac{1}{2}, 3)$ and (3, 13) $c) \begin{cases} y = x^{2} - 6x + 5 \\ y = x - 1 \end{cases}$ by subtration, we obtain $x^{2} - 7x + 6 = 0$ (x - 1)(x - 6) = 0x = 1 and y = 1 - 1 = 0 or x = 6 and y = 6 - 1 = 5The solutions are (1, 0) and (6, 5)

Question 3:

x + y + 3 = 0 and $y = 2x^{2} + 3x - 1$ By substitution, we obtain $x + 2x^{2} + 3x - 1 + 3 = 0$ $2x^{2} + 4x + 2 = 0$ $x^{2} + 2x + 1 = 0$ $(x + 1)^{2} = 0$ x = -1 (repeated root) and y = -2The solution is (-1, -2)b) The line x + y + 3 = 0 is TANGENT to the parabola $y = 2x^{2} + 3x - 1$ at the point (-1, -2).

Question 4:

 $y = 7 - x^{2}$ and 2x + y = 4By substitution, we have $2x + 7 - x^{2} = 4$ $x^{2} - 2x - 3 = 0$ (x - 3)(x + 1) = 0x = 3 and y = 7 - 9 = -2or x = -1 and y = 7 - 1 = 6The solutions are (3, -2) and (-1, 6)

Question 5:

 $y + 2x = 12 \text{ and } y = x^{2} - 4x + 9$ by substitution, we have $x^{2} - 4x + 9 + 2x = 12$ $x^{2} - 2x - 3 = 0$ (x - 3)(x + 1) = 0x = 3 and y = 12 - 2x = 6or x = -1 and y = 12 + 2 = 14The solutions are (3, 6) and (-1, 14)

Question 6:

y = 2x + k is tangent to $y = x^2 + 1$ by subtraction, we obtain, $x^2 - 2x + 1 - k = 0$ Because the line is tangent to the parabola, the discriminant of this equation must be 0:

$$(-2)^{2} - 4 \times 1 \times (1-k) = 0$$

$$4 - 4 + 4k = 0 \qquad k = 0$$
Question 7:
a) $y = mx + 1$ and $y = x^{2} - 3x + 10$
By subtraction, we obtain $x^{2} - (3+m)x + 9 = 0$
b) The equation has equal root when the discriminant=0
 $(-(3+m))^{2} - 4 \times 1 \times 9 = 0$
 $9 + 6m + m^{2} - 36 = 0$
 $m^{2} + 6m - 27 = 0$
 $(m+9)(m-3) = 0$
 $m = -9 \text{ or } m = 3$
c) Two distinct points of intersection when the discriminant > 0
 $(3+m)^{2} - 36 > 0$
 $(3+m)^{2} > 36$
 $3+m < -6 \text{ or } 3+m > 6$
 $m < -9 \text{ or } m > 3$

Polynomials

Polynomials - exercises

Question 1:

Use the long division to divide the cubic below.

In each case state the quotient and the remainder.

a)
$$x^{3} - x^{2} - 3x + 3$$
 by $(x+3)$
b) $x^{3} - 3x^{2} - 5x + 6$ by $(x-2)$
c) $x^{3} + 2x^{2} + 3x + 2$ by $(x+2)$

Question 2:

Find the remainder when the following are divided by

i)
$$(x+1)$$
 ii) $(x-1)$
a) $f(x) = 6x^3 - x^2 - 3x - 12$
b) $f(x) = x^4 + 2x^3 - x^2 + 3x + 4$
c) $f(x) = x^5 + 2x^2 - 3$

Question 3:

The remainder when $x^3 + cx^2 + 17x - 10$ is divided by (x+3) is 16. Use the remainder theorem to the value of *c*. Question 4: f(x) = (x+5)(x-2)(x-1) + k. If (x+2) is a factor of f(x), find the value of *k*.

iii)(x-2)

Question 5:

Factorise fully $x^3 - 3x^2 + 3x - 1$, given that (x-1) is a factor. Question 6: $f(x) = x^3 - 2x^2 - 4x + 8$ a) Factorise f(x)

b) Find the solutions of f(x) = 0

Question 7:

Find the roots of the cubic $f(x) = x^3 - x^2 - 3x + 3$

Question 8:

 $f(x) = x^3 - px^2 + 17x - 10$ and (x-5) is a factor of f(x).

- *a*) *Find the value of p.*
- b) Factorise f(x).
- c) Find all solutions of f(x).

Question 9: exam question – Jan 2006

The polynomial p(x) is given by

$$p(x) = x^3 + x^2 - 10x + 8$$

(a)	(i)	Using the	factor theorem,	show that x -	 2 is a factor 	of $p(x)$.	(2 marks)
-----	-----	-----------	-----------------	-----------------	-----------------------------------	-------------	-----------

(ii) Hence express p(x) as the product of three linear factors. (3 marks)

(b) Sketch the curve with equation $y = x^3 + x^2 - 10x + 8$, showing the coordinates of the points where the curve cuts the axes.

(You are not required to calculate the coordinates of the stationary points.) (4 marks)

Polynomials – exercises'answers

Question 1:

a) $x^{3} - x^{2} - 3x + 3 = (x+3)(x^{2} - 4x + 9) - 24$ b) $x^{3} - 3x^{2} - 5x + 6 = (x-2)(x^{2} - x - 7) - 8$ c) $x^{3} + 2x^{2} + 3x + 2 = (x+2)(x^{2} + 3) - 4$

Question 2:

a) i) f(-1) = -6 - 1 + 3 - 12 = -16ii) f(1) = 6 - 1 - 3 - 12 = -10iii) f(2) = 48 - 4 - 12 - 12 = 20b) i) f(-1) = 1 - 2 - 1 - 3 + 4 = -1ii) f(1) = 1 + 2 - 1 + 3 + 4 = 7iii) f(2) = 16 + 16 - 4 + 6 + 4 = 38c) i) f(-1) = -1 + 2 - 3 = -2ii) f(1) = 1 + 2 - 3 = 0iii) f(2) = 32 + 8 - 3 = 37

Question 3:

 $f(x) = x^{3} + cx^{2} + 17x - 10$ the remiander of the division by (x+3) is f(-3)f(-3) = -27 + 9c - 51 - 10 = 169c = 104 $c = \frac{104}{9}$

Question 4:

f(x) = (x+5)(x-2)(x-1) + k(x+2) is a factor of f, means f(-2) = 0 $f(-2) = 3 \times -4 \times -3 + k = 0$ k = -36

Question 5:

 $x^{3}-3x^{2}+3x-1 = (x-1)(x^{2}-2x+1)$ (using the algebraic division) $=(x-1)(x-1)^{2} = (x-1)^{3}$

Question 6:

$$f(x) = x^{3} - 2x^{2} - 4x + 8$$

a) $f(2) = 8 - 8 - 8 + 8 = 0$ so
 $(x-2)$ is a factor of f
 $x^{3} - 2x^{2} - 4x + 8 = (x-2)(x^{2} - 4)$
 $f(x) = (x-2)(x+2)(x-2) = (x-2)^{2}(x+2)$
b) $f(x) = 0$ for $x = 2$ or $x = -2$

Question 7: $f(x) = x^3 - x^2 - 3x + 3$

f(1) = 1 - 1 - 3 + 3 = 0so (x-1) is a factor of f $f(x) = (x - 1)(x^{2} - 3)$ $f(x) = (x - 1)(x + \sqrt{3})(x - \sqrt{3})$

Question 8:

 $f(x) = x^{3} - px^{2} + 17x - 10$ (x-5) is a factor of f so f (5) = 0 f (5) = 5^{3} - 25p + 85 - 10 = 0 p = 8 b) f(x) = (x-5)(x^{2} - 3x + 2) = (x-5)(x-2)(x-1) c0 f(x) = 0 for x = 5 or x = 2 or x = 1

Question 9:

a) i) $p(x) = x^3 + x^2 - 10x + 8$ (x-2) is a factor of p if p(2) = 0 p(2) = 8 + 4 - 20 + 8 = 12 - 20 + 8 = 0 (x-2) is a factor of p ii) $p(x) = (x-2)(x^2 + 3x - 4)$ = (x-2)(x+4)(x-1)b) The graph crosses the x-axis at

(2,0), (-4,0) and (1,0) The graph crosses the y-axis at (0,8)

Coordinates geometry

Straight lines

Straight lines - exercises

Question 1:

Give the equation for the following straight lines AB in the form y = mx + c

a) A(4,1) B(0,-3) b) A(12,-3) B(14,1) c) A(5,7) B(-2,5)

Question 2:

Write the following equations in the form ax + by + c = 0 where a, b and c are integers.

a) y = 5x + 2 b) $3y = \frac{1}{2}x + 3$ c) 4y - 1 = 2(x - 1) d) $y - 3 = \frac{1}{3}(x + 2)$

Question 3:

Give the equation for the following straight lines AB in the form ax + by + c = 0a) A(5,2) B(3,4) b) A(9,-1) B(7,2) c) A(-6,1) B(4,0)

Question 4:

For each of the following,

i) *find* the distance AB

ii) find the midpoint *I* of AB.

a) A(3,4) B(-2,6) b) A(6,2) B(-3,-2) c) A(2,-4) B(-6,-3)

Question 5:

A line L_1 has equation y = 2x - 3. Consider two points A(3,2) and B(-1,4).

a) Work out the equation of the line parallel to L_1 going through A.

Give your answers in the form y = mx + c.

b) Work out the equation of the line perpendicular to L_1 going through B.

Give your answers in the form ax + by + c = 0.

Question 6: exam question

The triangle *ABC* has vertices A(1, 3), B(3, 7) and C(-1, 9).

(a)	(i)	Find the gradient of <i>AB</i> .	(2 marks)
	(ii)	Hence show that angle ABC is a right angle.	(2 marks)
(b)	(i)	Find the coordinates of M , the mid-point of AC .	(2 marks)
	(ii)	Show that the lengths of AB and BC are equal.	(3 marks)
	(iii)	Hence find an equation of the line of symmetry of the triangle ABC.	(3 marks)
Que	stion 7	7: exam question	
The	point	A has coordinates $(1,1)$ and the point B has coordinates $(5, k)$.	
The line <i>AB</i> has equation $3x + 4y = 7$.			

(a)	(1)	Show that $k = -2$.	(1 mark)
	(ii)	Hence find the coordinates of the mid-point of AB.	(2 marks)
(b)	Find the gradient of AB.		(2 marks)
(c) The line AC is perpendicular to the line AB .			
	(i)	Find the gradient of AC.	(2 marks)
	(ii)	Hence find an equation of the line AC.	(1 mark)

(iii) Given that the point C lies on the x-axis, find its x-coordinate. (2 marks)

(

Straight lines – exercises'answers

Question 1:

a)
$$m_{AB} = \frac{-3-1}{0-4} = 1$$
 $y - y_A = m(x - x_A)$
 $y - 1 = x - 4$
 $y = x - 3$
b) $m_{AB} = \frac{1+3}{14-12} = 2$ $y - y_A = m(x - x_A)$
 $y + 3 = 2(x - 12)$
 $y = 2x - 27$
c) $m_{AB} = \frac{5-7}{-2-5} = \frac{2}{7}$ $y - y_A = m(x - x_A)$
 $y - 7 = \frac{2}{7}(x - 5)$
 $y = \frac{2}{7}x + \frac{39}{7}$

Question 2:

a)5x - y + 2 = 0	b)x-6y+6=0
c)2x-4y-1=0	d = x - 3y + 11 = 0

Question 3:

a)
$$m_{AB} = \frac{4-2}{3-5} = -1$$
 $y - y_A = m(x - x_A)$
 $y - 2 = -1(x - 5)$
 $x + y = 7$
b) $m_{AB} = \frac{2+1}{7-9} = -\frac{3}{2}$ $y - y_A = m(x - x_A)$
 $y + 1 = -\frac{3}{2}(x - 9)$
 $3x + 2y - 25 = 0$
c) $m_{AB} = \frac{0-1}{4+6} = -\frac{1}{10}$ $y - y_A = m(x - x_A)$
 $y - 1 = -\frac{1}{10}(x + 6)$
 $x + 10y - 4 = 0$

Question 4:

a)
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{5^2 + 2^2} = \sqrt{29}$$

 $Mid - point I\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right) = \left(\frac{1}{2}, 5\right)$
b) $AB = \sqrt{9^2 + 4^2} = \sqrt{97}$ $I\left(\frac{3}{2}, 0\right)$
c) $AB = \sqrt{8^2 + 1^2} = \sqrt{65}$ $I\left(-2, \frac{-7}{2}\right)$

Question 5:

a) The gradient of L₁ is 2 the line parallel to L₁ has gradient 2 Its equation is $y - y_A = 2(x - x_A)$ y - 2 = 2(x - 3)y = 2x - 4b) The line perpendicular to L. has gradient $-\frac{1}{2}$

The line perpendicular to
$$L_1$$
 has gradient $-\frac{1}{2}$
Its equation is $y - y_B = -\frac{1}{2}(x - x_B)$
 $y - 4 = -\frac{1}{2}(x + 1)$
 $x + 2y - 7 = 0$

 $a(i)m_{AB} = \frac{7-3}{3-1} = 2$ *ii*) the gradient of BC is $m_{BC} = \frac{9-7}{-1-3} = -\frac{1}{2}$ $m_{AB} \times m_{BC} = 2 \times -\frac{1}{2} = -1$ the line AB and BC are perpendicular, the triangle ABC is a right-angled triangle. b)i)M(0,6)*ii*) $AB = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$ $BC = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$ AB = BCiii) The triangle ABC is a right-angled isosceles triangle, Its line of symmetry is the line AM The gradient of AM = $m_{AM} = \frac{6-3}{0-1} = -3$ The equation of AM is $y - y_M = -3(x - x_M)$ y = -3x + 6y - 6 = -3x**Question 7:**

a)
$$3x + 4y = 7$$
 and B belongs to the line so
 $3 \times 5 + 4 \times k = 7$ $15 + 4k = 7$
 $k = -2$
ii) A(1,1) and B(5,-2) $M(3, -\frac{1}{2})$
b) $m_{AB} = \frac{-2 - 1}{5 - 1} = \frac{-3}{4}$
c) i) $m_{AC} = -\frac{1}{m_{AB}} = \frac{4}{3}$
ii) The equation of AC is $: y - 1 = \frac{4}{3}(x - 1)$
 $3y - 3 = 4x - 4$ gives $4x - 3y - 1 = 0$
iii) C(x,0) belongs to the line AC so $4x - 0 - 1 = 0$
 $x = \frac{1}{4}$

Circles

Equation of a circle.

Consider a circle C with centre $\Omega(a,b)$ and radius *r*. Any point M(x, y) on this circle satisfies $\Omega M = r$. This is equivalent to $\Omega M^2 = r^2$

 $(x-a)^{2} + (y-b)^{2} = r^{2}$

In particular if the centre is (0,0), the equation becomes $x^2 + y^2 = r^2$.

Re-arranging circle equations

In its factorised form, it is easy to read centre and radius from the equation of a circle: $(x-3)^2 + (y+1)^2 = 9$ is the equation of the circle centre (3,-1) radius 3.

But an equation can be given in its expanded form: $x^2 + y^2 + 2ax + 2by + c = 0$. To re-arrange this equation, use the complete square form with $x^2 + 2ax$ and $y^2 + 2bx$.

example: $x^{2} + y^{2} + 6x + 4y - 3 = 0$ $x^{2} + 6x + y^{2} + 4y - 3 = 0$ $(x+3)^{2} - 9 + (y+2)^{2} - 4 - 3 = 0$ $(x+3)^{2} + (y+2)^{2} = 16$

This is the circle centre (-3, -2) radius r = 4

Circle properties

a) Any point joined to the extremities of a diameter form a right-angled triangle.

- b) The perpendicular bisector of a chord goes through the centre of the circle.
- c) A tangent to the circle is perpendicular to the radius at its point of contact.

Work out exercise: Tangent to a circle

The circle C has centre O(2,1) and radius 25. The point A(6,4) belongs to the circle.

Work out the equation of the tangent to the circle at A.

•The tangent at A is PERPENDICULAR to the radius OA.

The gradient of OA is $m_1 = \frac{4-1}{2-6} = \frac{3}{-4}$ The gradient of the tangent is therefore $-\frac{1}{m_1} = \frac{4}{3}$ The equation of the tangent is $:y - 4 = \frac{4}{3}(x - 6)$ 3y - 12 = 4x - 244x - 3y - 12 = 0

Circles - exercises

Question 1:

For each of the following circles find the radius and the coordinates of the centre.

a) $x^{2} + y^{2} + 2x - 6y - 6 = 0$ $b) x^2 + y^2 - 2y - 4 = 0$ c) $x^{2} + y^{2} - 6x - 4y = 12$ $d x^{2} + y^{2} - 10x + 6y + 13 = 0$ **Question 2:** A circle has the equation $(x+1)^2 + (y-2)^2 = 13$. The circle passess through A(-3, -1). Find the equation of the tangent at A in the form ax + by + c = 0. **Question 3:** A circle has the equation $(x-3)^2 + (y-4)^2 = 25$. The circle passess through A(7,1). Find the equation of the tangent at A in the form ax + by = c. **Question 4:** A circle has the equation $x^2 + y^2 + 2x - 7 = 0$. Find the equation of the tangent to the circle at (-3,2). **Question 5:** A circle has the equation $x^2 + y^2 + 2x + 4y = 5$. Find the equation of the normal to the circle at (0, -5). Give your answer in the form ax + by = c. **Question 6:** exam guestion A circle with centre C has equation $x^2 + y^2 - 10y + 20 = 0$. (a) By completing the square, express this equation in the form $x^{2} + (v - b)^{2} = k$ (b) Write down: (i) the coordinates of C; (ii) the radius of the circle, leaving your answer in surd form. **Question 7:** exam guestion

A circle with centre C has equation $x^2 + y^2 - 6x + 10y + 9 = 0$.

(a) Express this equation in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (3 marks)

(2 marks)

(1 mark)

(1 mark)

(b) Write down:

- (i) the coordinates of C;
- (ii) the radius of the circle. (2 marks)

$(x)^{2} + (y-1)^{2} - 1 - 4 = 0$

Ouestion 1:

a) $x^{2} + y^{2} + 2x - 6y - 6 = 0$

 $(x+1)^{2}-1+(y-3)^{2}-9-6=0$

 $(x+1)^{2} + (y-3)^{2} = 16 = 4^{2}$

 $(x)^{2} + (y-1)^{2} = \sqrt{5}^{2}$

b) $x^{2} + y^{2} - 2y - 4 = 0$

The circle has centre (0,1) and radius $\sqrt{5}$

The circle has centre (-1,3) and radius 4

c) $x^{2} + y^{2} - 6x - 4y = 12$ $(x-3)^{2} - 9 + (y-2)^{2} - 4 = 12$ $(x-3)^{2} + (y-2)^{2} = 5^{2}$ The circle has centre (3,2) and radius 5 d) $x^{2} + y^{2} - 10x + 6y + 13 = 0$ $(x-5)^{2} - 25 + (y+3)^{2} - 9 + 13 = 0$ $(x-5)^{2} + (y+3)^{2} = \sqrt{21}^{2}$

The circle has centre (5, -3) and radius $\sqrt{21}$ Question 2:

The centre of the circle is I(-1,2). The tangent to the circle at A(-3,-1)is perpendicular to the radius IA Gradient of $IA = m_{IA} = \frac{-1-2}{-3+1} = \frac{3}{2}$ The gradient of the tangent is $m = -\frac{1}{m_{IA}} = -\frac{2}{3}$ The equation of the tangent is $y - y_A = m(x - x_A)$ $y + 1 = -\frac{2}{3}(x+3)$ 3y + 3 = -2x - 62x + 3y = -9

Circles – exercises 'answers

Question 3:

The centre of the circle is $\Omega(3,4)$ The radius A Ω has gradient $m_{A\Omega} = \frac{4-7}{3-1} = -\frac{3}{2}$ The tangent to the circle at A is perpendicular to the radius: its gradient is $\frac{2}{3}$ The equation of the tangent is $y-1=\frac{2}{3}(x-7)$ 3y-3=2x-142x-3y=11

Question 4:

 $x^{2} + y^{2} + 2x - 7 = 0$ (x+1)² + y² = 8 The centre of the circle is $\Omega(-1,0)$ The gradient of the radius $A\Omega$ is $m_{A\Omega} = \frac{0-2}{-1+3} = -1$ The gradient of the tangent is 1 The equation of the tangent is y - 2 = 1(x+3) y = x + 5 **Ouestion 5:** $x^{2} + y^{2} + 2x + 4y = 5$ and A(0, -5) $(x+1)^{2} + (y+2)^{2} = 10$ The centre of the circle is $\Omega(-1, -2)$ The normal is the radius $A\Omega$ and its the gradient is $m_{A\Omega} = \frac{-2+5}{1-\Omega} = -3$ The equation of the normal is y + 5 = -3(x - 0)3x + y = -5**Ouestion 6:** $x^{2} + y^{2} - 10y + 20 = 0$ a) $x^{2} + (y-5)^{2} = 5$ b) The centre has coordinates (0,5)The radius is $r = \sqrt{5}$ **Question 7:** $x^{2} + y^{2} - 6x + 10y + 9 = 0$ a) $(x-3)^2 - 9 + (y+5)^2 - 25 + 9 = 0$ $(x-3)^{2} + (y+5)^{2} = 25$ b(i) The centre is (3, -5)

ii) The radius is r = 5

Transformations of graphs

Translations of graphs

A curve C_f has equation y = f(x).

"a" is a positive number.

•The curve with equation y = f(x) - b is the translation of C_f by vector $\begin{pmatrix} 0 \\ -b \end{pmatrix}$

•The curve with equation
$$y = f(x+a)$$
 is the translation of C_f by vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$

Combined translations

• The curve with equation y + b = f(x+a) is the translation of C_f by vector $\begin{pmatrix} -a \\ -b \end{pmatrix}$

Examples : The curve with equation $y = (x-3)^2 + 2$ is the translation of

the curve $y = x^2 by vector \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

The circle $(x-3)^2 + (y+1)^2 = 9$ is the translation of the circle $x^2 + y^2 = 9$ by the vector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$.

Parabolas

All parabolas of the form $y = x^2 + bx + c$ are the image of the parabola $y = x^2$ To work out the vector of this translation, use the completed square form:

$$y = x^{2} + bx + c = (x + p)^{2} + q$$

The vector of the translation is $\begin{pmatrix} -p \\ q \end{pmatrix}$.

Note : This vector is the vector \overrightarrow{OV} , where V(-p,q) is the vertex of the parabola.

Question 1:

- (a) Express $x^2 + 8x + 19$ in the form $(x + p)^2 + q$, where p and q are integers. (2 marks)
- (b) Hence, or otherwise, show that the equation $x^2 + 8x + 19 = 0$ has no real solutions. (2 marks)
- (c) Sketch the graph of $y = x^2 + 8x + 19$, stating the coordinates of the minimum point and the point where the graph crosses the *y*-axis. (3 marks)
- (d) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 8x + 19$. (3 marks)

Question 2:

- (a) Express $x^2 3x + 4$ in the form $(x p)^2 + q$, where p and q are rational numbers. (2 marks)
- (b) Hence write down the minimum value of the expression $x^2 3x + 4$. (1 mark)
- (c) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 3x + 4$. (3 marks)

Question 3:

- (a) Express (x-5)(x-3)+2 in the form $(x-p)^2+q$, where p and q are integers. (3 marks)
- (b) (i) Sketch the graph of y = (x 5)(x 3) + 2, stating the coordinates of the minimum point and the point where the graph crosses the *y*-axis. (3 marks)
 - (ii) Write down an equation of the tangent to the graph of y = (x 5)(x 3) + 2at its vertex. (2 marks)
- (c) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of y = (x 5)(x 3) + 2. (3 marks)

Question 4:

- (a) (i) Express $x^2 + 2x + 5$ in the form $(x + p)^2 + q$, where p and q are integers. (2 marks)
 - (ii) Hence show that $x^2 + 2x + 5$ is always positive. (1 mark)
- (b) A curve has equation $y = x^2 + 2x + 5$.
 - (i) Write down the coordinates of the minimum point of the curve. (2 marks)
 - (ii) Sketch the curve, showing the value of the intercept on the y-axis. (2 marks)
- (c) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 2x + 5$. (3 marks)

Transforming graphs – exercises 'answers

Question 1:

a) $x^{2} + 8x + 19 = (x + 4)^{2} + 3$ b) $x^{2} + 8x + 19 = 0$ $(x + 4)^{2} + 3 = 0$ $(x + 4)^{2} = -3$

No solution

(a squared number is always positive)

c) The minimum point is (-4,3)

The graph crosses the y-axis at (0,19)

d) Translation vector $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$

Question 2:

a)
$$x^{2} - 3x + 4 = (x - \frac{3}{2})^{2} - \frac{9}{4} + 4$$

 $\left(x - \frac{3}{2}\right)^{2} + \frac{7}{4}$

b) The minimum point is $\left(\frac{3}{2}, \frac{7}{4}\right)$

c) Translation vector $\begin{pmatrix} \frac{3}{2} \\ \frac{7}{4} \end{pmatrix}$

Question 3:

a) $(x-5)(x-3)+2 = x^2 - 8x + 17 = (x-4)^2 + 1$ b)i)Minimum point (4,1) The graph crosses the y-axis at (0,17)

$$ii$$
) y = 1

c) Translation vector $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$

Question 4:

a) i)
$$x^{2} + 2x + 5 = (x + 1)^{2} + 4$$

ii) For all x, $(x + 1)^{2} \ge 0$
 $(x + 1)^{2} + 4 \ge 4$
 $y \ge 4 \ge 0$
b) i) Minimum point (-1,4)

ii) The graph crosses the y-axis at (0,5)

c) Translation vector $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$

Calculus

Differentiation

Notation

• The function you get from differentiating y with respect to x

is called the DERIVATIVE of y and it's written $\frac{dy}{dx}$.

• $\frac{dy}{dx}$ is the rate of change of y with respect to x.

It is the gradient of the curve/the tangent to the curve.

• The notation f'(x)(f prime of x) is sometimes used instead of $\frac{dy}{dx}$.

Differentiation from first principle. Consider two points on a curve A(x, f(x)) and a point B close to A B(x+h, f(x+h))where H is "small". The chord AB has gradient $\frac{f(x+h) - f(x)}{r+h-r} = \frac{f(x+h)}{r+h-r}$ When B get closer and closer to A, h tends to 0. f(x+h)If $\frac{f(x+h) - f(x)}{h}$ has a value when h tends to 0, tangent at (x, f(x))f(x)this value is the gradient of the curve at A: f'(x). Example: $f(x) = x^2$ Let's work out the gradient of the curve at x = 3. • $A(3,3^2)$ and $B(3+h,(3+h)^2)$ the gradient of AB: $m = \frac{(3+h)^2 - 3^2}{3+h-3} = \frac{9+6h+h^2-9}{h} = 6+h$ When h tends to 0, m tends to 6: Conclusion: $\frac{dy}{dx}(x=3) = f'(3) = 6$ Differentiating polynomials • if $y = x^n$ then $\frac{dy}{dx} = nx^{n-1}$ • if $y = x^{n} + x^{p}$ then $\frac{dy}{dx} = nx^{n-1} + px^{p-1}$ • if $y = k \times x^n$ then $\frac{dy}{dx} = k \times nx^{n-1}$ where $k \in \mathbb{R}$. Example: $y = x^4$ $\frac{dy}{dx} = 4x^3$ $y = 5x^6 \qquad \frac{dy}{dx} = 5 \times 6x^5 = 30x^5$ $y = 3x^4 + 5x^3 + x$ $\frac{dy}{dx} = 12x^3 + 15x^2 + 1$
Differentiation - exercises

Question 1:

Differentiate the following functions

a)
$$f(x) = 4x^3 - x^2$$

b) $f(x) = x + 1$
c) $f(x) = x^4 - x$
d) $f(x) = 3x^2 + x - 5$
e) $f(x) = -2x^2 + 4x - 6$

Question 2:

Find the gradient of each of the following curves

a) $y = x^4 - x^2 + 2$ when $x = 3$	b) $y = 2x^5 + 4$ when $x = -2$
c) $y = x(x-1)(x-2)$ at (4,24)	d) $y = 5(x^2 - 1) + x at (-1, -1)$

Question 3:

For each of the following functions, find the coordinates of the point or points where the gradient is 0

a)
$$y = x^2 - 2x$$
 b) $y = 3x^2 + 4x$ c) $y = 5x^2 - 3x$ d) $y = 9x - 3x^3$

Differentiation – exercises 'answers

Question 1:

$$a)\frac{df}{dx} = 12x^{2} - 2x \qquad b)\frac{df}{dx} = 1 \qquad c)\frac{df}{dx} = 4x^{3} - 1$$
$$d)\frac{df}{dx} = 6x + 1 \qquad e)\frac{df}{dx} = -4x + 4$$

Question 2:

a)
$$\frac{dy}{dx} = 4x^3 - 2x$$

b) $\frac{dy}{dx} = 10x^4$
c) $y = x^3 - 3x^2 + 2x$
dy $\frac{dy}{dx} = 10x + 1$
dy $\frac{dy}{dx} = -2 = 10 \times (-2)^4 = 160$
d) $y = 5x^2 + x - 5$
dy $\frac{dy}{dx} = 3x^2 - 6x + 2$
dy $\frac{dy}{dx} (x = 4) = 26$
dy $\frac{dy}{dx} (x = -1) = -9$

Question 3: dy

a)
$$\frac{dy}{dx} = 2x - 2 = 0$$
 for $x = 1$
 $y = 1^2 - 2 = -1$
(1,-1)
b) $\frac{dy}{dx} = 6x + 4 = 0$ for $x = -\frac{2}{3}$
 $y = 3 \times \left(-\frac{2}{3}\right)^2 + 4 \times \left(-\frac{2}{3}\right) = -\frac{4}{3}$
 $\left(-\frac{2}{3}, -\frac{4}{3}\right)$
c) $\frac{dy}{dx} = 10x - 3 = 0$ for $x = \frac{3}{10}$
 $y = -\frac{9}{20}$
 $\left(\frac{3}{10}, -\frac{9}{20}\right)$
d) $\frac{dy}{dx} = 9 - 9x^2 = 0$ for $x^2 = 1$
 $x = -1$ or $x = 1$
 $y = -6$ or $x = 6$
(-1,-6) or (1,6)

Using differentiation

Tangents and normals

- A tangent to a curve is a straight line that touches the curve The gradient of the tangent is the same as the gradient of the curve at the point of contact.
- A normal to a curve at a point A is a straight line which is perpendicular to the tangent to the curve at A.

Consequence: $m_{\text{tangent}} \times m_{normal} = -1$ or $m_{normal} = \frac{-1}{m_{\text{tangent}}}$

Second order derivatives

- If you differentiate y with respect to x, you get the derivative $\frac{dy}{dx}$.
- If you differentiate $\frac{dy}{dx}$ with respect to x, you get the second order derivative $\frac{d^2y}{dx^2}$.
- The second order derivative gives the rate of change of the gradient of the curve with respect to *x*.

• If
$$y = f(x)$$
, we use the notation $\frac{d^2y}{dx^2} = f''(x)$.

Stationary points

Stationary points occur when the gradient of the curve is zero: $\frac{dy}{dt} = 0$

There are three kinds of stationary points:

To work out the coordinates of a stationary point:

1) Work out f'(x)

Minimum and maximum points

- 2)Solve the equation f'(x) = 0
- 3) Substitute the *x*-values found into the original equation to find y-values.

dx Maximum When the gradient changes from positive to negative. Minimum When the gradient changes from negative to positive. Point of inflection When the graph briefly flattens out.

Tangen

Normal

If the point $A(x_A, f(x_A))$ is a stationary point of the curve y = f(x), The nature of the point A is determined by the sign of the second order derivative:

If
$$\frac{d^2 y}{dx^2}(x = x_A) < 0$$
, *A* is a maximum point
If $\frac{d^2 y}{dx^2}(x = x_A) = 0$, *A* is point of inflection
If $\frac{d^2 y}{dx^2}(x = x_A) > 0$, *A* is a minimum point

Using differentiation - exercises

Question 1:

Find the equation of the tangent to each of these curves at the given point.

Give your answer in the form y = mx + c *a*) $y = 9x - x^2$ (1,7) *b*) $y = x^3 - 2x + 3$ (2,7) *c*) y = (x+2)(2x-3) (2,4)

Find the equation of the tangent to each of these curves at the given point. Give your answer in the form ax + by + c = 0 where *a*, *b* and *c* are integers. $d)y = 3x^2 - 4x + 2$ (2,6) $e)y = x^2(x+4) - 5x$ (-1,8)

Question 2:

The curve with equation $y = x^3 + x^2 + x + 5$ passes through the point A(1,8).

- a) Work out the equation of the tangent to the curve at A.
 - (give your answer in the form y = mx + c)
- b) Work out the equation of the normal to the curve at A in the form ax+by+c=0.

Question 3:

Find the stationary points on the graphs of the following functions and say if they are maximum or minimum turning points.

a)
$$f(x) = 8x^{3} + 16x^{2} + 8x + 1$$

b) $f(x) = 2x^{4} + x$
c) $f(x) = x^{3} - 3x^{2} + 4$

Question 4:

The curve given by the function $f(x) = x^3 + ax^2 + bx + c$ has a stationary point with coordinates (3,10). If f''(x) = 0 at (3,10), find *a*, *b* and *c*.

Question 5:

Given that the curve with equation $y = x^4 + kx^3 + x^2 + 17$ has only one stationary point,

show that $k^2 < \frac{32}{9}$.

Find the coordinates of the stationary point and say if it is a maximum or a minimum point.

Question 6:

A ball is catapulted vertically with an initial speed of 30m/s.

After *t* seconds the height h of the ball is given by $h = 30t - 7.5t^2$.

Use calculus to find the maximum height the ball reaches.

Question 1:	Question 3:	Question 5:
$a)\frac{dy}{dx} = 9 - 2x \qquad \qquad \frac{dy}{dx}(x=1) = 9 - 2 = 7$	$a)\frac{df}{dx} = 24x^2 + 32x + 8 = 0$	$\frac{dy}{dx} = 4x^3 + 3kx^2 + 2x = 0$
The equation of the tangent is $y-7 = 7(x-1)$	$3x^2 + 4x + 1 = 0$	$r(4r^2 + 3kr + 2) = 0$
y = 7x b) $\frac{dy}{dx} = 3x^2 - 2$ $\frac{dy}{dx}(x=2) = 10$ The equation of the tangent is $y - 7 = 10(x-2)$	(3x+1)(x+1) = 0 $x = -\frac{1}{3} \text{ or } x = -1$	so $x = 0$ and $y = 17$ give THE stationary point
y = 10x - 13 $y = 2x^{2} + x - 6 \qquad \frac{dy}{dx} = 4x + 1$ $\frac{dy}{dx}(x = 2) = 9$	$f(-\frac{1}{3}) = -\frac{5}{27}$ or $f(-1) = 1$ The stationary points are $A(-\frac{1}{3}, \frac{5}{27})$ and $B(-1, 1)$. d^2f A8 + 22	This means that $4x^2 + 3kx + 2$ has no real roots : The discriminant is < 0 $(3k)^2 - 4 \times 4 \times 2 < 0$
The equation of the tangent is $y-4=9(x-2)$	$\frac{1}{dx^2} = 48x + 32$	$9k^2 - 32 < 0$
y = 9x - 14 $d)\frac{dy}{dx} = 6x - 4 \qquad \qquad \frac{dy}{dx}(x = 2) = 8$ The equation of the tangent is $y - 6 = 8(x - 2)$	$\frac{d^2f}{dx^2}(x=-\frac{1}{3}) = 16 > 0 \text{A is a minimum}$ $\frac{d^2f}{dx^2}(x=-1) = -16 < 0 \text{B is a maximum}$	$k^2 < \frac{32}{9}$. The stationary point is (0,17) d^2y is $2 - 4y = 5$
8x - y - 10 = 0 $e) \frac{dy}{dx} = 3x^2 + 8x - 5$ $\frac{dy}{dx}(x = -1) = -10$ The equation of the tangent is $y - 8 = -10(x + 1)$ 10x + y + 2 = 0	Question 4: $f(x) = x^{3} + ax^{2} + bx + c$ $\frac{df}{dx} = 3x^{2} + 2ax + b$ $\frac{df}{dx}(x = 3) = 27 + 6a + b = 0$	$\frac{d^2 y}{dx^2} = 12x^2 + 6kx + 2$ $\frac{d^2 y}{dx^2}(x = 0) = 2 > 0.$ The point (0,17) is a minimum.
Question 2:	6a + b = -27	Question 6:
a) $\frac{dy}{dx} = 3x^2 + 2x + 1$ The equation of the tangent is $y - 8 = 6(x - 1)$ y = 6x + 2	$\frac{d^2 f}{dx^2} = 6x + 2a$ $\frac{d^2 f}{dx^2}(x=3) = 18 + 2a = 0 \qquad a = -9$ and $b = -27 - 6a = 27$	$\frac{dh}{dt} = 30 - 15t = 0 for \ t = 2$ for $t = 2, \ h = 60 - 30 = 30$

 $f(x) = x^3 - 9x^2 + 27x + c$ f(3) = 27 - 81 + 81 + c = 10

c = 10 - 27 = -17

Conclusion: $f(x) = x^3 - 9x^2 + 27x - 17$

Using differentiation – exercises 'answers

b) The gradient of the normal is $-\frac{1}{6}$ The equation of the normal is $y-8 = -\frac{1}{6}(x-1)$ 6y - 48 = -x + 1x + 6y - 49 = 0

The maximum height reached

is 30m at t = 2 seconds

Integration

Question 1:

Find the following

a)
$$\int x^2 dx$$
 b) $\int 7x^4 dx$ c) $\int \frac{x}{2} dx$ d) $\int -\frac{1}{4} x dx$
e) $\int (x^6 + x) dx$ f) $\int (10x^2 + 4x + 1) dx$ g) $\int x(x+2) dx$
h) $\int \frac{2x^3 + 4x^2}{x} dx$ i) $\int \frac{1}{2}x^3 + \frac{2x^5}{x^2} dx$

Question 2:

For each of the following, the curve y = f(x) goes through the given point. Find f(x)

a)
$$f'(x) = 4x^3$$
 (0,5)
b) $f'(x) = 3x^2 - 4x + 3$ (1,-3)
c) $f'(x) = 6x(x+2)$ (-1,1)
d) $f'(x) = \frac{9x^3 + 2x^2}{x}$ (-1,2)

Question 3:

Consider $\frac{dy}{dt} = (t-3)^2$. Given that y = 9 when t = 4, find y as a function of t.

Question 4:

The curve y = f(x) has derivative $f'(x) = x^3 + \frac{x}{2} + 3$ and passes through (1, -1).

Find the equation of the curve.

Question 1:

 $a)\int x^{2}dx = \frac{1}{3}x^{3} + c \qquad b)\int 7x^{4}dx = \frac{7}{5}x^{5} + c$ $c)\int \frac{x}{2}dx = \frac{1}{4}x^{2} + c \qquad d)\int -\frac{1}{4}xdx = -\frac{1}{8}x^{2} + c$ $e)\int (x^{6} + x)dx = \frac{1}{7}x^{7} + \frac{1}{2}x^{2} + c \qquad f)\int (10x^{2} + 4x + 1)dx = \frac{10}{3}x^{3} + 2x^{2} + x + c$ $g)\int x(x+2)dx = \frac{1}{2}x^{2} + x^{2} + c \qquad h)\int \frac{2x^{3} + 4x^{2}}{x}dx = \int (2x^{2} + 4x)dx = \frac{2}{3}x^{3} + 2x^{2} + c$ $i)\int \frac{1}{2}x^{3} + \frac{2x^{5}}{x^{2}}dx = \int \frac{1}{2}x^{3} + 2x^{3}dx = \frac{1}{8}x^{4} + \frac{1}{2}x^{4} + c$

Question 2:

a) $f(x) = x^4 + 5$ b) $f(x) = x^3 - 2x^2 + 3x + -5$ c) $f(x) = 2x^3 + 6x^2 - 3$ d) $f(x) = 3x^3 + x^2 + 4$

Question 3:

$$\frac{dy}{dt} = (t-3)^2 = t^2 - 6t + 9$$

$$y = \frac{1}{3}t^3 - 3t^2 + 9t + c$$

for $t = 4, y = 9$ so

$$9 = \frac{64}{3} - 48 + 36 + c$$

$$c = -\frac{1}{3}$$

$$y = \frac{1}{3}t^3 - 3t^2 + 9t - \frac{1}{3}$$

Question 4:

$$y = f(x) = \frac{1}{4}x^{4} + \frac{1}{4}x^{2} + 3x + c$$

for $x = 1$, $y = -1$ so
 $-1 = \frac{1}{4} + \frac{1}{4} + 3 + c$
 $c = -\frac{9}{2}$
 $f(x) = \frac{1}{4}x^{4} + \frac{1}{4}x^{2} + 3x - \frac{9}{2}$

Integration and area

Definite integrals

Definite integrals have numbers, *a* and *b*, next to the integral sign. They indicate the range of x-values to integrate the function between. *a* is the lower limit, *b* is the upper limit a < b

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

where F is an integral of f.

Example:

$$\int_{1}^{2} x^{2} dx = \left[\frac{1}{3}x^{3}\right]_{1}^{2} = \left(\frac{1}{3} \times 2^{3}\right) - \left(\frac{1}{3} \times 1^{3}\right) = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

Area under a curve

The value of a definite integral represents the area between the curve of the function, the x-axis and the line x = a and x = b.

Be careful: if the curve is below the x-axis, i.e if f(x) < 0, the integral will give a negative value.

<u>Area between two curves</u> f(x) and g(x) are two functions and *a* and *b* are two numbers.

when
$$a < x < b$$
, $f(x) > g(x)$

The area between the two curves and the lines x = a and x = b is

Question 1:

Work out

$$a)\int_{1}^{3} 3x^{2} dx \qquad b)\int_{-2}^{0} (4x^{3} + 2x) dx \qquad c)\int_{0}^{2} (x^{3} + x) dx \qquad d)\int_{-5}^{-2} (x+1)^{2} dx$$

Question 2:

Given that $\int_0^a x^3 dx = 4$, work out the value of *a*, where a > 0.

Question 3:

Calculate the shaded area in the following diagram:

Question 4:

Find the area between the graph of $y = x^2 + x$, the x-axis and the lines x = 1 and x = 3

Question 5:

Find the area between the graph of $y = 5x^3$, the x-axis and the lines x = -2 and x = -1.

Question 6:

Find the area enclosed by the curve $y = x^2 + 4$ and the line y = x + 4.

Question 7:

Find the area enclosed by the curve $y = x^2 + x + 1$, the line y = 4 - x and the x - axis for $x \ge 0$.

Question 8:

Work out the shaded area in the following diagrams:

Integration and area – exercises 'answers

Question 1:

$$a)\int_{1}^{3} 3x^{2} dx = \left[x^{3}\right]_{1}^{3} = 3^{3} - 1^{3} = 26$$

$$b)\int_{-2}^{0} (4x^{3} + 2x) dx = \left[x^{4} + x^{2}\right]_{-2}^{0} = 0 - ((-2)^{4} + (-2)^{2}) = -20$$

$$c)\int_{0}^{2} (x^{3} + x) dx = \left[\frac{1}{4}x^{4} + \frac{1}{2}x^{2}\right]_{0}^{2} = (4 + 2) - (0) = 6$$

$$d)\int_{-5}^{-2} (x + 1)^{2} dx = \int_{-5}^{-2} x^{2} + 2x + 1 dx = \left[\frac{1}{3}x^{3} + x^{2} + x\right]_{-5}^{-2}$$

$$= \left(-\frac{8}{3} + 4 - 2\right) - \left(-\frac{125}{3} + 25 - 5\right) = 21$$

Question 2:

$$\int_0^a x^3 dx = \left[\frac{1}{4}x^4\right]_0^a = \frac{1}{4}a^4 = 4$$

This gives $a^4 = 16$ $a = \sqrt[4]{16} = 2$ (because a > 0)

Question 3:

$$Area = \int_{1}^{3} x^{3} + 2x dx = \left[\frac{1}{4}x^{4} + x^{2}\right]_{1}^{3}$$
$$Area = \left(\frac{81}{4} + 9\right) - \left(\frac{1}{4} + 1\right) = 28$$

Question 4:

$$Area = \int_{1}^{3} x^{2} + x dx = \left[\frac{1}{3}x^{3} + \frac{1}{2}x^{2}\right]_{1}^{3}$$
$$Area = \left(9 + \frac{9}{2}\right) - \left(\frac{1}{3} + \frac{1}{2}\right) = \frac{38}{3}$$

Question 5:

$$I = \int_{-2}^{-1} 5x^3 dx = \left[\frac{5}{4}x^4\right]_{-2}^{-1}$$
$$I = \left(\frac{5}{4}\right) - (20) = -\frac{75}{4}$$

The area is $\frac{73}{4} = 18\frac{3}{4}$

Question 6:

We need to find where the parabola and the line intersect:

$$\begin{cases} y = x^{2} + 4 & \text{this gives:} \\ y = x + 4 & x^{2} + 4 = x + 4 \\ x^{2} - x = 0 & \\ x(x - 1) = 0 & \\ x = 0 \text{ or } x = 1 & \\ I = \int_{0}^{1} (x + 4) - (x^{2} + 4) dx = \int_{0}^{1} x - x^{2} dx & \\ I = \left[\frac{1}{2}x - \frac{1}{3}x^{3}\right]_{0}^{1} = \left(\frac{1}{2} - \frac{1}{3}\right) - (0) = \frac{1}{6} & \\ \text{The area is } \frac{1}{6}. \end{cases}$$

Question 7:

We solve simultaneously $\begin{cases} y = x^2 + x + 1\\ y = 4 - x \end{cases}$ $x^2 + x + 1 = 4 - x$ $x^2 + 2x - 3 = 0$ (x + 3)(x - 1) = 0x = -3 or x = 1But we want x \ge 0 so we work out

$$I = \int_0^1 (x^2 + x + 1) - (4 - x)dx = \int_0^1 x^2 + 2x - 3dx$$
$$I = \left[\frac{1}{3}x^3 + x^2 - 3x\right]_0^1 = \left(\frac{1}{3} + 1 - 3\right) - (0) = -\frac{5}{3}$$

The area comprised between the curve is $\frac{5}{3}$. Question 8:

a)
$$I = \int_{-2}^{2} 16 - (3x^2 + 4) dx = \int_{-2}^{2} 12 - 3x^2 dx$$

 $I = [12x - x^3]_{-2}^{2} = (24 - 8) - (-24 + 8) = 48$
b) $I = \int_{0}^{2} 2x - x^2 dx = [x^2 - \frac{1}{3}x^3]_{0}^{2}$
 $I = (4 - \frac{8}{3}) - (0) = \frac{4}{3}$
The area is $\frac{4}{3}$.

General Certificate of Education January 2006 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 1 MPC1

QUALIFICATIONS ALLIANCE

Tuesday 10 January 2006 1.30 pm to 3.00 pm

For this paper you must have:

· an 8-page answer book You must not use a calculator.

• the blue AQA booklet of formulae and statistical tables

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The Paper Reference is MPC1.
- · Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75.
- · The marks for questions are shown in brackets.

Advice

· Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

- 1 (a) Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$. (2 marks)
 - (b) Express $\sqrt{8} + \sqrt{18}$ in the form $n\sqrt{2}$, where *n* is an integer. (2 marks)
- **2** The point A has coordinates (1, 1) and the point B has coordinates (5, k). The line *AB* has equation 3x + 4y = 7.
 - (a) (i) Show that k = -2. (1 mark)
 - (ii) Hence find the coordinates of the mid-point of AB. (2 marks)
 - (b) Find the gradient of AB. (2 marks)
 - The line AC is perpendicular to the line AB. (c)
 - (i) Find the gradient of AC. (2 marks)
 - (ii) Hence find an equation of the line AC. (1 mark)
 - (iii) Given that the point C lies on the x-axis, find its x-coordinate. (2 marks)
- (i) Express $x^2 4x + 9$ in the form $(x p)^2 + q$, where p and q are integers. 3 (a) (2 marks)
 - (ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y = x^2 - 4x + 9$. (2 marks)
 - (b) The line L has equation v + 2x = 12 and the curve C has equation $v = x^2 4x + 9$.
 - (i) Show that the x-coordinates of the points of intersection of L and C satisfy the equation

$$x^2 - 2x - 3 = 0 (1 mark)$$

(ii) Hence find the coordinates of the points of intersection of L and C. (4 marks)

- 4 The quadratic equation $x^2 + (m+4)x + (4m+1) = 0$, where m is a constant, has equal roots.
 - (a) Show that $m^2 8m + 12 = 0$. (3 marks)
 - (b) Hence find the possible values of *m*. (2 marks)
- 5 A circle with centre C has equation $x^2 + y^2 8x + 6y = 11$.
 - (a) By completing the square, express this equation in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (3 marks)

- (b) Write down:
 - (i) the coordinates of C; (1 mark)
 - (ii) the radius of the circle. (1 mark)
- (c) The point O has coordinates (0, 0).
 - (i) Find the length of CO. (2 marks)
 - (ii) Hence determine whether the point *O* lies inside or outside the circle, giving a reason for your answer. (2 marks)
- 6 The polynomial p(x) is given by

$$p(x) = x^3 + x^2 - 10x + 8$$

(a) (i) Using the factor theorem, show that x - 2 is a factor of p(x). (2 marks)

- (ii) Hence express p(x) as the product of three linear factors. (3 marks)
- (b) Sketch the curve with equation $y = x^3 + x^2 10x + 8$, showing the coordinates of the points where the curve cuts the axes.

(You are not required to calculate the coordinates of the stationary points.) (4 marks)

7 The volume, $V m^3$, of water in a tank at time t seconds is given by

$$V = \frac{1}{3}t^6 - 2t^4 + 3t^2$$
, for $t \ge$

(i)
$$\frac{\mathrm{d}V}{\mathrm{d}t}$$
; (3 marks)

0

(ii)
$$\frac{\mathrm{d}^2 V}{\mathrm{d}t^2}$$
. (2 marks)

- (b) Find the rate of change of the volume of water in the tank, in $m^3 s^{-1}$, when t = 2. (2 marks)
- (c) (i) Verify that V has a stationary value when t = 1. (2 marks)
 - (ii) Determine whether this is a maximum or minimum value. (2 marks)
- 8 The diagram shows the curve with equation $y = 3x^2 x^3$ and the line L.

The points *A* and *B* have coordinates (-1, 0) and (2, 0) respectively. The curve touches the *x*-axis at the origin *O* and crosses the *x*-axis at the point (3, 0). The line *L* cuts the curve at the point *D* where x = -1 and touches the curve at *C* where x = 2.

- (a) Find the area of the rectangle *ABCD*. (2 marks)
- (b) (i) Find $\int (3x^2 x^3) dx$. (3 marks)

(ii) Hence find the area of the shaded region bounded by the curve and the line L. (4 marks)

(c) For the curve above with equation $y = 3x^2 - x^3$: (i) find $\frac{dy}{dx}$; (2 marks)

(ii) hence find an equation of the tangent at the point on the curve where x = 1;

(3 marks)

- (iii) show that y is decreasing when $x^2 2x > 0$. (2 marks)
- (d) Solve the inequality $x^2 2x > 0$. (2 marks)

AQA – Core 1 - Jan 2006 – Answers

Question 1:	Exam report
$a)(\sqrt{5}+2)(\sqrt{5}-2) = 5 - 2\sqrt{5} + 2\sqrt{5} - 4 = 1$ $b)\sqrt{8} + \sqrt{18} = \sqrt{4 \times 2} + \sqrt{9 \times 2} = 2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$	Many candidates earned full marks on this introductory question. (a) Most candidates multiplied out the two brackets to obtain four terms. The most common error occurred in the last term, which was sometimes seen as -2 instead of -4. Very few candidates recognised that it was the difference of two squares. (b) This part was less well done. Some candidates had problems simplifying $\sqrt{8}$ and $\sqrt{18}$ and wrote $2\sqrt{4}$ and $2\sqrt{9}$, for example. Some, having correctly converted both surds, added them incorrectly and so $6\sqrt{6}$ was quite common. A few candidates thought $\sqrt{8} + \sqrt{18}$ were equal to $\sqrt{26}$.

Question 2:	Exam report
A(1,1) B(5,k)	(a)(i) Candidates used various methods to prove that
AB: 3x + 4y = 7	substituting $x = 5$ into the given line equation and
a(i) B belongs to the line so its coordinates satify the equation:	solving for y; some chose to verify that $x = 5$ and $y = -2$
$3 \times 5 + 4 \times k = 7$ $15 + 4k = 7$ $k = -2$	took a longer route; they found the gradient using
$\begin{pmatrix} x + x & y + y \end{pmatrix}$ (1)	(1,1) and (5,-2) and then found the equation passing
$ii) I\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right) = I\left(3, -\frac{1}{2}\right)$	given one.
b) $m = -\frac{y_B - y_A}{2} - \frac{-2 - 1}{2} - \frac{3}{2}$	(a)(ii) Most candidates knew how to find the
$x_{B} - x_{A} = 5 - 1 = 4$	midpoint of a line. A few made a simplification error $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
$(c)i)m_{AC} = -\frac{1}{1} = \frac{4}{1}$	and wrote $\left(3, \frac{1}{2}\right)$ instead of $\left(3, -\frac{1}{2}\right)$. The
m_{AB} 3	common error amongst the weaker candidates was
$ii) AC: y - y_A = m_{AC} \left(x - x_A \right)$	(b) Many candidates gave fully correct answers here.
$y - 1 = \frac{4}{3}(x - 1)$	However, some, having obtained $\frac{-2-1}{5-1}$ wrote $\frac{3}{4}$
3y - 3 = 4x - 4	$x_1 - x_2$
4x - 3y = 1	as a final answer. A few candidates used $\frac{1}{y_1 - y_2}$.
<i>iii</i>) C belongs to the x-axis so $C(x_c, 0)$	(c)(i) Most knew the gradient rule for perpendicular
1	involved the reciprocal of a fraction.
$4x_{c} - 3 \times 0 = 1$ $x_{c} = \frac{1}{4}$	(c)(ii) At least half of the candidates found the
4	equation of the line passing through the midpoint of
	AB instead of through C. (iii) Most realised the need to substitute $y = 0$ into
	their AC equation and solve for x, so they at least
	earned the method mark. Even those with the
	correct equation did not always earn two marks.
	Some had difficulty in simplifying $- \div -$
	3 3

Question 3:	Exam report
<i>i</i>) $x^{2} - 4x + 9 = (x - 2)^{2} - 4 + 9 = (x - 2)^{2} + 5$	(a)(i) Most candidates were familiar with the idea of .completing the square. and answered this part satisfactorily. There were
<i>ii</i>) for all $x, (x-2)^2 \ge 0$ so $(x-2)^2 + 5 \ge 5$	occasional sign errors and +9-4 was not always evaluated correctly.
The minimum y value is 5, obtained for $x = 2$	(a)(ii) There were several correct answers although some wrote
Min(2,5)	(5,-2) instead of (5,2). Some did not recognise the link between parts (i) and (ii) and chose to differentiate instead. This was a
b) Solve the equations simultaneously: $\begin{cases} y = -2x + 12\\ y = x^2 - 4x + 9 \end{cases}$	satisfactory, though more time-consuming, alternative method. Some earned no marks here as they wrote comments such as ".5 is the minimum", with no link to the y-coordinate being 5. (b)(i) This simple proof was usually well done. Occasionally the
This gives $(y =) x^2 - 4x + 9 = -2x + 12$	mark was lost due to the omission of " = 0"
$x^2 - 2x - 3 = 0$	(b)(ii) Many scored full marks here. Most factorised the equation and obtained the correct x-values. Some made no further
<i>ii</i>) $x^2 - 2x - 3 = (x - 3)(x + 1) = 0$	equation and obtained
x = 3 or x = -1	y = 0, instead of using the equation of the line or curve to find the values of y. It was encouraging to see
and $y = 12 - 2x = 6 \text{ or } y = 14$	many factorising the quadratic correctly. Those who used the
(2, c) = 1(-1, 1, 4)	quadratic equation formula or completion of
(3,0) and $(-1,14)$	the square often made more errors than those who factorised

Question 4:	Exam report
a) $x^{2} + (m+4)x + (4m+1) = 0$ has equal roots	(a) There were several completely correct proofs here. Some lost
<i>so the</i> discriminant =0:	the last mark by concentrating on the discriminant but failing to
$(m+4)^2 - 4 \times 1 \times (4m+1) = 0$	equate it to zero. There was a little fudging by some; for example, some who wrote $-4(4m+1) = -16m+4$ still managed to obtain the
$m^2 + 8m + 16 - 16m - 4 = 0$	correct printed equation.
$m^2 - 8m + 12 = 0$	Some of the weaker candidates found b^2 -4ac using numerical values from the equation they were supposed to establish.
$b)m^2 - 8m + 12 = 0$	(b) Almost all candidates found both values of <i>m</i> successfully. A
(m-6)(m-2) = 0	few spotted just one answer and some factorised correctly and
$m = 6 \ or \ m = 2$	then wrote $m = -2$, $m = -6$, but they were in the minority.

Question 5:	Exam report
$a)x^2 + y^2 - 8x + 6y = 11$	(a) Completion of the squares in the circle equation was carried
$(x-4)^2 - 16 + (y+3)^2 - 9 = 11$	usually in the second term. Another error lay in combining the
$(x-4)^3 + (y+3)^2 = 36$	constant terms, so answers such as -14 and 11 were seen for r ² .
b)i)Centre $C(4,3)$	(b) Most earned the mark for the coordinates of the centre of the circle as this was a follow through mark. The mark for the radius
ii) Radius $r = \sqrt{36} = 6$	was not always earned as some failed to take the square root or had an inappropriate answer such as a negative value for r^2 .
c)O(0,0) C(4,3)	
<i>i</i>) Length CO = $\sqrt{(x_o - x_c)^2 + (y_o - y_c)^2}$	(c)(i) Most found <i>CO</i> to be 5. However, a few neglected to square - 3 and 4 before adding and some subtracted 9 from 16.
$CO = \sqrt{4^2 + 3^2} = \sqrt{25} = CO = 5$	(c)(ii) This part was answered well with most realising the need to explain, using both lengths, why <i>O</i> lay inside or outside the circle.
<i>ii)</i> Because $CO < 6$, O lies INSIDE the circle.	Some accompanied their explanations with diagrams, although this was not necessary.

Question 6:	Exam report
Question 6: a) i) $p(x) = x^3 + x^2 - 10x + 8$ $p(2) = 2^3 + 2^2 - 10 \times 2 + 8 = 8 + 4 - 20 + 8 = 0$ 2 is a root of p so $(x - 2)$ is a factor of p. ii) $x^3 + x^2 - 10x + 8 = (x - 2)(x^2 + 3x - 4) = (x - 2)(x + 4)(x - 1)$ $x^2 + 3x - 4$ $x^2 + 3x - 4$ $x^3 + x^2 - 10x + 8$ $x^3 - 2x^2$ $3x^2 - 10x$ x - 2 $3x^2 - 6x$ -4x + 8 -4x + 8 0 b) The graph cuts the axes at (2,0), (-4,0), (1,0) and (8,0).	(a)(i) It was good to see that almost all candidates started correctly by evaluating p(2), though a few thought they needed to find p(-2) and others wrongly assumed that long division was the "factor theorem". It was necessary to write a conclusion or statement after showing that $p(2) = 0$, in order to earn the second mark. (a)(ii) The most successful approach here was by using a quadratic factor (ax^2+bx+c) , though long division also worked well for many. A surprising number who found the correct quadratic then factorised it wrongly. Those who tried the factor theorem again rarely spotted both factors. A few lost the final mark by failing to write $p(x)$ as a product of factors. (b) Although there were many correct sketches, many lost a mark by failing to mark the point (0,8) on the <i>y</i> -axis. Candidates were expected to draw a cubic through their intercepts, to use an approximately linear scale and to continue the graph beyond the intercepts on the <i>x</i> -axis. It was common to see the negative values in the factors wrongly taken to be the roots and hence the intercepts on the <i>x</i> -axis.
0	-
Question /:	Exam report
$a)i)\frac{dV}{dt} = \frac{1}{3} \times 6t^5 - 2 \times 4t^3 + 3 \times 2t = 2t^5 - 8t^3 + 6t$	(a)(i) The differentiation was generally well done, though some candidates found the fractional coefficient problematic. Those
$ii)\frac{d^2V}{dt^2} = 10t^4 - 24t^2 + 6$	who wrote $\frac{6}{3}t^5$ were not penalised in this part but writing
b) The rate of change is $\frac{dV}{dt}$	$6.\frac{1}{3}$ generally led to errors later in the question. Some tried to
so $\frac{dV}{dt}(t=2) = 2 \times 2^5 - 8 \times 2^3 + 6 \times 2 = 64 - 64 + 12 = 12m^3 / s$	avoid the fraction by considering 3V throughout the question, making errors, and suffered a heavy penalty. (a)(ii) Again, most applied the method correctly and here

$$c(t) = 1 = 2 \times 1^5 - 8 \times 1^3 + 6 \times 1 = 2 - 8 + 6 = 0$$

V has a stationary point when t = 1

$$ii)\frac{d^2V}{dt^2}(t=1) = 10 \times 1^4 - 24 \times 1^2 + 6 = 10 - 24 + 6 = -8 < 0$$

The stationary point is a MAXIMUM.

expression for V or
$$\frac{d^2 V}{dt^2}$$
. Quite a lot of candidates made arithmetic errors. A few found two values of the expression and averaged them.

simplification of coefficients was necessary. A few failed to

the rate of change was $\frac{dV}{dt}$ and substituted t = 2 into the

(b) This part was poorly done with many not recognising that

differentiate 6t or omitted it altogether.

(c)(i) Again, many failed to evaluate
$$\frac{dV}{dt}$$
 in order to verify that a

stationary point occurred, but those who did generally obtained a value of zero. It was essential to include a relevant statement to earn both marks.

(c)(ii) This required evaluation of the second derivative at t = 1 or an appropriate test. Candidates who tried to test the gradient on either side of 1 almost invariably failed, as the values used were too far away from the stationary point. A surprising number evaluated

10 -24+6 to be -20 thus losing the accuracy mark. Some
appeared to be guessing and drew wrong conclusions about
maxima or minima after evaluating the second derivative.

Question 8:	Exam report
$y = 3x^{2} - x^{3} \qquad A(-1,0) \ B(2,0)$ a) $y(2) = 3 \times 2^{2} - 2^{3} = 12 - 8 = 4 \qquad C(2,4) \ D(-1,4)$	(a) Not everyone recognised that the height of the rectangle was the value of y when $x = -1$ or $x = 2$. Some who did made numerical errors. Even having found the height 4, some
The area of the rectangle is $3 \times 4 = 12$	obtained the wrong area by taking <i>AB</i> as 4 or 2 (sometimes using Pythagoras' .Theorem) or by finding the perimeter
$b)i)\int (3x^2 - x^3)dx = x^3 - \frac{1}{4}x^4 + c$	(b)(i) The integral was generally correct, though sometimes incorrect simplification occurred subsequently. A few integrated
<i>ii</i>) Area = $12 - \int_{-1}^{2} (3x^2 - x^3) dx = 12 - \left[x^3 - \frac{1}{4}x^4\right]_{-1}^{2}$	x^{3} to $\frac{1}{3}x^{4}$ and a surprising number misread the integrand as $3x^{2}-x^{2}$
$Area = 12 - (8 - 4) + \left(-1 - \frac{1}{4}\right) = 6^{\frac{3}{4}}$	There were also candidates who confused integration with differentiation or whose process was a hybrid of the two.
$c(i)\frac{dy}{dx} = 6x - 3x^2$	(b)(ii) Almost everyone recognised that they should firstly evaluate the integral from -1 to 2, but most stopped there, instead of going on to subtract the value of the integral from the area of the rectangle
$ii)\frac{dy}{dx}(x=1) = 6 - 3 = 3$	There were a lot of sign errors in the work with some adding instead of subtracting or putting the two parts the wrong way round. A few wrongly substituted in the original function. These
Equation of the tangent : $y - 2 = 3(x - 1)$	who chose to work with the differences of two integrals seldom completed it correctly.
y = 3x - 1	 (c)(i) Differentiation was done well on the whole. (c)(ii) Many substituted x = 1 into the derivative to find the
<i>iii</i>) y is decreasing when $\frac{dy}{dx} < 0$	gradient of the tangent and went no further. Most did not find the <i>y</i> coordinate of the point and so made no attempt at the equation of the tangent. A few poor linear equations were seen
$6x - 3x^2 < 0$	with a .gradient. of $6x - 3x^2$.
$(\div -3)$ $x^2 - 2x > 0$ d) $x^2 - 2x = x(x - 2) > 0$ for $x < 0$ or $x > 2$	(c)(iii) Very few candidates completed this part. Many made no attempt, and those who did tended to test a few values of <i>x</i> or to find the second derivative, which was of no value.
$u_{j,x} = 2x = x(x + 2) \neq 0 \qquad \text{for } x < 0 \text{ or } x \neq 2$	Only the strongest candidates realised that $\frac{dy}{dx} < 0$ was the
CORE FOR THIS PAPER IS and ITE	condition for y to be decreasing and that, after a couple of lines of algebra, the given inequality could be obtained. (d) Although most made an attempt at the quadratic inequality, few obtained both parts of the solution. It was imperative that candidates wrote $x > 2$, $x < 0$ and not $0 > x > 2$ as many incorrectly stated.
MY SPADE i mani	It was disappointing to see how many candidates at this level could not solve the equation $x^2-2x = 0$, obtaining values such as -2, $\sqrt{2}$, $1+\sqrt{2}$. Using the formula or completing the square sometimes led to $1\pm\sqrt{1}$, which many candidates failed to simplify.

GRADE BOUNDARIES						
Component title	Max mark	А	В	С	D	E
Core 1 – Unit PC1	75	61	53	45	38	31

Key To Mark Scheme And Abbreviations Used In Marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
√or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC1				
Q	Solution	Marks	Total	Comments
1(a)	$(\sqrt{5})^2 + 2\sqrt{5} - 2\sqrt{5} - 4 = 1$	M1		Multiplying out or difference of two
- (11)	((**)) = (** = (** * *			squares attempted
		AI	2	Full marks for correct answer /no working
(b)	$\sqrt{8} = 2\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$	MI		Either correct
	Answer = $5\sqrt{2}$	A1	2	Full marks for correct answer /no working
	Total		4	
2(a)(i)	$15 + 4k = 7 \implies 4k = -8 \implies k = -2$	B1	1	AG (condone verification or $y = -2$)
(ii)	$\frac{1}{2}(x_1 + x_2)$ or $\frac{1}{2}(y_1 + y_2)$	MI		
	200 200 200 200 200 200 200 200 200 200			
	Midpoint coordinates $(3, -\frac{1}{2})$	A1	2	One coordinate correct implies M1
	(* 2)		2	one coordinate correct implies with
	2 7			
(b)	Attempt at $\Delta y / \Delta x$ or $y = -\frac{3}{4}x + \frac{7}{4}$	M1		(Not x over y)(may use M instead of A/B)
	3			
	Gradient $AB = -\frac{1}{4}$	A1	2	-0.75 etc any correct equivalent
(c)(i)	$m_1m_2 = -1$ used or stated	1		
				Follow through their gradient of AB from
	Hence gradient $AC = \frac{1}{3}$	A1√	2	part (b)
(1)	1 4 (1) - 2 - 4 1 - 4			Follow through their gradient of AC from
(11)	$y-1 = \frac{1}{3}(x-1)$ or $3y = 4x - 1$ etc	B1√	1	part (c) (i) must be normal & (1,1) used
Gii	$y = 0 \qquad \Rightarrow x - 13$	M1		Putting $y = 0$ in their AC equation and
()	$y = 0 \qquad \Rightarrow x = 1 = -\frac{1}{4}$			attempting to find x
	$r = \frac{1}{2}$			(1)
	$x = \frac{1}{4}$	Al	2	CSO. C has coordinates $\left[\frac{1}{4}, 0\right]$
	Total		10	(+)
3(a)(i)	$(x-2)^2$	B1	10	p = 2
0(1)(1)	+ 5	B1	2	q = 5
				1
(ii)	Minimum point (2, 5) or $x = 2$, $y = 5$	B2√	2	B1 for each coordinate correct or ft
(11)	x = 2, y = 3	DZV	2	Alt method M1 A1 sketch
				differentiation
(b)(i)	$12 - 2x = x^2 - 4x + 9$			Or $x^2 - 4x + 9 + 2x = 12$
	$\Rightarrow x^2 - 2x - 3 = 0$	B1	1	AC (he convinced) (must have = 0)
		21	1	AG (be convinced) (must have -0)
(ii)	(x-3)(x+1) = 0	M1		Attempt at factors or quadratic formula or
()	· · · · · · · · · · ·			one value spotted
	x = 3, -1	A1		Both values correct & simplified
	Substitute one value of x to find y	M1		May substitute into equation for L or C
	Points are (3, 6) and (-1, 14)	A1	4	y-coordinates correct linked to x values
	Total		9	

MPC1 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$(m+4)^2 = m^2 + 8m + 16$	B1		Condone $4m + 4m$
	$b^2 - 4ac = (m+4)^2 - 4(4m+1) = 0$	M1		$b^2 - 4ac$ (attempted and involving m's
	$m^2 + 8m + 16 - 16m - 4 = 0$			and no x's) or $b^2 - 4ac = 0$ stated
	$\Rightarrow m^2 - 8m + 12 = 0$	A1	3	AG (be convinced - all working correct-
				=0 appearing more than right at the end)
(h)	(m. 2)(m. 6) 0	N/1		Attempt of fraters on surdentia formula
(D)	$(m-2)(m-6) \equiv 0$ m=2, m=6		2	Attempt at factors of quadratic formula
	m - 2, m - 0	AI	2	SC BI 101 2 01 0 000 without working
	Total		5	
5(a)	$(x-4)^2 + (y+3)^2$	B2		B1 for one term correct
	$(11+16+9=36)$ RHS = 6^2	B1	3	Condone 36
(b)(i)	Centre $(4, -3)$	B1√	1	Ft their a and b from part (a)
(11)	Radius = 6	BIA.	1	Ft their r from part (a)
ക്രദ്	$CO^2 = (-4)^2 + 3^2$	M1		Accept + or – with numbers but must add
(0)(0)	CO = 5	A1./	2	Full marks for answer only
		7114	2	i un mars for answer only
(ii)	Considering CO and radius	M1		
	$CO < r \Rightarrow O$ is inside the circle	A1√	2	Ft outside circle when 'their $CO' > r$
				or on the circle when their $CO = r$ SC B1 \sqrt{r} if no explanation given
				Se Dive yno apramion gron
	Total		9	
((-)())	p(2) = 8 + 4 - 20 + 8	М1		Finding p(2) M0 long division
0(a)(l)	p(2) = 8 + 4 - 20 + 8 = 0 \implies x 2 is a factor	A 1	2	Shown = 0 AND conclusion/ statement
	$=0, \Rightarrow x-2$ is a factor	AI	2	about $x - 2$ being a factor
(ii)	Attempt at quadratic factor	M1		or factor theorem again for 2 ^{na} factor
	$x^{2} + 3x - 4$ p(x) = (x - 2)(x + 4)(x - 1)	A1		or $(x+4)$ or $(x-1)$ proved to be a factor
	p(x) = (x - 2)(x + 4)(x - 1)	A1	3	
(b)	<i>y</i>	B1		Graph through $(0,8)$ 8 marked
	\frown 1	D1 A		Et "thoir factors" 2 roots marked or
		BIV		axis
	8			
		M1 41	4	Cubic curve through their 3 points
1		A1	7	Condone max on y-axis etc or slightly
	/			wrong concavity at ends of graph
	71-4-1		0	
	Total		9	

MPCI (cont)
--------	-------

IPCI (cont)		_	
Q	Solution	Marks	Total	Comments
7(a)(i)	$dV = 2\sqrt{5} + 8\sqrt{3} + C$	M1		One term correct unsimplified
	$\frac{1}{dt} = 2t^2 - 8t^2 + 6t$	A1		Further term correct unsimplified
		A1	3	All correct unsimplified (no + c etc)
(ii)	$d^2 V$ 10.4 21.2	M1		One term FT correct unsimplified
(11)	$\frac{1}{dt^2} = 10t^2 - 24t^2 + 6$	A1	2	CSO. All correct simplified
(b)	Substitute $t = 2$ into their $\frac{dV}{dV}$	M1		
()	dt			
	(= 64 - 64 + 12) = 12	A1	2	$12\text{m}^3 \text{ s}^{-1}$
	dV			dV
(c)(i)	$t=1 \Rightarrow \frac{dr}{dt}=2-8+6$	M1		Or putting their $\frac{dr}{dt} = 0$
			2	CSO Shown to = 0 AND statement
	$= 0 \Rightarrow$ Stationary value	AI	2	(If solving equation must obtain $t = 1$)
(ii)	$t = 1 \Rightarrow \frac{d^2 V}{d^2 t} = -8$	M1		Sub $t = 1$ into their second derivative or
	dt^2			equivalent iun test.
	Maximum value	A1√	2	Ft if their test implies minimum
	Total		11	
8(a)	$y_D = 3 + 1 = 4$ or $y_C = 12 - 8 = 4$	M1		Attempt at either y coordinate
	Area $ABCD = 3 \times 4 = 12$	A1	2	
കര	x^4	M1		Increase one power by 1
(0)(1)	$x^{3} - \frac{1}{4} (+C)$	A1		One term correct unsimplified
	7	A1	3	All correct unsimplified (condone no $+C$)
(ii)	Sub limits –1 and 2 into their (b) (i) ans	M1		May use both -1.0 and 0.2 instead
(11)		Al		ing use com 1, o und 0, 2 mound
	$\begin{bmatrix} 8-4 \end{bmatrix} - \begin{bmatrix} -1-\frac{1}{4} \end{bmatrix} = 5\frac{1}{4}$			
	Shaded area = "their" (rectangle-integral) 1 3	M1		Alt method: difference of two integrals
	$=12-5\frac{1}{4}=6\frac{1}{4}$	A1	4	CSO. Attempted M2, A2
(c)(i)	dv c 2 2	M1		One term correct
	$\frac{y}{dx} = 6x - 3x^2$	A1	2	All correct (no +C etc)
(ii)	When $x = 1$, $y = 2$ when $x = 1$.	B1		May be implied by correct tet equation
(1)	$\frac{dy}{dt} = 3$ as 'their' grad of tet			
	dx	MI√		Ft their derivative when $x = 1$
	Tangent is $y - 2 = 3(x - 1)$	A1	3	Any correct form $y = 3x - 1$ etc
(iii)	Decreasing when $\frac{dy}{dx} = (x + 2x^2 + 0)$	M1		Watch no fudging here!! May work
(111)	Decreasing when $\frac{1}{dx} = 6x - 3x^2 < 0$	IVIII		backwards in proof.
	$3(2x-x^2) < 0 \Rightarrow x^2 - 2x > 0$	A1	2	AG (be convinced no step incorrect)
(d)	Two critical points 0 and 2	M1		Marked on diagram or in solution
	x > 2, $x < 0$ ONLY	A1	2	or M1 A0 for $0 < x < 2$ or $0 > x > 2$
			-	SC B1 for $x \ge 2$ (or $x \le 0$)
	Total		18	
	TOTAL		75	
	101111			1

General Certificate of Education June 2006 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 1 MPC1

QUALIFICATIONS

ALLIANCE

Monday 22 May 2006 9.00 am to 10.30 am

For this paper you must have: • an 8-page answer book • the blue AQA booklet of formulae and statistical tables You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- · Answer all questions.
- · Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75.
- · The marks for questions are shown in brackets.

Advice

· Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1	The point A	has coordinates (1,7)	and the point B has	s coordinates (5, 1).
---	-------------	-----------------------	-----------------------	-----------------------

- (a) (i) Find the gradient of the line AB. (2 marks)
 - (ii) Hence, or otherwise, show that the line AB has equation 3x + 2y = 17. (2 marks)
- (b) The line *AB* intersects the line with equation x 4y = 8 at the point *C*. Find the coordinates of *C*. (3 marks)
- (c) Find an equation of the line through A which is perpendicular to AB. (3 marks)
- 2 (a) Express $x^2 + 8x + 19$ in the form $(x + p)^2 + q$, where p and q are integers. (2 marks)
 - (b) Hence, or otherwise, show that the equation $x^2 + 8x + 19 = 0$ has no real solutions. (2 marks)
 - (c) Sketch the graph of $y = x^2 + 8x + 19$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis. (3 marks)
 - (d) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 8x + 19$. (3 marks)
- 3 A curve has equation $y = 7 2x^5$.

(a) Find
$$\frac{dy}{dx}$$
. (2 marks)

- (b) Find an equation for the tangent to the curve at the point where x = 1. (3 marks)
- (c) Determine whether y is increasing or decreasing when x = -2. (2 marks)
- 4 (a) Express $(4\sqrt{5}-1)(\sqrt{5}+3)$ in the form $p+q\sqrt{5}$, where p and q are integers. (3 marks)

b) Show that
$$\frac{\sqrt{75} - \sqrt{27}}{\sqrt{3}}$$
 is an integer and find its value. (3 marks)

5 The curve with equation $y = x^3 - 10x^2 + 28x$ is sketched below.

The curve crosses the x-axis at the origin O and the point A(3, 21) lies on the curve.

(a) (i) Find
$$\frac{dy}{dx}$$
. (3 marks)

(ii) Hence show that the curve has a stationary point when x = 2 and find the *x*-coordinate of the other stationary point. (4 marks)

(b) (i) Find
$$\int (x^3 - 10x^2 + 28x) dx$$
. (3 marks)

(ii) Hence show that
$$\int_0^3 (x^3 - 10x^2 + 28x) dx = 56\frac{1}{4}$$
. (2 marks)

- (iii) Hence determine the area of the shaded region bounded by the curve and the line *OA*. (3 marks)
- 6 The polynomial p(x) is given by $p(x) = x^3 4x^2 + 3x$.
 - (a) Use the Factor Theorem to show that x 3 is a factor of p(x). (2 marks)
 - (b) Express p(x) as the product of three linear factors. (2 marks)
 - (c) (i) Use the Remainder Theorem to find the remainder, r, when p(x) is divided by x 2. (2 marks)

(4 marks)

(ii) Using algebraic division, or otherwise, express p(x) in the form

$$(x-2)(x^2 + ax + b) + r$$

where a, b and r are constants.

- 7 A circle has equation $x^2 + y^2 4x 14 = 0$.
 - (a) Find:
 - (i) the coordinates of the centre of the circle; (3 marks)
 - (ii) the radius of the circle in the form $p\sqrt{2}$, where p is an integer. (3 marks)
 - (b) A chord of the circle has length 8. Find the perpendicular distance from the centre of the circle to this chord. (3 marks)
 - (c) A line has equation y = 2k x, where k is a constant.
 - (i) Show that the *x*-coordinate of any point of intersection of the line and the circle satisfies the equation

$$x^{2} - 2(k+1)x + 2k^{2} - 7 = 0 \qquad (3 marks)$$

(ii) Find the values of k for which the equation

 $x^2 - 2(k+1)x + 2k^2 - 7 = 0$

has equal roots.

(4 marks)

(iii) Describe the geometrical relationship between the line and the circle when k takes either of the values found in part (c)(ii). (1 mark)

END OF QUESTIONS

AQA – Core 1 – June 2006 – Answers

Question 1:	Exam report	
a)i)Gradient of $AB = m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{1 - 7}{5 - 1} = \frac{-6}{4} = -\frac{3}{2}$ ii) Equation of $AB: y - y_A = m_{AB}(x - x_A)$ $y - 7 = -\frac{3}{2}(x - 1)$	Part (a)(i) Although most obtained the correct gradient, some omitted the negative sign (particularly those who relied on a sketch for their evaluation) and some had a fraction with the change in x as the numerator which immediately scored no marks. Quite a few found mid-points (possibly since that had appeared on previous examinations) and others added the coordinates instead of finding the differences in their quotient	
$2y - 14 = -3x + 3$ $3x + 2y = 17$ b) solve simultaneously $\begin{cases} 3x + 2y = 17 & (\times 2) \\ x - 4y = 8 & \\ \begin{cases} 6x + 4y = 34 \\ x - 4y = 8 & (add) \end{cases}$	expression for the gradient. Part (a)(ii) The use of their gradient to obtain the given equation was the most successful method. Those using y = mx + c had a tendency to introduce a new 'c' by doubling both sides but then substituted their value back into the original equation. The most successful candidates used the formula $y - y_1 = m(x - x_1)$. Some re- arranged the given equation to check the gradient then checked one set of co-ordinates: others checked two points and indicated	
This gives $7x = 42$	that a straight line has the form	
$x = 6$ AND $x-4y=8$ $6-4y=8$ $y = -\frac{1}{2}$ The lines intersect at $(6, -\frac{1}{2})$ c) The gradient of the line perpendicular to AB is $-\frac{1}{m_{AB}} = \frac{2}{3}$ Equation of the line : $y-7 = \frac{2}{3}(x-1)$ $3y-21 = 2x-2$ $2x-3y = -19$	ax + by = c. Part (b) Those using substitution often began by using an incorrect rearrangement of one of the equations. If they attempted elimination, sometimes only part of an equation was multiplied by the appropriate constant. Many added the equations instead of subtracting. Of those who wrote $14y = -7$, just as many obtained an incorrect answer of $y = -2$ as the correct answer of $y = -1/2$. Part (c) The condition for perpendicularity was generally known but some were unable to evaluate -1 divided by -1.5 . A few omitted the $-$ sign while some referred to the equation $3x + 2y = 17$ and gave a gradient of $-1/3$. Once again, those determined to use $y = mx + c$ often made errors in the constant due to the fractional coefficient of x . Quite a few did not use the point A as instructed, choosing to use the point C instead.	
Question 2:	Exam report	
a) $x^{2} + 8x + 19 = (x+4)^{2} - 16 + 19 = (x+4)^{2} + 3$	Part (a) Many candidates began by finding the correct values of p and q . A few wrote $(x - 4)^2$ and some added 16 instead	

a) $x^{2} + 8x + 19 = (x + 4)^{2} - 16 + 19 = (x + 4)^{2} + 3$	Fait (a) Wally calculates began by finding the correct values	
a) $x^{2} + 8x + 19 = (x + 4)^{2} - 16 + 19 = (x + 4)^{2} + 3$ b) $x^{2} + 8x + 19 = 0$ is equivalent to $(x + 4)^{2} + 3 = 0$ $(x + 4)^{2} = -3$ For all x real, $(x + 4)^{2} \ge 0$, so this equation has no solution. c) The minimum point is $(-4, 3)$ The graph crosses the y-axis at $(0, 19)$ d) $x \xrightarrow{\text{translation-4} \atop \text{units in x-direction}} x + 4 \xrightarrow{f} (x + 4)^{2} \xrightarrow{\text{translation 3} \atop \text{units in y-direction}} (x + 4)^{2} + 3$	of p and q. A few wrote $(x - 4)^2$ and some added 16 instead of subtracting 16 so $q = 35$ was sometimes seen. Part (b) Very few chose to consider the expression they had in part (a). Practically all candidates decided to find the discriminant instead but its evaluation was often incorrect. Not everyone quoted the expression for the discriminant, b^2 – 4ac, correctly. Some attempted to refer to the fact that the curve was completely above the x-axis but did not, in general, complete their argument. Part (c) The graphs here were disappointing. Although most	
$Tranlation vector \begin{bmatrix} -4\\ 3 \end{bmatrix}$	Part (c) The graphs here were disappointing. Although most drew a quadratic shape, there seemed to be little reference to their part (a) and many just tried to plot a few points. Most were able to state the intercept on the y-axis. However, sometimes the point (0.19) was shown as the minimum point or a straight line intercept. Several curves were drawn only in the first quadrant, regardless of whether the quoted minimum point was (-4.3) or (4.3). Part (d) This was not well answered. The term translation was required but generally the wrong word was used or it was accompanied by another transformation such as a stretch. The most common incorrect vector stated was $\begin{bmatrix} 8 \\ 1 \end{bmatrix}$.	

Question 3:	Exam report
$y = 7 - 2x^5$	
$a)\frac{dy}{dx} = 0 - 2 \times 5x^4 = -10x^4$	Part (a) Most candidates answered this part correctly. A few included the 7 or thought the derivative of the first term was 7x and the – sign was sometimes lost.
b) Gradient of the tangent is $\frac{dy}{dx}(x=1) = -10 \times 1^4 = -10$	Part (b) Many substituted $x = 1$ correctly, though it was apparent that they did not recognise this value of -10 to be the gradient of the tangent. Many correctly found y as 5 but
for $x = 1$, $y = 7 - 2 \times 1^5 = 5$	stopped there. Again, some correct attempts at the tangent equation using $y = mx + c$ foundered and quite a large number
the equation of the tangent is $y-5 = -10(x-1)$	attempted to find the equation of the normal.
10x + y = 15	Part (c) Use of the value of $\frac{dy}{dx}$ was the only acceptable
$c)\frac{dy}{dx}(x=-2) = -10 \times (-2)^4 = -160 < 0$	method here. Evaluations of y at different points or finding the second derivative were common but earned no marks.
y is decreasing	

Question 4:	Exam report
$a)(4\sqrt{5}-1)(\sqrt{5}+3) = 4 \times 5 + 12\sqrt{5} - \sqrt{5} - 3$	Part (a) Almost everyone recognised that multiplication of the two
$=20-3+12\sqrt{5}-\sqrt{5}$	brackets was required but there were numerous errors with $7\sqrt{5}$
17 . 11 5	instead of $12\sqrt{5}$ being common and -2 or -4 instead of -3 . Although
$= 17 + 11\sqrt{5}$	most dealt with the first term correctly and obtained 20, many added
$\sqrt{75} - \sqrt{27}$ $\sqrt{25 \times 3} - \sqrt{9 \times 3}$	$12\sqrt{5}$ and $-\sqrt{5}$ wrongly to get $-11\sqrt{5}$.
$b) \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{1}{5\sqrt{3} - 3\sqrt{3}} \frac{2\sqrt{3}}{2\sqrt{3}}$	Part (b) This part was answered more successfully with $\sqrt{\frac{75}{3}} - \sqrt{\frac{27}{3}}$
$= \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$	being the neatest method. Some failed to complete correctly from $\frac{2\sqrt{3}}{\sqrt{3}}$
	to 2 and gave an answer of $\sqrt{3}$. A few went 'all round the houses' but
	got there eventually. Some tried to cancel out $\sqrt{3}$ but only considered
	one term in the denominator. Multiplying top and bottom by $\sqrt{3}$ caused
	some problems. A few attempted to combine the 2 terms in the
	numerator and wrote $\frac{\sqrt{48}}{\sqrt{3}}$ which of course is also an integer!

Question 5:	Exam report
$a)i)\frac{dy}{dx} = 3x^2 - 20x + 28$	Part (a)(i) Most candidates differentiated correctly. However a few made a slip or misread one of the terms.
$ii)\frac{dy}{dx} = 0 \qquad 3x^2 - 20x + 28 = 0$	derivative some made numerical errors and some used y or the second derivative. Most who realised that they should equate
(3x - 14)(x - 2) = 0	their derivative to zero (or at least showed their intention though never inserting the = 0) then tried to factorise or use the formula
$x = \frac{14}{3} \text{ or } x = 2$	(though it was clear that some did not recognise the quadratic equation as such). It was disappointing that the bracket $(3x-14)$ often produced the solution x = 14 instead of 14/3, and the
There are two stationary points: $x = 2$ and $x = \frac{14}{3}$	solution of x = 2 did not always appear. Part (b)(i) The integration was also completed correctly by most candidates, although the 28x was occasionally wrong and some
$b)i)\int (x^3 - 10x^2 + 28x)dx = \frac{1}{4}x^4 - \frac{10}{3}x^3 + 14x^2 + c$	'hybrid' processes led to terms such as $-\frac{20}{3}$.
$ii)\int_0^3 (x^3 - 10x^2 + 28x)dx = \left[\frac{1}{4}x^4 - \frac{10}{3}x^3 + 14x^2\right]_0^3$	In part (b)(ii) almost everyone attempted to substitute 3 into their integral but their problems with the ensuing fractions often took pages to resolve, and although most ended 'magically' with the required account there were many errors on route. A few
$= \left(\frac{1}{4} \times 3^4 - \frac{10}{3} \times 3^3 + 14 \times 3^2\right) - (0 - 0 + 0)$	substituted into the original expression for y instead of the integrated expression.
$=\frac{225}{4}=56\frac{1}{4}$	were errors in evaluating both $\frac{1}{2} \times 21 \times 3$ and $56\frac{1}{4} - 31\frac{1}{2}$.
<i>iii</i>) Area shaded $= 56\frac{1}{4}$ – Area of the triangle	Some candidates confused length with area and merely used Pythagoras's Theorem to find the length of the hypotenuse of the triangle. Those who chose to integrate the equation of the
$= 56\frac{1}{4} - \frac{1}{2} \times 3 \times 21 = \frac{99}{4} = 24\frac{3}{4}$	straight line were sometimes successful but many made arithmetic errors.
Question 6:	Exam report

$p(x) = x^3 -$	$4x^2 + 3x$		
a) $p(3) = 3^3$	$-4 \times 3^2 + 3 \times 3 = 27 - 36 + 9 = 0$		
3 is a root	t of p so $(x-3)$ is a factor of p		
b) $x^3 - 4x^2 $	$+3x = x(x^2 - 4x + 3) = x(x - 1)(x - 3)$		
c(i)r = p(2)	$) = 2^{3} - 4 \times 2^{2} + 3 \times 2 = 8 - 16 + 6 = -2$		
	$x^2 - 2x - 1$		
	$x^3 - 4x^2 + 3x + 0$		
	$\frac{x^3-2x^2}{2}$		
ii)	$-2x^2+3x$		
$x-2$ $-2x^2+4x$			
	-x+0		
$\underline{-x+2}$			
-2			
x^3-4x	$x^{2} + 3x = (x-2)(x^{2}-2x-1)-2$		

Part (a) Although many candidates showed that p(3) = 0, many lost a mark for failing to include a statement of the implication. Some candidates appeared ignorant of the Factor Theorem and used long division and therefore earned no marks in this part. Part (b) Only about half of the candidates were able to complete this part, although most made an attempt. The term $x^2 - x$ confused some. A few failed to write a product of factors even though this was requested. Part(c)(i) As the question requested the use of the Remainder

Theorem, finding p(2) was the only acceptable method here. Many attempted long division and scored no marks. Part (c)(ii) There were many full solutions either by multiplying out and comparing coefficients they are both valid methods or by using long division. The majority of candidates showed poor algebraic skills and were unable to find the correct values of *a* and *b*. No credit was given for stating the value of r obtained in part (i) unless the values of a and b were correct. Full marks were earned by able candidates who simply wrote down the correct values of a, b and r by inspection.

Question 7:	Exam report
$x^2 + y^2 - 4x - 14 = 0$	Part (a)(i) It was apparent that some candidates had
$a)i)(x-2)^{2}-4+y^{2}-14=0$	not covered this part of the specification and they made no progress. Most who had done so, earned the marks here. However a few wrote $(x+2)^2$ or even
$(x-2)^2 + y^2 = 18$	$(x-2)^2$ and then gave the centre as $(-2,0)$ Some managed to incorporate the 7 with the v term so
The centre C has coordinates (2,0)	wrote the coordinates of the centre as $(2,-7)$.
<i>ii</i>) the radius is $r = \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}$	Part (a)(ii) Most candidates were successful in
b)Call the chord AB and the mid-point of the chord I	one mark by 'meddling' with their equation and
then the triangle CIA is a right-angled triangle.	putting 18² or $\sqrt{18}$ on the right hand side of the
The perpendicular distance is the length CI.	equation.
Using Pythagoras' theorem, $CI^2 = CA^2 - IA^2$	Part(b) This part was rarely attempted. Even where a
$=r^{2}-4^{2}$	correct diagram was drawn, few recognised that the chord would be bisected. Many assumed that the
$CI = \sqrt{2}$	triangle was right-angled at the centre of the circle. Others drew tangents instead of a chord.
c(i) By solving the equations simultaneously:	Part (c)(i) Many made little progress here. However,
$\begin{cases} y = 2k - x \\ x^{2} + y^{2} - 4x - 14 = 0 \end{cases}$ we obtain, by substitution	it was good to see more able candidates coping well. A few fell at the final line writing $(k-1)$ instead of $(k+1)$: a few lost a mark by not introducing '= 0' as
$x^{2} + (2k - x)^{2} - 4x - 14 = 0$	part of the equation of the circle and simply added '= 0' at the end of several lines of working so as to
$x^2 + 4k^2 + x^2 - 4kx - 4x - 14 = 0$	match the printed answer. Many made a slip in squaring (2k-x) and some made gross errors such as
$2x^2 - 4(k+1)x + 4k^2 - 14 = 0 (\div 2)$	writing this as $4k^2 + x^2$ or $4k^2 - x^2$. Others 'simplified' the equation
$x^2 - 2(k+1) + 2k^2 - 7 = 0$	to $(x-2) + (2k-x) = \sqrt{18}$.
<i>ii</i>) This equation has equal roots when the discriminant $= 0$	
$(-2(k+1))^2 - 4 \times 1 \times (2k^2 - 7) = 0$	Part (c)(ii) Those candidates who made progress here needed both knowledge and algebraic skills and only a small minority completed this part correctly
$4(k^2 + 2k + 1) - 8k^2 + 28 = 0$	However more earned some method marks. Use of
$-4k^2 + 8k + 32 = 0$	required but some just tried to solve the equation
$k^2 - 2k - 8 = 0$	using the quadratic formula or used $^{\circ} > 0^{\circ}$ instead of $^{\circ}$ = 0'. A few attempts at completing the square were
(k-4)(k+2) = 0	seen but most failed to equate the expression to zero.
$k = 4 \ or \ k = -2$	
<i>iii</i>) The line will be tangent to the circle when $k = 4$ or $k = -2$	Part (c)(iii) Many candidates who had made no progress in the rest of the question stated that the line would be a tangent to the circle; however several candidates wrote at length about various transformations and completely missed the point

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
А	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
E	mark is for explanation							
√or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
-x EE	deduct x marks for each error	G	graph					
NMS	no method shown	с	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments			
1(a)(i)	Gradient $AB = \frac{1-7}{5-1}$	M1		Must be y on top and subtr'n of cords			
	$=-\frac{6}{4}=-\frac{3}{2}=-1.5$	A1	2	Any correct equivalent			
(ii)	y - 7 = m(x - 1) or $y - 1 = m(x - 5)$	M1		Verifying 2 points or $y = -\frac{3}{2}x + c$			
	leading to $3x + 2y = 17$	A1	2	AG (or grad & 1 point verified)			
(b)	Attempt to eliminate x or $y: 7x = 42$ etc x = 6	M1 A1		Solving $x - 4y = 8$; $3x + 2y = 17$			
	$y = -\frac{1}{2}$	A1	3	C is point $(6, -\frac{1}{2})$			
(c)	Grad of perp = $-1 / their$ gradient AB	M1		Or $m_1m_2 = -1$ used or stated			
	$=\frac{2}{3}$	A1√		ft their gradient AB			
	$y-7=\frac{2}{3}(x-1)$ or $3y-2x=19$	Al	3	CSO Any correct form of equation			
	Total		10				
2(a)	$(x+4)^2$ +3	B1 B1	2	p = 4 $q = 3$			
(b)	$(x+4)^2 = -3$ or "their" $(x+p)^2 = -q$	M1		Or discriminant = $64 - 76$			
	No real square root of -3	Al	2	Disc < 0 so no real roots (all correct figs)			
(c)		D1 A		Adain a sub a (an assured)			
	granh			It then $-p$ and q (or correct)			
		BI	3	Crossing at y = 10 marked or (0, 10)			
	-4	DI	5	stated			
(d)	Translation (and no additional transf'n)	E1		Not shift, move, transformation, etc			
	through [-4]	M1		One component correct eg 3 units up			
		AI	3	All correct – if not vector – must say 4 units in negative x - direction, to left etc			
	Total		10				
3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -10x^4$	M1 A1	2	kx^4 condone extra term Correct derivative unsimplified			
(b)	When $x = 1$, gradient = -10	B1√		FT their gradient when $x = 1$			
	Tangent is	M1		Attempt at y & tangent (not normal)			
	y-5 = -10(x-1) or $y + 10x = 15$ etc	A1	3	CSO Any correct form			
(c)	When $x = -2$ $\frac{dy}{dx} = -160$ (or < 0)	В1√		Value of their $\frac{dy}{dx}$ when $x = -2$			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} < 0 \text{ hence}\right) y \text{ is decreasing}$	Е1√	2	ft Increasing if their $\frac{dy}{dx} > 0$			
	Total		7				

	Q	Solution	Marks	Total	Comments	Q	Solution	Marks	Total	Comments
	4(a)				Multiplied out	6(a)	p(3) = 27 - 36 + 9	M1		Finding p(3) and not long division
		$4(\sqrt{5})^{2} + 12\sqrt{5} - \sqrt{5} - 3$	M1		At least 3 terms with $\sqrt{5}$ term		$p(3) = 0 \implies x - 3$ is a factor	A1	2	Shown $= 0$ plus a statement
		$4(\sqrt{5})^2$ 4.5 (20)				(b)				
		$4(\sqrt{5}) = 4 \times 5 (= 20)$	B1			(0)	$x(x^2-4x+3)$ or $(x-3)(x^2-x)$ attempt	M1		Or $p(1) = 0 \implies x - 1$ is a factor attempt
		Answer = $17 + 11\sqrt{5}$	A1	3			$\mathbf{p}(x) = x(x-1)(x-3)$	A1	2	Condone $x + 0$ or $x - 0$ as factor
						(.)()				
	(b)	Either $\sqrt{75} = \sqrt{25}\sqrt{3}$ or $\sqrt{27} = \sqrt{9}\sqrt{3}$	M1		Or multiplying top and bottom by $\sqrt{3}$	(c)(i)	p(2) = 8 - 16 + 6 (Remainder is) - 2		2	Must use $p(2)$ and not long division
		Example $5\sqrt{3} - 3\sqrt{3}$			$\sqrt{225} - \sqrt{81}$ or $\sqrt{25}$ [0 or 5.2]		(Remainder is) = 2	AI	2	
		$= \sqrt{3}$	A1		or $\frac{3}{3}$ or $\sqrt{23} - \sqrt{9}$ or $3-3$	(ii)	Attempt to multiply out and compare	MI		Or long division (2 terms of quotient)
		= 2	A1	3	CSO	(11)	Attempt to multiply out and compare	1111		Or long division (2 terms of quotient)
		Total		6			coefficients $a = -2$	A1		$x^2 - 2x$
	5(a)(i)	$\frac{dy}{dt} = 3x^2 - 20x + 28$	M1		One term correct		b = -1	Al		-1
		dx		3	Another term correct All correct ($p_0 + c_{est_0}$)		r = -2	AI	4	Withhold final A1 for long division unless
			AI	5	An concer (no + c etc)		SC B1 for $r = -2$ if M0 scored		10	written as $(x-2)(x^2-2x-1)-2$
	GiĐ	dv				7(a)(i)	$(x - 2)^2$	MI	10	Attampt to complete equare for a
	()	Their $\frac{dy}{dx} = 0$ for stationary point	M1		Or realising condition for stationary pt	7(a)(l)	(x-2) centre has x-coordinate = 2			Attempt to complete square for x
		(x-2)(3x-14) = 0	m1		Attempt to solve using formula/ factorise		and v -coordinate = 0	B1	3	Centre (2.0)
		$\Rightarrow x = 2$	A1		Award M1, A1 for verification that			DI	5	Centre (2,5)
		14	A 1	4	$y = 2 \rightarrow \frac{dy}{dy} = 0$ then may same m1 later	(ii)	RHS = 18	B1		Withhold if circle equation RHS incorrect
		or $x = \frac{1}{3}$		4	$x=2 \Rightarrow \frac{1}{dx} = 0$ then may early milliater		Radius = $\sqrt{18}$	M1		Square root of RHS of equation (if > 0)
							Radius = $3\sqrt{2}$	A1	3	
	(b)(i)	$r^{4} = 10r^{3}$	M1		One term correct unsimplified	(1)	Demondicular bicente abend co need to use			
		$\frac{x}{4} - \frac{10x}{3} + 14x^2$ (+c)	A1		Another term correct unsimplified	(0)	Length of 4	B1		4
		4 5	A1	3	All correct unsimplified		$d^2 = (radius)^2 = A^2$	MI		
					(condone missing + c)		$d^2 = 18 - 16$	1111		
	đið	F81 7					so perpendicular distance = $\sqrt{2}$	A1	3	V18
	(,	$\left \frac{31}{4} - 90 + 126\right $ (-0)	M1		Attempt to sub limit 3 into their (b)(i)		* * ·			
						(c)(i)	$x^{2} + (2k - x)^{2} - 4x - 14 = 0$	M1		
		$= 56\frac{1}{4}$	A1	2	AG Integration, limit sub'n all correct	(-)(-)	$(2k-x)^2 = 4k^2 - 4kx + x^2$	B1		
							$\Rightarrow 2x^2 + 4k^2 - 4kx - 4x - 14 = 0$			
	(iii)	Area of triangle = $31\frac{1}{2}$	BI		Correct unsimplified $\frac{1}{2} \times 21 \times 3$		$(\Rightarrow x^2 + 2k^2 - 2kx - 2x - 7 = 0)$			
			51		2^{2125}		$\Rightarrow x^2 - 2(k+1)x + 2k^2 - 7 = 0$	AI	3	AG (be convinced about algebra and $= 0$)
		Shaded Area = $56\frac{1}{4} - triangle area$	M1			Gib	$4(k+1)^2 - 4(2k^2 - 7)$	M1		" $b^2 - 4ac$ " in terms of k (either term
		$= 24^{3}$	A 1	2	Or aquivalent such as 99	(11)	$-\pi(n+1)$ $-\pi(2n-1)$			correct)
		- 244	AI	3	$\frac{1}{4}$		$4k^2 - 8k - 32 = 0 \text{ or } k^2 - 2k - 8 = 0$	A1		$b^2 - 4ac = 0$ correct quadratic equation in k
L		Total		15			(k-4)(k+2) = 0	m1		Attempt to factorise, solve equation
							k = 2 $k = 4$	A 1	4	SC P1 P1 for 2 4 (if M0 soord)
							n = -2, $n = 4$	AI	4	5C B1, B1 101 -2, 4 (11 1010 Scoled)
						(iii)	Line is a tangent to the circle	E1	1	Line touches circle at one point etc

Total

TOTAL

17

75

January 2007

1 The polynomial p(x) is given by

$$p(x) = x^3 - 4x^2 - 7x + k$$

where k is a constant.

	(a)	(i) Given that $x + 2$ is a factor of $p(x)$, show that $k = 10$.	(2 marks)
		(ii) Express $p(x)$ as the product of three linear factors.	(3 marks)
	(b)	Use the Remainder Theorem to find the remainder when $p(x)$ is divided by x	– 3. (2 marks)
	(c)	Sketch the curve with equation $y = x^3 - 4x^2 - 7x + 10$, indicating the values the curve crosses the x-axis and the y-axis. (You are not required to find the coordinates of the stationary points.)	where (4 marks)
2	The	line <i>AB</i> has equation $3x + 5y = 8$ and the point <i>A</i> has coordinates (6, -2).	

(a) (i) Find the gradient of *AB*. (2 marks)

- (ii) Hence find an equation of the straight line which is perpendicular to *AB* and which passes through *A*. (3 marks)
- (b) The line AB intersects the line with equation 2x + 3y = 3 at the point B. Find the coordinates of B. (3 marks)
- (c) The point C has coordinates (2, k) and the distance from A to C is 5. Find the two possible values of the constant k. (3 marks)

3 (a) Express
$$\frac{\sqrt{5}+3}{\sqrt{5}-2}$$
 in the form $p\sqrt{5}+q$, where p and q are integers. (4 marks)

- (b) (i) Express $\sqrt{45}$ in the form $n\sqrt{5}$, where *n* is an integer. (1 mark)
 - (ii) Solve the equation

 $x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$

giving your answer in its simplest form. (3 marks)

- 4 A circle with centre C has equation $x^2 + y^2 + 2x 12y + 12 = 0$.
 - (a) By completing the square, express this equation in the form

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$
 (3 marks)

- (i) the coordinates of C; (1 mark)
- (ii) the radius of the circle. (1 mark)
- (c) Show that the circle does not intersect the x-axis. (2 marks)
- (d) The line with equation x + y = 4 intersects the circle at the points P and Q.
 - (i) Show that the x-coordinates of P and Q satisfy the equation

$$x^2 + 3x - 10 = 0 (3 marks)$$

- (ii) Given that P has coordinates (2, 2), find the coordinates of Q. (2 marks)
- (iii) Hence find the coordinates of the midpoint of PQ. (2 marks)

Turn over for the next question

5 The diagram shows an **open-topped** water tank with a horizontal rectangular base and four vertical faces. The base has width x metres and length 2x metres, and the height of the tank is h metres.

The combined internal surface area of the base and four vertical faces is $54 \, \text{m}^2$.

- (a) (i) Show that $x^2 + 3xh = 27$. (2 marks)
 - (ii) Hence express h in terms of x. (1 mark)
 - (iii) Hence show that the volume of water, $V m^3$, that the tank can hold when full is given by

$$V = 18x - \frac{2x^3}{3} \tag{1 mark}$$

(b) (i) Find
$$\frac{dV}{dx}$$
. (2 marks)

(ii) Verify that V has a stationary value when x = 3. (2 marks)

(c) Find $\frac{d^2 V}{dx^2}$ and hence determine whether V has a maximum value or a minimum value when x = 3. (2 marks)

6 The curve with equation $y = 3x^5 + 2x + 5$ is sketched below.

The curve cuts the x-axis at the point A(-1, 0) and cuts the y-axis at the point B.

(a) (i) State the coordinates of the point *B* and hence find the area of the triangle *AOB*, where *O* is the origin. (3 marks)

(ii) Find
$$\int (3x^5 + 2x + 5) \, dx$$
. (3 marks)

- (iii) Hence find the area of the shaded region bounded by the curve and the line AB. (4 marks)
- (b) (i) Find the gradient of the curve with equation $y = 3x^5 + 2x + 5$ at the point A(-1,0). (3 marks)
 - (ii) Hence find an equation of the tangent to the curve at the point A. (1 mark)
- 7 The quadratic equation $(k+1)x^2 + 12x + (k-4) = 0$ has real roots.
 - (a) Show that $k^2 3k 40 \le 0$. (3 marks)
 - (b) Hence find the possible values of k. (4 marks)

END OF QUESTIONS

AQA – Core 1 - – Jan 2007 – Answers

Question 1:	Exam report
Question 1: $p(x) = x^{3} - 4x^{2} - 7x + k$ a)i) (x + 2) is a factor of p(x) This means that p(-2) = 0 p(-2) = (-2)^{3} - 4 \times (-2)^{2} - 7 \times (-1) + k = $= -8 - 16 + 14 + k = 0$	Exam report Part (a)(i) Most candidates found $p(-2)$ but often failed to convince examiners that they had really shown that $k = 10$. Many substituted k = 10 from the outset and then drew no conclusion from the fact that $p(-2) = 0$. Those using long division often made sign errors. Part (a)(ii) Factorisation of a cubic seems well understood and.
$-10 + k = 0 \qquad k = 10$ ii) $x^{3} - 4x^{2} - 7x + 10 = (x + 2)(x^{2} - 6x + 5)$ = (x + 2)(x - 5)(x - 1)	apart from those who could not factorise $x^2 - 6x + 5$, candidates usually scored full marks. Some still confuse factors and roots. Part (b) Many ignored the request to use the Remainder Theorem and scored no marks for long division. A few who
b) The remainder of the division by $(x-3)$ is $p(3)$ $p(3) = 3^{3} - 4 \times 3^{2} - 7 \times 3 + 10$ $= 27 - 36 - 21 + 10 = -20$ c) The graph crosses the x-axis at $(-2, 0), (5, 0)$ and $(1, 0)$ crosses the y-axis at $(0, 10)$	correctly found that $p(3) = -20$ concluded that the remainder was +20. Part (c) The sketch was generously marked with regard to the position of the stationary points but it was expected that candidates would indicate the values where the curve crossed the coordinate axes and often these values, particularly the 10 on the <i>y</i> -axis, were omitted.

Question 2:	Even report
	Exam report
$a_{1}a_{2}x + 5y = 8$ $A(6, -2)$	
Make y the subject: $y = -\frac{3}{5}x + \frac{8}{5}$	
The gradient is $m_{AB} = -\frac{3}{5}$	
<i>ii</i>)The gradient of the line	
perpendicular to AB is $-\frac{1}{m_{AB}} = \frac{5}{3}$	Part (a)(i) It was disappointing to see many candidates unable to rearrange $3x + 5y = 8$ to make y the subject in order to find the gradient. Some were successful in finding a second point on the
The equation of the line is $: y - (-2) = \frac{3}{3}(x-6)$	gradient of AB.
3y+6=5x-30 $5x-3y=36$	Part (a)(ii) Most candidates knew how to find the gradient of a perpendicular line, but those using $y = mx + c$ made more arithmetic slips than those using the more appropriate form $y - y_1$
b)Solve simultaneously $\begin{cases} 3x+5y=8 & (\times 2) \\ 2x+3y=3 & (\times -3) \end{cases}$	$= m(x - x_1)$. Part (b) Apart from those who used the wrong pair of equations.
$\int 6x + 10y = 16$	this part was usually answered correctly.
This gives $\begin{cases} -6x - 9y = -9 \end{cases}$ by adding, $y = 7$	Part (c) Although this part was meant to be challenging, there
then $3x + 5y = 8$ $3x + 35 = 8$ $x = -9$	were many successful attempts, particularly by those who used a sketch and reasoned on a 3, 4, 5 triangle. It had been intended that candidates would have formed an equation such as 16 + (k +
B(-9,7)	$2)^2 = 25$, but more commonly something such as $16 + y^2 = 25$ was seen, resulting in the incorrect values of $+3$
$AC = \sqrt{(2-6)^2 + (k+2)^2} = 5$	
$so AC^{2} = 16 + (k+2)^{2} = 25$	
$(k+2)^2 = 9$	
k+2=3 or k+2=-3	
k=1 or $k=-5$	

Question 3: Exam report $a)\frac{\sqrt{5}+3}{\sqrt{5}-2} = \frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} = \frac{5+2\sqrt{5}+3\sqrt{5}+6}{5-4} = 11+5\sqrt{5}$ Part (a) It was not uncommon to see the denominator and numerator multiplied by different surds and the usual errors occurred as candidates tried to multiply out brackets. This part of the question did not seem to be $(b)i)\sqrt{45} = \sqrt{9\times5} = 3\sqrt{5}$ answered as well as in previous years. *ii*) $x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$ Part (b)(i) was usually correct but very few were successful in solving the equation in part (b)(ii), even $x \times 2\sqrt{5} = 7\sqrt{5} - 3\sqrt{5}$ though they reached forms of the correct equation such $x = \frac{4\sqrt{5}}{2\sqrt{5}} = \frac{4}{2} = 2$ as $2\sqrt{5}x = 4\sqrt{5}$ or $x = \frac{4\sqrt{5}}{2\sqrt{5}}$

Question 4:

 $x^{2} + y^{2} + 2x - 12y + 12 = 0$ $a)(x+1)^{2}-1+(y-6)^{2}-36+12=0$ $(x+1)^{2} + (y-6)^{2} = 25$ b)i)The centre C(-1, 6)*ii*) $r = \sqrt{25} = 5$ c) On the x-axis, y = 0, The equation becomes $(x+1)^2 + 36 = 25$ $(x+1)^2 = -11$ No solution as $(x+1)^2 > 0$ for all x. d)Consider simultaneously $\begin{cases} x^2 + y^2 + 2x - 12y + 12 = 0\\ y = 4 - x \end{cases}$ by substitution, we have $x^{2} + (4-x)^{2} + 2x - 12(4-x) + 12 = 0$ $x^{2} + 16 + x^{2} - 8x + 2x - 48 + 12x + 12 = 0$ $2x^2 + 6x - 20 = 0$ $x^{2} + 3x - 10 = 0$ *ii*) $x^2 + 3x - 10 = 0$ $x = 2 \ or \ x = -5$ (x-2)(x+5) = 0and y = 4 - x : y = 2 or y = 9P(2,2) and Q(-5,9)*iii*) The mid-point of PQ is $\left(\frac{x_p + x_Q}{2}, \frac{y_p + y_Q}{2}\right) = \left(-\frac{3}{2}, \frac{11}{2}\right)$

Exam report Part (a) The + 2x term was ignored by many who wrote the left hand side of the circle equation as $(x -1)^2 + (y - 6)^2$ but most candidates were able to complete the square correctly. The right hand side was often seen as 49 and since this was a perfect square it did not cause candidates to doubt their poor arithmetic.

Part (b) Many who had the correct circle equation in part (a) wrote the coordinates of the centre with incorrect signs. Generous follow through marks were awarded in this part provided the right hand side of the equation had a positive value. Part (c) Almost all candidates reasoned correctly by considering the y-coordinate of the centre and the radius of the circle, although a number were successful in showing that the quadratic resulting from substituting y = 0 into the circle equation does not have real roots. Some simply drew a diagram and this alone was not regarded as sufficient to prove that the circle did not intersect the x-axis. Others using an algebraic approach found a quadratic that they said did not factorise and concluded incorrectly that the equation had no real roots.

Part (d) The algebra proved too difficult for the weaker candidates and many who had shown good algebraic skills rather casually forgot to include "= 0" on their final line of working. Sadly, many were unable to factorise the quadratic or wrote the coordinates of Q as (-(-5, 2). It was good, however, to see more candidates being able to find the correct mid-point, where in previous years too many had found the difference of the coordinates before dividing by 2.

Question 5:	Exam report
<i>a)i)</i> Surface area : $x \times 2x + 2hx + 2h \times 2x = 54$	
$2x^2 + 2h(x+2x) = 54 (\div 2)$	
$x^{2} + 3xh = 27$ $ii)h = \frac{27 - x^{2}}{3x} = \frac{9}{x} - \frac{x}{3}$ $iii)V = x \times 2x \times h = 2x^{2} \left(\frac{9}{x} - \frac{x}{3}\right) = 18x - \frac{2x^{3}}{3}$ $b)i)\frac{dV}{dx} = 18 - \frac{2}{3} \times 3x^{2} = 18 - 2x^{2}$ $ii)\frac{dV}{dx} = 0 means 18 - 2x^{2} = 0$ $x^{2} = 9$ x = 3 or x = -3(x must be positive) $c)\frac{d^{2}V}{dx^{2}} = -4x and for x = 3, \frac{d^{2}V}{dx^{2}} = -12 < 0$ This point is a maximum.	Part (a) Candidates did not seem confident at working on this kind of problem and algebraic weaknesses were evident. Many worked backwards from the result in part (a)(i) and did not always convince the examiner that they were considering the surface area of four faces and the base. The inability of most candidates to rearrange the formula to make h the subject in part (a)(ii) was alarming. Consequently few, without considerable fudging, could establish the printed formula for the volume. Part (b) Basic differentiation is well understood and most candidates found $\frac{dV}{dx}$ correctly. Some tried to substitute x = 3 into the expression for V in order to show there was a stationary point, but usually this part was answered well. Part (c) It was not uncommon to see the second derivative as 4x even though the first derivative was correct. A generous follow through was given here provided candidates could interpret the value of their second derivative.

Question 6:

$a(i) B(0, y_B)$ belongs to the curve	
so $y_B = 3 \times 0^5 + 2 \times 0 + 5 = 5$	
$B(0,5)$ Area $AOB = \frac{1}{2} \times 1 \times 5 = \frac{5}{2}$ ii) $\int (3x^5 + 2x + 5)dx = \frac{3}{6}x^6 + \frac{2}{2}x^2 + 5x + c$ $= \frac{1}{2}x^6 + x^2 + 5x + c$ iii) Area of shaded region $= \int_{-1}^{0} (3x^5 + 2x + 5)dx - \frac{5}{2}$ $= \left[\frac{1}{2}x^6 + x^2 + 5x\right]_{-1}^{0} - \frac{5}{2} = (0) - \left(\frac{1}{2} + 1 - 5\right) - \frac{5}{2}$ $= \frac{7}{2} - \frac{5}{2} = 1$ b) i) the gradient of the curve at A is $\frac{dy}{dx}(x = -1)$ $\frac{dy}{dx} = 15x^4 + 2$ and for $x = -1$, $m = 17$ ii) The equation of the tangent at A is y - 0 = 17(x + 1)	Part (a)(i) Some candidates ignored the request to state the coordinates of B even though they were using the height of the triangle as 5. The negative x-coordinate of A caused quite a few to feel that the triangle had a negative area. Far too many when finding $\frac{1}{2} \times 1 \times 5$ wrote the answer as 3. Part (a)(ii) Practically every candidate found the correct integral although some made errors when cancelling fractions. Part (a)(iii) It was necessary here to have the lower limit as .1 and the upper limit as 0. Many reversed the order and by some trickery arrived at a positive value. This was penalised and so very few, even though many had an answer of 1 for the area, scored full marks for this part of the question. Part (b) Most candidates differentiated correctly but, because of poor understanding of negative signs, many wrong values of -13 were seen for the gradient. There is obviously confusion for many between tangents and normals and several thought the gradient of the tangent was $-\frac{1}{17}$.

y = 17x + 17

Exam report

Question 7:	Exam report
$(k+1)x^{2}+12x+(k-4)=0$ has real roots	
<i>means</i> the discriminant ≥ 0	Part (a) The condition for real roots was not widely known and the
a) $12^2 - 4 \times (k+1) \times (k-4) \ge 0$	for the printed answer caused many to write the condition as
$144 - 4k^2 + 12k + 16 \ge 0$	$b^2 - 4ac \le 0$. Part (b) It was disappointing to see many unable to factorise the
$-4k^2 + 12k + 160 \ge 0$ (÷-4)	quadratic correctly. Far too many guessed at answers and an approach using a sign diagram or sketch is recommended
$k^2 - 3k - 40 \le 0$	Candidates also need to realise that the final form of the answer
b) $(k-8)(k+5) \le 0$	cannot be written as " $k \ge -5$ " or " $k \le 8$ "
$-5 \le k \le 8$	

GRADE BOUNDARIES									
Component title Max mark A B C D E									
Core 1 – Unit PC1	75	59	51	43	35	28			

Q	Solution	Marks	Total	Comments] [
1(a)(i)	p(-2) = -8 - 16 + 14 + k	M1		or long division or $(x+2)(x^2-6x+5)$	1 [
	$p(-2) = 0 \implies -10 + k = 0 \implies k = 10$	A1	2	2 AG likely withhold if $p(-2) = 0$ not seen	
	Must have statement if k=10 substitute				
(ii)	$p(x) = (x+2)(x^2 + \dots 5)$	M1		Attempt at quadratic or second linear	
	$p(x) = (x+2)(x^2-6x+5)$	Al		factor $(x-1)$ or $(x-5)$ from factor theorem	
	$\Rightarrow p(x) = (x+2)(x-1)(x-5)$	A 1	3	Must be written as product	
	$\rightarrow p(x) - (x + 2)(x - 1)(x - 3)$	711	5	must be written as product	
(b)	$p(3) = 27, 36, 21 \pm k$	MI		long division soores M0	
(0)	p(3) = 27 - 30 = -20 (Remainder) = $k - 30 = -20$	Al	2	Condone $k = 30$	
	(remainder)		-	condone # 50	
	V				
		B1		Curve thro' 10 marked on v-axis	
(c)	10	D1 A		ET their 2 reate meriled on a suis	
		DIV		F I their 3 roots marked on x-axis	
		M1		Cubic shape with a max and min	
		4.1	4	Correct graph (roughly as on left) going	
		AI	-	beyond -2 and 5	
				(condone max anywhere between $x = -2$	
				and 1 and min between 1 and 5)	
	Total		11		-
2(a)(i)	$y = -\frac{3}{5}x + \dots;$ Gradient $AB = -\frac{3}{5}$	M1		Attempt to find $y = \text{ or } \Delta y / \Delta x$	
	5 5	1411		or $\frac{3}{2}$ or $3x/5$	
		A1	2	5 Gradient correct – condone slip in v =	
(ii)	$m_1m_2 = -1$	MI	-	Stated or used correctly	
	Gradient of perpendicular = $\frac{1}{3}$	AI√		It gradient of AB	
	5			_	
	$\Rightarrow y+2=\frac{3}{3}(x-6)$	A1	3	CSO Any correct form eg $y = \frac{5}{2}x - 12$,	
	5			5x - 3y = 36 etc	
(b)	Eliminating yor y (unsimplified)	M1		Must use $3x + 5y = 8$: $2x + 3y = 3$	
(~)	x = -9	A1			
	y = 7	A1	3	B (-9,7)	
(2)					
(0)	$4^2 + (k+2)^2$ (= 25) or $16 + d^2 = 25$	M1		Diagram with 3,4, 5 triangle	
	k = 1	Al		Condone slip in one term (or $k + 2 = 3$)	
	or $k = -5$	A1	3	SC1 with no working for spotting one	
				correct value of k. Full marks if both	
	Tetal		11	values spotted with no contradictory work	-
	l otal		11		

Q	Solution	Marks	Total	Comments
3 (a)	$\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$	M1		Multiplying top & bottom by $\pm(\sqrt{5}+2)$
	Numerator = $5 + 3\sqrt{5} + 2\sqrt{5} + 6$	M1		Multiplying out (condone one slip)
				$\pm (\sqrt{5+3})(\sqrt{5+2})$
	$= 5\sqrt{5} + 11$	A1		
	Final answer = $5\sqrt{5} + 11$	A1	4	With clear evidence that denominator =1
(b)(i)	$\sqrt{45} = 3\sqrt{5}$	B1	1	
(ii)	$\sqrt{20} = \sqrt{4}\sqrt{5}$ or $4\sqrt{5} = \sqrt{4} \times \sqrt{20}$	M1		Both sides
(or attempt to have equation with $\sqrt{5}$			
	or $\sqrt{20}$ only			
	$\begin{bmatrix} x \ 2\sqrt{5} = 7\sqrt{5} - 3\sqrt{5} \end{bmatrix}$ or $x\sqrt{20} = 2\sqrt{20}$	Al		or $x = \sqrt{4}$
	x=2	Al	3	CSO
	Total		8	
4(a)	$(x+1)^2 + (y-6)^2$	B2	2	B1 for one term correct or missing $+$ sign
	(1+36-12=25) RHS = 5"	BI	3	Condone 25
(b)(i) (ii)	Centre $(-1, 6)$ Radius = 5	B1√ B1√	1 1	FT their <i>a</i> and <i>b</i> from part (a) or correct FT their <i>r</i> from part (a) RHS must be > 0
(c)	Attempt to solve "their" $x^2 + 2x + 12 = 0$	M1		Or comparing "their" $y_c = 6$ and their
	(all working correct) so no real roots or statement that does not intersect	A1	2	r = 5 may use a diagram with values shown $\int r < y_c \text{so does not intersect}$ condone ± 1 or ± 6 in centre for A1
(d)(i)	$(4-x)^2 = 16 - 8x + x^2$	B1		Or $(-2-x)^2 = 4 + 4x + x^2$
	$x^{2} + (4 - x)^{2} + 2x - 12(4 - x) + 12 = 0$	M1		Sub $v = 4 - x$ in circle eqn (condone slip)
	or $(x+1)^2 + (-2-x)^2 = 25$			or "their" circle equation
	$\Rightarrow 2x^2 + 6x - 20 = 0 \Rightarrow x^2 + 3x - 10 = 0$	A1	3	AG CSO (must have $= 0$)
(ii)	$(x+5)(x-2) = 0 \implies x = -5, x = 2$ <i>Q</i> has coordinates (-5, 9)	M1 A1	2	Correct factors or unsimplified solution to quadratic (give credit if factorised in part (i)) <u>SC2</u> if Q correct. Allow $x = -5$ $y = 9$
(iii)	Mid point of 'their' (-5, 9) and (2,2)	M1		Arithmetic mean of either x or y coords
	$\left(-1\frac{1}{2},5\frac{1}{2}\right)$	Al	2	Must follow from correct value in (ii)
	Total		14	

Q	Solution	Marks	Total	Comments
5(a)(i)	$2x^2 + 2xh + 4xh$ (= 54)	M1		Attempt at surface area (one slip)
	$\Rightarrow x^2 + 3xh = 27$	Al	2	AG CSO
(ii)	$h = \frac{27 - x^2}{3x}$ or $h = \frac{9}{x} - \frac{x}{3}$ etc	B1	1	Any correct form
(iii)	$V = 2x^2h = 18x - \frac{2x^3}{3}$	B1	1	AG (watch fudging) condone omission of brackets
(b)(i)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 18 - 2x^2$	M1 A1	2	One term correct "their" V All correct unsimplified $18 - 6x^2/3$
(ii)	Sub $x = 3$ into their $\frac{dV}{dx}$	M1		Or attempt to solve their $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$
	Shown to equal 0 plus statement that this implies a stationary point if verifying	Al	2	CSO Condone $x = \pm 3$ or $x = 3$ if solving
(c)	$\frac{\mathrm{d}^2 V}{\mathrm{d} x^2} = -4x$	В1√		FT their $\frac{\mathrm{d}V}{\mathrm{d}x}$
	(=-12)			
	$\frac{d v}{d r^2} < 0$ at stationary point \Rightarrow maximum	E1√	2	FT their second derivative conclusion
	u.,			If "their" $\frac{d^2 y}{dx^2} > 0 \implies \text{minimum etc}$
	Total		10	

Q	Solution		Total	Comments	
6(a)(i)	B(0,5)	B1 M1		Condona alin in number or a minus sign	
	Area $AOB = \frac{1}{2} \times 1 \times 5$		2	Condone stip in number of a minus sign	
	$=2\frac{1}{2}$	AI	3		
(ii)	$3x^6$, $2x^2$, x^6 , $2x^6$	M1		Raise one nower by 1	
(11)	$\frac{1}{6} + \frac{1}{2} + 5x$ or $\frac{1}{2} + x^2 + 5x$	Al		One term correct	
	(may have $+c$ or not)	A1	3	All correct unsimplified	
(iii)	Area under curve = $\int_{-1}^{0} f(x) dx$	В1		Correctly written or $F(0) - F(-1)$ correct	
		М1		Attempt to sub limit(s) of -1 (and 0)	
	$\begin{bmatrix} 0 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} + 1 - 5 \end{bmatrix}$	1411		Must have integrated	
	Area under curve = $3\frac{1}{2}$	A1		CSO (no fudging)	
	Area of shaded region = $3\frac{1}{2} - 2\frac{1}{2} = 1$	В1√	4	FT their integral and triangle (very generous)	
(b)(i)	dv	M1		One term correct	
	$\frac{1}{dx} = 15x^4 + 2$	A1		All correct (no $+c$ etc)	
	when $x = -1$, gradient = 17	Al	3	cso	
(ii)	y = "their gradient"($x + 1$)	В1√	1	Must be finding tangent – not normal any form e.g. $y = 17x + 17$	
	Total		14		
7(a)	$b^2 - 4ac = 144 - 4(k+1)(k-4)$	M1		Clear attempt at $b^2 - 4ac$ Condone slip in one term of expression	
	Paul roots when $b^2 - 4\pi c > 0$	B1		Not just a statement must involve k	
	Real foots when $b^2 = 4ac \ge 0$	DI		Not just a statement, must involve k	
	$36 - (k^2 - 3k - 4) \ge 0$		2		
	$\Rightarrow k^2 - 3k - 40 \leq 0$	AI	3	AG (watch signs carefully)	
(b)	(k-8)(k+5)	M1		Factors attempt or formula	
	Critical points 8 and -5	A1			
	Sketch or sign diagram correct, must have				
	8 and -5	M1			
	$-5 \leqslant k \leqslant 8$	A1	4	-5 8	
	A0 for $-5 \le k \le 8$ or two separate inequalities unless word AND used				
	Total		7		
	TOTAL		75		

General Certificate of Education June 2007 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 1 MPC1

QUALIFICATIONS

ALLIANCE

Monday 21 May 2007 9.00 am to 10.30 am

an 8-page answer book

 the blue AQA booklet of formulae and statistical tables. You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- · Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- · Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

· Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The points A and B have coordinates (6, -1) and (2, 5) respectively.

(a) (i) Show that the gradient of *AB* is
$$-\frac{3}{2}$$
. (2 marks)

- (ii) Hence find an equation of the line *AB*, giving your answer in the form ax + by = c, where *a*, *b* and *c* are integers. (2 marks)
- (b) (i) Find an equation of the line which passes through B and which is perpendicular to the line AB. (2 marks)
 - (ii) The point C has coordinates (k, 7) and angle ABC is a right angle.
 - Find the value of the constant k.

(2 marks)

2 (a) Express
$$\frac{\sqrt{63}}{3} + \frac{14}{\sqrt{7}}$$
 in the form $n\sqrt{7}$, where *n* is an integer. (3 marks)

(b) Express
$$\frac{\sqrt{7}+1}{\sqrt{7}-2}$$
 in the form $p\sqrt{7}+q$, where p and q are integers. (4 marks)

- 3 (a) (i) Express $x^2 + 10x + 19$ in the form $(x+p)^2 + q$, where p and q are integers. (2 marks)
 - (ii) Write down the coordinates of the vertex (minimum point) of the curve with equation $y = x^2 + 10x + 19$. (2 marks)
 - (iii) Write down the equation of the line of symmetry of the curve $y = x^2 + 10x + 19$. (1 mark)
 - (iv) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 10x + 19$. (3 marks)
 - (b) Determine the coordinates of the points of intersection of the line y = x + 11 and the curve $y = x^2 + 10x + 19$. (4 marks)

4 A model helicopter takes off from a point O at time t = 0 and moves vertically so that its height, y cm, above O after time t seconds is given by

$$y = \frac{1}{4}t^4 - 26t^2 + 96t$$
, $0 \le t \le 4$

(a) Find:

(i)
$$\frac{dy}{dt}$$
; (3 marks)

ii)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$$
. (2 marks)

- (b) Verify that y has a stationary value when t = 2 and determine whether this stationary value is a maximum value or a minimum value. (4 marks)
- (c) Find the rate of change of y with respect to t when t = 1. (2 marks)
- (d) Determine whether the height of the helicopter above O is increasing or decreasing at the instant when t = 3. (2 marks)

5 A circle with centre C has equation $(x + 3)^2 + (y - 2)^2 = 25$.

- (a) Write down:
 - (i) the coordinates of C; (2 marks)
 - (ii) the radius of the circle. (1 mark)
- (b) (i) Verify that the point N(0, -2) lies on the circle. (1 mark)

 - (iii) Find an equation of the normal to the circle at the point N. (3 marks)
- (c) The point P has coordinates (2, 6).

(ii) Sketch the circle.

- (i) Find the distance *PC*, leaving your answer in surd form. (2 marks)
- (ii) Find the length of a tangent drawn from P to the circle. (3 marks)

- 6 (a) The polynomial f(x) is given by $f(x) = x^3 + 4x 5$.
 - (i) Use the Factor Theorem to show that x 1 is a factor of f(x). (2 marks)
 - (ii) Express f(x) in the form $(x-1)(x^2 + px + q)$, where p and q are integers. (2 marks)
 - (iii) Hence show that the equation f(x) = 0 has exactly one real root and state its value. (3 marks)
 - (b) The curve with equation $y = x^3 + 4x 5$ is sketched below.

The curve cuts the x-axis at the point A(1,0) and the point B(2,11) lies on the curve.

(i) Find
$$\int (x^3 + 4x - 5) dx$$
. (3 marks)

(ii) Hence find the area of the shaded region bounded by the curve and the line AB. (4 marks)

7 The quadratic equation

(2 marks)

$$(2k-3)x^2 + 2x + (k-1) = 0$$

where k is a constant, has real roots.

(a)	Show	w that $2k^2 - 5k + 2 \le 0$.	(3 marks)
(b)	(i)	Factorise $2k^2 - 5k + 2$.	(1 mark)
	(ii)	Hence, or otherwise, solve the quadratic inequality	
		$2k^2 - 5k + 2 \leqslant 0$	(3 marks)

END OF QUESTIONS

AQA – Core 1 - – June 2007 – Answers

Question 1:	Exam report		
A(6,-1) $B(2,5)$	Part (a)(i) Most candidates were able to show that the		
$a)i) m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{5+1}{2-6} = \frac{6}{-4} = -\frac{3}{2}$	gradient was $-\frac{3}{2}$. However, examiners had to be vigilant $6 -4$		
ii) Equation of AB: $y+1 = -\frac{3}{2}(x-6)$	since fractions such as $\frac{-}{4}$ and $\frac{-}{6}$ were sometimes equated		
2y + 2 = -3x + 18	to $-\frac{3}{2}$.		
3x + 2y = 16	Part (a)(ii) Many candidates did not heed the request for		
b) <i>i</i>) the line perpendicular to AB has gradient $-\frac{1}{m_{AB}}$	$= \frac{2}{3}$ integer coefficients and left their answer as $y = -\frac{3}{2}x + 8$. Many who attempted to express the equation in the		
The equation of this line : $y-5=\frac{2}{3}(x-2)$	required form were unable to double the 8 and wrote their final equation $as3x + 2y = 8$.		
3y - 15 = 2x - 4	Part (b)(i) Most candidates realised that the product of the gradients should be -1. However, not all were able to		
2r - 3v11	calculate the negative reciprocal. Others used the incorrect		
$Z_{X} = S_{Y} = 11$	point and therefore found an equation of the wrong line. Part (b)(ii) Many candidates made no attempt at this part of		
(l) C(k, 7). the angle ABC is a right angle so	the question. The most successful method was to substitute		
the point C belongs to the perpendicular to AB.	y = 7 into the answer to part (b)(i) or to equate the gradient		
By substituting : $2 \times k - 3 \times 7 = -11$	to $\frac{2}{2}$. There were also some good answers using a		
$2k = 10 \qquad \qquad k = 5$	3 diagrammatic approach. Those using Pythagoras usually made algebraic errors and so rarely reached a solution.		
Question 2:	Exam report		
$a)\frac{\sqrt{63}}{2} + \frac{14}{\sqrt{7}} = \frac{\sqrt{9 \times 7}}{2} + \frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{3\sqrt{7}}{2} + \frac{14\sqrt{7}}{7}$	Part (a) Some candidates found this part more difficult than part (b) and revealed a lack of understanding of surds. Some managed		
	to express the first term as $\sqrt{7}$ but were unable to deal with the		
$=\sqrt{7}+2\sqrt{7}=3\sqrt{7}$	second term. Those who attempted to find a common		
$\sqrt{7} + 1$ $\sqrt{7} + 1$ $\sqrt{7} + 2$ $7 + 2\sqrt{7} + \sqrt{7} + 2$	added those in the denominator. Very few obtained the correct		
$(b)\frac{1}{\sqrt{7}-2} = \frac{1}{\sqrt{7}-2} \times \frac{1}{\sqrt{7}+2} = \frac{1}{\sqrt{7}-4}$	answer of $3\sqrt{7}$.		
$9 + 3\sqrt{7}$	Part (b) Most candidates recognised the first crucial step of		
$=\frac{3+3\sqrt{7}}{3}$	multiplying the numerator and denominator by $\sqrt{7}+2$ and		
	many obtained $\frac{9+3\sqrt{7}}{3}$, but poor cancellation led to a very		
	common incorrect answer of $3\sqrt{7} + 3$.		

Question 4:	Exam report
d 1 d 3 d d d d d d	Part (a) Almost all candidates were able to find the first and
$a(t) = -\frac{1}{4t} + \frac{1}{4} + \frac{1}{$	second derivatives correctly, although there was an occasional
ai 4	arithmetic slip; some could not cope with the fraction term,
$d^2 y = 2t^2 - 52$	others doubled 26 incorrectly.
$u_{1} = \frac{1}{dt^{2}} = 3u - 32$	dy
1	Part (b) Those who substituted t = 2 into $\frac{ay}{b}$ did not always
b) Let's verify that for $t = 2$, $\frac{dy}{dt} = 0$	dt
dt	dv
dy	explain that $\frac{dy}{dt} = 0$ is the condition for a stationary point.
$\frac{ay}{b}(t=2) = 2^3 - 52 \times 2 + 96 = 8 - 104 + 96 = 0$	dt
dt	Many used the second derivative test and concluded that the
There is a stationary point when $t = 2$.	point was a maximum. Some assumed that a stationary point
J ²	occurred when t = 2 and went straight to the test for maximum
Let's work out $\frac{a}{y}(t=2) = 3 \times 2^2 - 52 = 12 - 52 = -40 < 0$	dv
dt^2 ()	or minimum and only scored half of the marks. A few tested
The stationary point is a Maximum.	dt
	on either side of t = 2 correctly, but those who only considered
c) The rate of change is $\frac{dy}{dt}(t=1) = 1-52+96 = \frac{45 \text{ cm}}{s}$	the gradient on one side of the stationary value scored no marks
dt	for the test.
dy	Part (c) The concept of .rate of change. was not understood by
d) The sign of $\frac{dy}{dt} at t = 3$	many. Approximately equal numbers of candidates substituted
dt	$d\mathbf{v} = d^2 \mathbf{v}$
will indicate if the height is increasing or decreasing.	into t = 1 into the expression for y, $\frac{ay}{a}$ or $\frac{ay}{a}$ and so only
dy	$dt dt^2$
$\frac{ay}{b}(t=3) = 3^3 - 52 \times 3 + 96 = 27 - 156 + 96 = -33 < 0$	about one third of the candidates were able to score any marks
dt	dy
The height is decreasing when $t = 3$	on this part. Those who used — often made careless
	dt
	arithmetic errors when adding three numbers.
	Part (d) As in part (c), candidates did not realise which expression
	to use and perhaps the majority wrongly selected the second
	derivative. It is a general weakness that candidates do not realise
	that the sign of the first derivative indicates whether a function is
	increasing or decreasing at a particular point.

Question 5:	Exam report
$(x+3)^{2} + (y-2)^{2} = 25$	
a)i)C(-32)	Part (a) Most candidates found the correct coordinates of the centre, although some wrote these as $(3, -2)$ instead of
$ii) Radius \ r = \sqrt{25} = 5$	(-3, 2). Those who multiplied out the brackets were often unsuccessful in writing down the correct radius of the
b(i) N belongs to the circle	circle. Part (b)(i) Most candidates were able to verify that the
if its coodinates satify the equation	point N was on the circle, although some, who had perhaps
$(0+3)^2 + (-2-2)^2 = 3^2 + 4^2 = 9 + 16 = 25$	worked a previous examination question, were keen to show that the distance from C to N was less than the radius
N(0, -2) belongs to the circle	and that N lay inside the circle. Part (b)(ii) Most sketches were correct, though some were
ii)	very untidy with several attempts at the circle so that the
<i>iii</i>) The equation of the normal is the equation	diagram resembled a chaotic orbit of a planet. Some candidates omitted the axes and scored no marks.
of the line CN	Part (b)(iii) The majority of candidates found the gradient
	of CN and then assumed they had to find the negative
$m_{cN} = \frac{-2-2}{2} = -\frac{4}{2}$	N. Reference to their diagram might have avoided this
0+3 3	incorrect assumption.
<i>Equation</i> : $y + 2 = -\frac{4}{3}(x - 0)$	Part (c)(i) Most wrote $PC^2 = 5^2 + 4^2$, provided they had the correct coordinates of C. However, the length of PC was
3y + 6 = -4x	often calculated incorrectly with answers such as $\sqrt{31}$ and
4x + 3y = -6	$\sqrt{36} = 6$ seen quite often.
c) $P(2,6)$ C(-3,2)	Part (c)(ii) Although there were many correct solutions seen, Pythagoras' Theorem was often used incorrectly. A
	large number of candidates wrote the answer as a
i) $PC = \sqrt{(-3-2)^2 + (2-6)^2} = \sqrt{25+16} = \sqrt{41}$	difference of two lengths such as $\sqrt{41}-5$. Candidates
<i>ii</i>) If we call T the point of contact of the tangent from P	need to realise that obtaining the correct answer from
then the triangle PTC is a right-angled triangle.	$\sqrt{41} - \sqrt{25} = \sqrt{16} = 4$ and scored no marks. Many who
$PT^{2} = PC^{2} - TC^{2} = \left(\sqrt{41}\right)^{2} - r^{2} = 41 - 25 = 16$	drew a good diagram realised that a tangent from (2,6) touched the circle at (2,2) and so the vertical line segment
$PT = \sqrt{16} = 4$	was of length 4 units.

Question 6:	Exam report
a) $f(x) = x^3 + 4x - 5$	Part (a)(i) Most candidates realised the need to
<i>i</i>)Let's work out $f(1)$	find the value of $f(x)$ when $x = 1$. However, it was also necessary, after showing that $f(1) = 0$, to
$f(1) = 1^3 + 4 \times 1 - 5 = 1 + 4 - 5 = 0$	write a statement that the zero value implied that
1 is a root of f so $(x-1)$ is a factor of f.	Part (a)(ii) Those who used inspection were the
<i>ii</i>) $f(x) = (x-1)(x^2 + x + 5)$	most successful here. Methods involving long division or equating coefficients usually contained
<i>iii</i>) The discriminant of $x^2 + x + 5$ is $1^2 - 4 \times 1 \times 5 = -19 < 0$	algebraic errors.
$x^2 + x + 5$ has no real roots	Part (a)(iii) This section seemed unclear to some candidates. Many tried to find the discriminant
The only real root of f is 1.	but used the coefficients of the cubic equation.
b) i) $\int (x^3 + 4x - 5) dx = \frac{1}{4}x^4 + 2x^2 - 5x + c$	order to have one real root the discriminant had to be zero, no doubt thinking the question was
<i>ii</i>) Mark the point $C(2,0)$	asking about equal roots. Some correctly stated
Area of the shaded region is Area of ABC $-\int_{1}^{2} f(x)dx$	that 1 was the only real root but many were obviously confused by the terms "factor" and "root" and stated that "x-1 was a root".
$A = \frac{1}{2} \times 1 \times 11 - \left[\frac{1}{4}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{11}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 + 8 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2}x^4 + 2x^2 - 5x\right]_1^2 = \frac{1}{2} - \left[\left(4 - 10\right) - \frac{1}{2} -$	$\left(\frac{1}{4}+2-5\right)$ Part (b)(i) Most candidates were well versed in integration and earned full marks here. Part (b)(ii) The correct limits were usually used,
11 211 22-8-11 3	although many sign/arithmetic slips occurred
$A = \frac{-2}{2} - \frac{2}{4} = \frac{-4}{4} = \frac{-4}{4}$	after substitution of the numbers 1 and 2. Very
	of a triangle as well and so failed to subtract the
	value of the integral from the area of the triangle
	in order to find the area of the shaded region.
Question 7:	Exam report
$(2k-3)x^{2}+2x+(k-1)=0$ has real roots	
This means that the discriminat ≥ 0	

This means that the discriminat ≥ 0	
$2^2 - 4 \times (2k - 3) \times (k - 1) \ge 0$	Part (a) Only the more able candidates were able to complete this proof correctly. Many bogan by stating that the discriminant was
$4 - 8k^2 + 20k - 12 \ge 0$	less than or equal to zero, no doubt being influenced by the printed
$-8k^2 + 20k - 8 \ge 0$ (÷ - 4)	answer. Part (b)(i) The factorisation was usually correct.
$2k^2 - 5k + 2 \le 0$	Part (b)(ii) Most candidates found the critical values, but many then either stopped or wrote down a solution to the inequality without
$b(i) 2k^2 - 5k + 2 = (2k - 1)(k - 2)$	any working. Many candidates wrongly thought the solution was
$ii)(2k-1)(k-2) \le 0$	$k \leq rac{1}{2}, k \leq 2$. Candidates are advised to draw an appropriate
critical values : $\frac{1}{2}$ and 2	sketch or sign diagram so they can deduce the correct interval for the solution.

GRADE BOUNDARIES							
Component title	Max mark	А	В	С	D	E	
Core 1 – Unit PC1	75	60	52	44	37	30	
MY SCORE FOR							

 $\frac{1}{2} \le k \le 2$

Q	Solution	Marks	Total	Comments	Q		Solution	Marks	Total	Comments
1(a)(i)	Gradient $AB = \frac{-1-5}{6}$ or $\frac{51}{2}$	M1		$\pm \frac{6}{4}$ implies M1	3(a)(i	(i)	$(x+5)^2$ -6	B1 B1	2	p = 5 q = -6
	$= \frac{-6}{4} = -\frac{3}{2}$	A1	2	4 AG	(i	ii)	$x_{\text{vertex}} = -5 \text{ (or their } -p \text{)}$ $y_{\text{vertex}} = -6 \text{ (or their } q \text{)}$	B1√ B1√	2	may differentiate but must have $x = -5$ and $y = -6$. Vertex $(-5, -6)$
(ii)	$ \begin{vmatrix} y-5\\ y+1 \end{vmatrix} = -\frac{3}{2} \begin{cases} (x-2)\\ (x-6) \end{cases} $	М1		or $y = -\frac{3}{2}x + c$ and attempt to find c	(ii (ix	ii) v) :	x = -5 Translation (not shift, move etc)	B1 E1	1	and NO other transformation stated
	$\Rightarrow 3x + 2y = 16$	Al	2	OE; must have integer coefficients	(b	b) .	through $\begin{bmatrix} -5\\ -6 \end{bmatrix}$ (or 5 left, 6 down) $x + 11 = x^2 + 10x + 19$	A1	3	ettner component correct M1, A1 independent of E mark quadratic with all terms on one side of
(b)(i)	Gradient of perpendicular $=\frac{2}{3}$	M1		or use of $m_1m_2 = -1$			$\Rightarrow x^{2} + 9x + 8 = 0 \text{ or } y^{2} - 13y + 30 = 0$ (x+8)(x+1) = 0 or (y-3)(y-10) = 0	M1 m1		equation attempt at formula (1 slip) or to factorise
	$\Rightarrow y-5 = \frac{2}{3}(x-2)$	A1	2	3y - 2x = 11 (no misreads permitted)			$ \begin{array}{c} x = -1 \\ y = 10 \end{array} \text{ or } \begin{array}{c} x = -8 \\ y = 3 \end{array} $	A1 A1	4	both x values correct both y values correct and linked SC $(-1, 10)$ B2, $(-8, 3)$ B2 no working
(ii)	Substitute $x = k$, $y = 7$ into their (b)(i)	M1		or grads $\frac{7-5}{3} \times \frac{-3}{-1} = -1$			Total		12	
	$\Rightarrow 2 = \frac{2}{3}(k-2) \Rightarrow k = 5$	A1	2	or Pythagoras $(k-2)^2 = (k-6)^2 + 8$	4(a)(i	(i) .	$t^3 - 52t + 96$	M1 A1 A1	3	one term correct another term correct all correct (no $+ c$ etc)
	Total		8	$\left(\overline{D}, \overline$	(i	ii)	$3t^2 - 52$	M1 A1√	2	ft one term correct ft all "correct"
2(a)	$\frac{\sqrt{63}}{3} = \sqrt{7} \text{ or } \frac{3\sqrt{7}}{3}$	В1		or $\frac{(\sqrt[4]{\sqrt{63}+14\times 3})}{3\sqrt{7}}$	(E	b)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 8 - 104 + 96$	Ml		substitute $t = 2$ into their $\frac{dy}{dt}$
	$\frac{14}{\sqrt{7}} = 2\sqrt{7} \text{ or } \frac{14\sqrt{7}}{7}$	B1		or $\frac{\sqrt{7}}{\sqrt{7}}$ () M1		5	= 0 \Rightarrow stationary value Substitute $t = 2$ into $\frac{d^2 y}{dt^2}$ (= -40)	A1 M1		CSO; shown = 0 + statement any appropriate test, e.g. $y'(1)$ and $y'(3)$
	\Rightarrow sum = $3\sqrt{7}$	B1	3	\Rightarrow correct answer with all working correct A2			$\frac{d^2 y}{dt^2} < 0 \Rightarrow \max \text{ value}$	Al	4	all values (if stated) must be correct
(b)	Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1			(0	c) 5	Substitute $t = 1$ into their $\frac{dy}{dt}$	M1		must be their $\frac{dy}{dt}$ NOT $\frac{d^2y}{dt^2}$
	Denominator = $7 - 4 = 3$	A1					Rate of change = $45 (\text{cm s}^{-1})$	A1√	2	ft their $y'(1)$
	Numerator = $\left(\sqrt{7}\right)^2 + \sqrt{7} + 2\sqrt{7} + 2$	ml		multiplied out (allow one slip) $9 + 3\sqrt{7}$	(d	d) 5	Substitute $t = 3$ into their $\frac{dy}{dt}$	Ml		interpreting their value of $\frac{dy}{dt}$
	Answer = $\sqrt{7+3}$	A1	4				(27 - 156 + 96 = -33 < 0)			
	Total		7				\Rightarrow decreasing when $t = 3$	E1√	2	allow increasing if their $\frac{dy}{dt} > 0$
							Total		13	

Q	Solution	Marks	Total	Comments	Q	Solution	Marks	Total	Comments
5(a)(i)	Centre (-3, 2)	M1		±3 or ±2	6(a)(i)	f(1) = 1 + 4 - 5	M1		must find $f(1)$ NOT long division
		A1	2	correct		\Rightarrow f(1) = 0 \Rightarrow (x - 1) is factor	A1	2	shown $= 0$ plus a statement
(ii)	Radius = 5	B1	1	accept $\sqrt{25}$ but not $\pm\sqrt{25}$	(ii)	Attempt at $x^2 + x + 5$	M1		long division leading to $x^2 \pm x + \dots$ or equating coefficients
(b)(i)	$3^{2} + (-4)^{2} = 9 + 16 = 25$ $\Rightarrow N \text{ lies on circle}$	B1	1	must have $9+16 = 25$ or a statement		$f(x) = (x-1)(x^2 + x + 5)$	A1	2	p = 1, q = 5 by inspection scores B1, B1
(ii)	↓ V				(iii)	(x =) 1 is real root	B1		
(,	l T					Consider $b^2 - 4ac$ for their $x^2 + x + 5$	M1		not the cubic!
		M1		must draw axes;		$b^2 - 4ac = 1^2 - 4 \times 5 = -19 < 0$			
				ft their centre in correct quadrant		Hence no real roots (or only real root is 1)	A1	3	CSO; all values correct plus a statement
		A1	2	correct (reasonable freehand circle enclosing origin)	(b)(i)	$\int \dots \mathrm{d}x = \frac{x^4}{4} + 2x^2 - 5x (+c)$	M1 A1 A1	3	one term correct unsimplified second term correct unsimplified all correct unsimplified
(iii)	Attempt at gradient of CN	M1		withhold if subsequently finds tangent					r
	grad $CN = -\frac{4}{3}$	A1		CSO	(ii)	$[4+8-10]-[\frac{1}{4}+2-5]$	M1		correct use of limits 1 and 2; F(2) - F(1) attempted
	$y = -\frac{4}{3}x - 2$ (or equivalent)	A1√	3	ft their grad CN		$=4\frac{3}{4}$	A1		
(c)(i)	$P(2,6)$ Hence $PC^2 = 5^2 + 4^2$	Ml		"their" PC ²		Area of $\Delta = \frac{1}{2} \times 11 = 5\frac{1}{2}$	B1		correct unsimplified
	$\Rightarrow PC = \sqrt{41}$	A1	2			\Rightarrow shaded area $=5\frac{1}{2}-4\frac{3}{4}$			combined integral of $7x - 6 - x^3$ scores M1 for limits correctly used then
(ii)	Use of Pythagoras correctly $PT^2 = PC^2 = r^2 = 41 = 25$	M1				$=\frac{3}{4}$	A1	4	A3 correct answer with all working correct
	where T is a point of contact of tangent	A1√		ft their PC^2 and r^2		Total		14	
	$\Rightarrow PT = 4$	A1	3	Alternative	7(a)	$b^2 - 4ac = 4 - 4(k - 1)(2k - 3)$	M1		(or seen in formula) condone one slip
				sketch with vertical tangent M1 showing that tangent touches circle at		Real roots when $b^2 - 4ac \ge 0$	E1		must involve $f(k) \ge 0$ (usually M1 must be earned)
				point $(2, 2)$ AI hence $PT = 4$ AI		$4-4(2k^2-5k+3) \ge 0$			
	Total		14			$\Rightarrow -2k^2 + 5k - 3 + 1 \ge 0$			at least one step of working justifying ≤ 0
						$\Rightarrow 2k^2 - 5k + 2 \le 0$	A1	3	AG

(b)(i) (2k-1)(k-2)

(ii) (Critical values) $\frac{1}{2}$ and 2

 $\frac{1}{2}$

 $\Rightarrow 0.5 \leq k \leq 2$

2

B1

B1√

M1

A1

Total TOTAL

1

3 7

75

ft their factors or correct values seen on

diagram, sketch or inequality or stated

M1A0 for 0.5 < k < 2 or $k \ge 0.5$, $k \le 2$

use of sketch / sign diagram

General Certificate of Education January 2008 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 1 MPC1

QUALIFICATIONS ALLIANCE

ASSESSMENT and

Wednesday 9 January 2008 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.
- You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75.
- · The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The triangle ABC has vertices A(-2, 3), B(4, 1) and C(2, -5).

(a)	Find	the coordinates of the mid-point of BC.	(2 marks)
(b)	(i)	Find the gradient of AB , in its simplest form.	(2 marks)
	(ii)	Hence find an equation of the line AB , giving your answer in the form $x + qy = r$, where q and r are integers.	(2 marks)
	(iii)	Find an equation of the line passing through C which is parallel to AB .	(2 marks)
(c)	Prov	e that angle ABC is a right angle.	(3 marks)

2 The curve with equation $y = x^4 - 32x + 5$ has a single stationary point, M.

(a) Find
$$\frac{dy}{dx}$$
. (3 marks)

(b) Hence find the *x*-coordinate of *M*. (3 marks)

(c) (i) Find
$$\frac{d^2y}{dx^2}$$
. (1 mark)

- (ii) Hence, or otherwise, determine whether M is a maximum or a minimum point. (2 marks)
- (d) Determine whether the curve is increasing or decreasing at the point on the curve where x = 0. (2 marks)

3 (a) Express
$$5\sqrt{8} + \frac{6}{\sqrt{2}}$$
 in the form $n\sqrt{2}$, where *n* is an integer. (3 marks)

(b) Express
$$\frac{\sqrt{2}+2}{3\sqrt{2}-4}$$
 in the form $c\sqrt{2}+d$, where c and d are integers. (4 marks)

- 4 A circle with centre C has equation $x^2 + y^2 10y + 20 = 0$.
 - (a) By completing the square, express this equation in the form

$$x^{2} + (y - b)^{2} = k$$
 (2 marks)

- (b) Write down:
 - (i) the coordinates of C; (1 mark)
 - (ii) the radius of the circle, leaving your answer in surd form. (1 mark)
- (c) A line has equation y = 2x.
- (i) Show that the *x*-coordinate of any point of intersection of the line and the circle satisfies the equation x² 4x + 4 = 0. (2 marks)
 (ii) Hence show that the line is a tangent to the circle and find the coordinates of the point of contact, *P*. (3 marks)
 (d) Prove that the point Q(-1, 4) lies inside the circle. (2 marks)
- 5 (a) Factorise $9 8x x^2$. (2 marks)
 - (b) Show that $25 (x+4)^2$ can be written as $9 8x x^2$. (1 mark)
 - (c) A curve has equation $y = 9 8x x^2$.
 - (i) Write down the equation of its line of symmetry. (1 mark)
 - (ii) Find the coordinates of its vertex. (2 marks)
 - (iii) Sketch the curve, indicating the values of the intercepts on the x-axis and the y-axis.
 (3 marks)

- 6 (a) The polynomial p(x) is given by $p(x) = x^3 7x 6$.
 - (i) Use the Factor Theorem to show that x + 1 is a factor of p(x). (2 marks)
 - (ii) Express $p(x) = x^3 7x 6$ as the product of three linear factors. (3 marks)
 - (b) The curve with equation $y = x^3 7x 6$ is sketched below.

The curve cuts the x-axis at the point A and the points B(-1, 0) and C(3, 0).

(i) State the coordinates of the point A. (1 mark)

(ii) Find
$$\int_{-1}^{3} (x^3 - 7x - 6) dx$$
. (5 marks)

- (iii) Hence find the area of the shaded region bounded by the curve $y = x^3 7x 6$ and the x-axis between B and C. (1 mark)
- (iv) Find the gradient of the curve $y = x^3 7x 6$ at the point *B*. (3 marks)
- (v) Hence find an equation of the normal to the curve at the point B. (3 marks)
- 7 The curve C has equation $y = x^2 + 7$. The line L has equation y = k(3x + 1), where k is a constant.
 - (a) Show that the x-coordinates of any points of intersection of the line L with the curve C satisfy the equation

$$x^2 - 3kx + 7 - k = 0 (1 mark)$$

(b) The curve C and the line L intersect in two distinct points. Show that

$$9k^2 + 4k - 28 > 0$$
 (3 marks)

(c) Solve the inequality $9k^2 + 4k - 28 > 0$. (4 marks)

END OF QUESTIONS

AQA – Core 1 - – Jan 2008 – Answers

	1
Question 1:	Exam report
A(-2,3) B(4,1) C(2,-5)	In part (a), apart from a few sign errors, it was pleasing to see
a) Mid-point of BC $\left(\frac{4+2}{2}, \frac{1-5}{2}\right) = (3, -2)$	that most candidates were able to find the correct mid-point. However, those who insisted on subtracting the coordinates before dividing by 2 would do well to learn the formula in the first bullet point above. Quite a few candidates found the
$b(i) m_{AB} = \frac{1-3}{4+2} = -\frac{2}{6} = -\frac{1}{3}$	mid-point of <i>AB</i> instead of <i>BC</i> , and this was generously treated as a misread. In part (b)(i), many ignored the request to simplify the
<i>ii</i>) $Eq: y-3 = -\frac{1}{3}(x+2)$	gradient, but most were successful in writing the gradient of <i>AB</i> as -1/3.
3y - 9 = -x - 2	In part (b)(ii), almost all candidates managed to write down a correct equation for the line <i>AB</i> , but careless arithmetic
x + 3y = 7	prevented many from obtaining the required form of $x + 3y = 7$. Some were content to give a final answer that was not in
<i>iii</i>) this line has the same gradient $-\frac{1}{3}$	the required form, thus losing a mark. In part (b)(iii), some candidates immediately used $m1 \times m2 = -1$ to find the gradient of the parallel line and scored no
$Eq: y+5 = -\frac{1}{3}(x-2)$	marks. Many who used the formula $y = mx + c$ for the equation of the straight line through <i>C</i> parallel to <i>AB</i> made arithmetic slips and did not obtain a correct final equation.
3y+15 = -x+2	In part (c), the most common approach, and the one
x + 3y = -13	expected, was to use gradients in order to prove that angle <i>ABC</i> was a right angle. Some simply assumed the result,
c) Let's work out the gradient of the line BC:	stating that since the gradient of AB was -1/3 then BC had
$m_{BC} = \frac{-5 - 1}{2 - 4} = \frac{-6}{-2} = 3$	differences of the coordinates that <i>BC</i> had gradient 3. Far too many simply found the two gradients and wrote "therefore the lines <i>BC</i> and <i>AB</i> are perpendicular". Since this was a
$m_{AB} \times m_{BC} = -\frac{1}{3} \times 3 = -1$	proof, it was expected that the product of the two gradients would be shown to equal -1 before a statement was made about angle ABC being a right angle. Some were successful in
Conclusion : the line AB and BC are perpendicular	proving the result using Pythagoras' Theorem, but many
the triangle ABC is a right-angled triangle.	attempts were incomplete with several candidates writing $\sqrt{40}$
	$\sqrt{40} + \sqrt{40} = \sqrt{80}$ or other inaccurate statements. Others
	used the cosine rule, and one or two used the scalar product of two vectors in order to prove the result. A surprising number confused "isosceles" with "right-angled" and, having found two equal sides, stated that the result was proved.

Question 2:	Exam report
$y = x^4 - 32x + 5$	
$a)\frac{dy}{dx} = 4x^3 - 32$	In part (a), most candidates were able to find the correct expression for $\displaystyle rac{dy}{dx}$,
b) M is a stationary point.	although there were some who left + 5 in their answer or added +C. In part (b), It had been expected that candidates would solve the equation
Let's solve $\frac{dy}{dx} = 0$ $4r^3 - 32 = 0$	$\frac{dy}{dx} = 0$ and obtain the equation $x^3 = 8$ and hence deduce that $x = 2$. It
$x^{3} = 8 \qquad x = 2$ $c)i)\frac{d^{2}y}{d^{2}y} = 12x^{2}$	seemed, however, that many were unable to formulate an appropriate equation, but merely spotted the correct answer: $x = 2$. This was not penalised on this occasion, provided that the candidate stated clearly that the x-
$ii) \frac{d^2 y}{dx^2} (x=2) = 12 \times 2^2 = 48 > 0$	coordinate of M was equal to 2. In part (c)(i), the expression for $\frac{d^2y}{dx^2}$ was usually correct.
<i>M</i> is a minimum $d)\frac{dy}{dx}(x=0) = -32 < 0$ The curve is decreasing.	In part (c)(ii), although the method was left open, most candidates found the value of the second derivative when x = 2 and correctly concluded that M was a minimum point. In part (c)(iii), some candidates were not aware of the need to find the value of

 $\frac{dy}{dx}$ when x = 0 in order to ascertain whether the curve was increasing or decreasing at that point.

Question 3:	Exam report
$\sum \sqrt{6}$ 6 $\sqrt{2}$	Candidates did not always approach part (a) of the question with
$a)5\sqrt{8} + \frac{1}{\sqrt{2}} = 5\sqrt{4} \times 2 + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$	confidence. Several wrote $5\sqrt{8} = 5\sqrt{4} \times 2 = 7\sqrt{2}$ or $5 + 2\sqrt{2}$,
$=5 \times 2\sqrt{2} + \frac{6\sqrt{2}}{2}$	others tried to rationalise $\frac{6}{\sqrt{2}}$ by simply multiplying the
2 - 10 $\sqrt{2}$ + 2 $\sqrt{2}$ - 12 $\sqrt{2}$	denominator by $\sqrt{2}$. Consequently, it was quite common to see
$\frac{-10\sqrt{2}+3\sqrt{2}-15\sqrt{2}}{\sqrt{2}+2} = \frac{15\sqrt{2}}{\sqrt{2}+4} = \frac{6+4\sqrt{2}+6\sqrt{2}+8}{6+4\sqrt{2}+6\sqrt{2}+8}$	only one of the two terms expressed correctly in the form $k\sqrt{2}$.
$b)\frac{\sqrt{2+2}}{3\sqrt{2-4}} = \frac{\sqrt{2+2}}{3\sqrt{2-4}} \times \frac{\sqrt{2+4}}{3\sqrt{2+4}} = \frac{\sqrt{2+3}\sqrt{2+6}}{9\times 2-16}$	$13\sqrt{2}$ from completely wrong working: clearly this was not given
	any credit. Some combined the two terms with a common
$=\frac{14+10\sqrt{2}}{10}=7+5\sqrt{2}$	denominator but often with an incorrect numerator.
2	In part (b), it was not uncommon to see the denominator and numerator multiplied by different surds and the usual errors
	occurred as candidates tried to multiply out brackets. A few
	multiplied top and bottom by the conjugate of the numerator.
	Nevertheless, this part of the question seemed to be answered
	fairly difficult denominator.
Question 4:	Exam report
$x^2 + y^2 - 10y + 20 = 0$	In part (a), it was only necessary to complete the square for
a) $x^{2} + (y-5)^{2} - 25 + 20 = 0$	the y-terms. As a result, there were probably fewer errors this
$x^{2} + (y-5)^{2} = 5$	as $(y-5)^2$. However, the right hand side was often written as
$x^{2} + (y-5)^{2} = 5$ b)i)C(0,5)	as $(y-5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5.
$x^{2} + (y-5)^{2} = 5$ b)i)C(0,5) $ii)r = \sqrt{5}$	as $(y-5)^2$. However, the right hand side of the equation of the circle as $(y-5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5,
$x^{2} + (y-5)^{2} = 5$ b)i)C(0,5) $ii)r = \sqrt{5}$ c) y = 2x	as $(y-5)^2$. However, the right hand side of the equation of the circle as $(y-5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right hand side of the equation
$x^{2} + (y-5)^{2} = 5$ b)i)C(0,5) $ii)r = \sqrt{5}$ c) y = 2x	year expressing the fetchand side of the equation of the circle as $(y-5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or -45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured
$x^{2} + (y-5)^{2} = 5$ b)i)C(0,5) $ii)r = \sqrt{5}$ c) y = 2x $i) solve simultaneously \begin{cases} y = 2x \\ y = 2x \end{cases}$	year expressing the left-fland side of the equation of the circle as $(y-5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or -45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$.
$x^{2} + (y-5)^{2} = 5$ b)i)C(0,5) $ii)r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously } \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$	year expressing the left-finite side of the equation of the circle as $(y-5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or -45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing 2x ²
$x^{2} + (y - 5)^{2} = 5$ b)i)C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously } \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x : x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$	$\sqrt{5}, -5 \text{ or } -45 \text{ instead of 5.}$ In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing 2x ² instead of (2x) ² , struggled to establish the given quadratic equation. Also, quite a few made errors in their working but
$x^{2} + (y - 5)^{2} = 5$ b)i)C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously} \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$	$= 0$ $\frac{1}{2} = 0$ $\frac{1}{2} $
$x^{2} + (y - 5)^{2} = 5$ b)i)C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously} \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$ $5x^{2} - 20x + 20 = 0$ $x^{2} - 4x + 4 = 0$	= 0 $= 0$
$x^{2} + (y-5)^{2} = 5$ b)i) C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously} \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$ $5x^{2} - 20x + 20 = 0$ $x^{2} - 4x + 4 = (x-2)^{2} = 0$	= 0 $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 2 + 0$
$x^{2} + (y - 5)^{2} = 5$ $x^{2} + (y - 5)^{2} = 5$ b)i)C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously} \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$ $5x^{2} - 20x + 20 = 0$ $x^{2} - 4x + 4 = (x - 2)^{2} = 0$ x = 2 is a repeated root	= 0 (y = 5) ² . However, the right hand side of the equation of the circle as (y = 5) ² . However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing 2x ² instead of (2x) ² , struggled to establish the given quadratic equation. Also, quite a few made errors in their working but miraculously wrote down the given equation on their final line. A surprising number derived an equation in y. Quite a few simply solved the given quadratic equation in this part and thus failed to show an understanding of what was required. In part (c)(ii), it was necessary to state that the equation had a repeated root of x = 2, or to use the zero value of the discriminant to show that the equation had equal roots, and
$x^{2} + (y - 5)^{2} = 5$ $x^{2} + (y - 5)^{2} = 5$ b)i)C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously } \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$ $5x^{2} - 20x + 20 = 0$ $x^{2} - 4x + 4 = (x - 2)^{2} = 0$ x = 2 is a repeated root The line $y = 2x$ is tangent to the circle.	= 0 (y = 5) ² . However, the right hand side of the equation of the circle as (y = 5) ² . However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing 2x ² instead of (2x) ² , struggled to establish the given quadratic equation. Also, quite a few made errors in their working but miraculously wrote down the given equation on their final line. A surprising number derived an equation in y. Quite a few simply solved the given quadratic equation in this part and thus failed to show an understanding of what was required. In part (c)(ii), it was necessary to state that the equation had a repeated root of x = 2, or to use the zero value of the discriminant to show that the equation had equal roots, and hence to conclude that the line was a tangent to the circle. In part (d), far too many simply substituted the coordinates of
$x^{2} + (y-5)^{2} = 5$ b)i) C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) solve simultaneously \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$ $5x^{2} - 20x + 20 = 0$ $x^{2} - 4x + 4 = (x-2)^{2} = 0$ x = 2 is a repeated root The line $y = 2x$ is tangent to the circle. d) Q(-1,4)	= 0 (y = 5) ² . However, the right hand side of the equation of the circle as $(y - 5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing 2x ² instead of (2x) ² , struggled to establish the given quadratic equation. Also, quite a few made errors in their working but miraculously wrote down the given equation on their final line. A surprising number derived an equation in y. Quite a few simply solved the given quadratic equation in this part and thus failed to show an understanding of what was required. In part (c)(ii), it was necessary to state that the equation had a repeated root of x = 2, or to use the zero value of the discriminant to show that the equation had equal roots, and hence to conclude that the line was a tangent to the circle. In part (d), far too many simply substituted the coordinates of the point Q into the equation of the circle obtaining a
$x^{2} + (y-5)^{2} = 5$ b)i) C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously} \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$ $5x^{2} - 20x + 20 = 0$ $x^{2} - 4x + 4 = (x-2)^{2} = 0$ x = 2 is a repeated root The line $y = 2x$ is tangent to the circle. d) Q(-1,4) $x^{2} + y^{2} - 10y + 20 = (-1)^{2} + 4^{2} - 10 \times 4 + 20$	= 0 (y = 5) ² . However, the right hand side of the equation of the circle as $(y - 5)^2$. However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing $2x^2$ instead of $(2x)^2$, struggled to establish the given quadratic equation. Also, quite a few made errors in their working but miraculously wrote down the given equation on their final line. A surprising number derived an equation in y. Quite a few simply solved the given quadratic equation in this part and thus failed to show an understanding of what was required. In part (c)(ii), it was necessary to state that the equation had a repeated root of x = 2, or to use the zero value of the discriminant to show that the equation had equal roots, and hence to conclude that the line was a tangent to the circle. In part (d), far too many simply substituted the coordinates of the point Q into the equation of the circle obtaining a nonsensical statement such as "-3 = 0 so the point lies inside the circle". It was necessary to see that the distance CQ was
$x^{2} + (y-5)^{2} = 5$ b)i)C(0,5) $ii) r = \sqrt{5}$ c) y = 2x $i) \text{ solve simultaneously } \begin{cases} y = 2x \\ x^{2} + y^{2} - 10y + 20 = 0 \end{cases}$ $Substitute y by 2x: \qquad x^{2} + (2x)^{2} - 10 \times (2x) + 20 = 0$ $5x^{2} - 20x + 20 = 0$ $x^{2} - 4x + 4 = (x-2)^{2} = 0$ x = 2 is a repeated root The line $y = 2x$ is tangent to the circle. d)Q(-1,4) $x^{2} + y^{2} - 10y + 20 = (-1)^{2} + 4^{2} - 10 \times 4 + 20$ = 1 + 16 - 40 + 20 = -3 < 5	= 0 (y = 5) ² . However, the right hand side of the equation of the circle as (y = 5) ² . However, the right hand side was often written as $\sqrt{5}$, -5 or - 45 instead of 5. In part (b), quite a number who had the correct circle equation in part (a) wrote the coordinates of the centre as (5, 0) or (0, -5). Generous follow through marks were awarded for the radius provided the right-hand side of the equation had a positive value. The wording in the question reassured most, though, that the radius was $\sqrt{5}$. In part (c)(i), those with poor algebraic skills, often writing 2x ² instead of (2x) ² , struggled to establish the given quadratic equation. Also, quite a few made errors in their working but miraculously wrote down the given equation on their final line. A surprising number derived an equation in y. Quite a few simply solved the given quadratic equation in this part and thus failed to show an understanding of what was required. In part (c)(ii), it was necessary to state that the equation had a repeated root of x = 2, or to use the zero value of the discriminant to show that the equation had equal roots, and hence to conclude that the line was a tangent to the circle. In part (d), far too many simply substituted the coordinates of the point Q into the equation of the circle obtaining a nonsensical statement such as "-3 = 0 so the point lies inside the circle". It was necessary to see that the distance CQ was being calculated and then concluded that this distance was less than the radius of the circle and hence the noint Q must

Question 5:	Exam report
Question 5: $a)9-8x-x^{2} = (9+x)(1-x)$ $b)25-(x+4)^{2} = 25-(x^{2}+8x+16)$ $= -x^{2}-8x+9$ $c) y = 25-(x+4)^{2}$ $i) \text{Line of symmetry : } x = -4$ $ii) \text{Vertex } (-4, 25)$	Exam reportCandidates did not seem confident working with a quadratic expression where the coefficient of x^2 was negative. Throughout this question, candidates chose instead to work with the expression
<i>iii</i>) The graph crosses the x-axis at (-9,0) and (1,0) the y-axis at (0,9)	with $9 - 8x - x^2$ and showed their skill in completing the square. In part (c), quite a large number of candidates seemed unfamiliar with the terms "line of symmetry" and "vertex" and certainly failed to see the link with part (b) of the question. Some stated that the coordinates of the maximum point were (-4, 25) and then wrote the coordinates of the vertex as something entirely different. The sketches were somewhat varied: some found the wrong x- intercepts and drew a curve through these points; those who had completely changed the question into $y = x^2 + 8x - 9$ had a U- shaped graph. Those who drew a graph with the vertex in the correct position and with the correct shape usually had the y- intercept marked correctly as 9. However some drew their curve with a maximum point on the y-axis.

a) $p(x) = x^3 - 7x - 6$	In part
$\mathbf{Y} = \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y}$	factor t
i) work out $p(-1)$:	necessa
$(1)^3$ $7 \times (1)$ $6 = 1 + 7$ $6 = 0$	showin
$(-1) = 7 \times (-1) = 0 = -1 + 7 = 0 = 0$	Part (a)
-1 is a root of p, so $(x+1)$ is a factor of p	previou
	down t
<i>ii</i>) $p(x) = (x+1)(x^2 - x - 6) = (x+1)(x-3)(x+2)$	the inte
$(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}) = (\mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{3})$	before
D(t) A(-2,0) (root of p)	long div
$[1 7]^3$	In part
$(ii) \int_{-\infty}^{\infty} (x^3 - 7x - 6) dx = \left \frac{1}{2} x^4 - \frac{7}{2} x^2 - 6x \right $	usually
J_{-1} (1) (1) (1) (1) (1) (1) (1) (1	althoug
	candida
$-\left(\begin{array}{ccc} 81 & 63 \\ 18 \end{array}\right) \left(\begin{array}{ccc} 1 & 7 \\ 16 \end{array}\right)$	then a d
$-\left(\frac{1}{4}-\frac{1}{2}-10\right)-\left(\frac{1}{4}-\frac{1}{2}+0\right)$	genero
	fraction
(1)	so used

$= (20\frac{1}{4} - 31\frac{1}{2} - 18) - (\frac{1}{4} - 3\frac{1}{2} + 6)$ = 20 - 28 - 24 = -32

iii) Area shaded = 32

Question 6:

iv) The gradient of the curve at B is $\frac{dy}{dx}(x=-1)$

$$\frac{dy}{dx} = 3x^2 - 7$$
 and for $x = -1$, $\frac{dy}{dx} = 3 - 7 = -4$

v) The normal has gradient
$$-\frac{1}{m_B} = -\frac{1}{-4} = \frac{1}{4}$$

The equation of the normal at B: $y-0 = \frac{1}{4}(x+1)$

 $y = \frac{1}{4}(x+1)$

Exam report (a)(i), a few candidates ignored the request to use the heorem and scored no marks for using long division. It was ary to make a statement that " x + 1 is a factor", after g that f(-1) = 0, in order to score full marks. (ii) was not answered as well as similar questions in is years. Perhaps the sketch lured some into trying to write hree factors without any further working, rather than using ermediate step of showing that $p(x) = (x + 1)(x^2 - x - 6)$ writing p(x) as a product of three factors. Many who tried vision were flummoxed by there being no x² term. (b)(i), those who had the correct linear factors in part (a)(ii) wrote down correctly that A had coordinates (-2, 0), h some carelessly wrote the point as (0,-2). Many ates simply found an indefinite integral in part (b)(ii) and definite integral in part (b)(iii). The two parts were usly treated holistically when candidates did this. The as once again caused problems to most candidates who are to having a calculator to do this work for them. It was very rare to see the correct answer of – 32 for the definite integral.

In part (b)(iii), many lost out on an easy mark because they rolled their two sections into one: those who wrote "integral = -32 = 32" gained full credit for part (b)(ii) but did not score the mark in part (b)(iii). It was necessary to give a positive value for the area of the region and to make this explicit. In anticipation of a lot of wrong answers in part (b)(ii), a follow through mark was awarded in part (b)(iii): for example, if a candidate's answer in part (b)(ii) was -20 and they concluded that the area was 20 in part (b)(iii), they scored the mark.

In part (b)(iv), most candidates differentiated correctly, but quite a few thought that $3(-1)^2 - 7$ was equal to -10 and thus obtained the wrong gradient of the curve.

In part (b)(v), a large number of candidates found the correct equation of the normal but some still confused tangents and normals and consequently thought that the gradient of the normal was equal to -4. It was guite common for weaker candidates to either negate their gradient or take the reciprocal but to fail to do both.

Question 7:	Exam report
$Curve \ C: \ y = x^2 + 7$	
Line L: y = k(3x+1)	In part (a), some weaker candidates did not realise how to derive the given equation, and others made algebraic slips when proving
a) By identification, $(y =)$	the printed result, or failed to write "= 0".
$x^2 + 7 = k(3x+1)$	In part (b), the condition for two distinct points of intersection required candidates to use the condition that $b^2 - 4ac > 0$ at any
$x^2 - 3kx + 7 - k = 0$	early stage of their argument. Those who simply wrote "> 0" on their final line of working, without any previous reference to the
b) There are two points of intersection	discriminant being positive, failed to convince the examiners that
which means that discriminant >0	In part (c), quite a number were unable to factorise the quadratic
$(-3k)^2 - 4 \times 1 \times (7-k) > 0$	correctly and many resorted to using the quadratic equation formula to find the critical values. Where this was done correctly
$9k^2 + 4k - 28 > 0$	but left in surd form, it was given due credit except for the final mark. Very able candidates can write down the answer to the
$c)9k^{2} + 4k - 28 = (9k - 14)(k + 2) > 0$	inequality once they have factorised the quadratic but far too many guessed at answers and an approach using a sign diagram or sketch
critical values: $\frac{14}{9}$ and -2	is recommended. Candidates also need to realise that the final 14
solutions: $k < -2$ or $k > \frac{14}{14}$	form of the answer cannot be written as $\frac{14}{9} < k < -2$.
9	

GRADE BOUNDARIES							
Component title	Max mark	А	В	С	D	E	
Core 1 – Unit PC1	75	59	51	43	36	29	

Key to mark scheme and abbreviations used in marking

М	mark is for method								
m or dM	mark is dependent on one or more M marks and is for method								
А	mark is dependent on M or m marks and is for accuracy								
В	mark is independent of M or m marks and is for method and accuracy								
Е	mark is for explanation	mark is for explanation							
√or ft or F	follow through from previous								
	incorrect result	MC	mis-copy						
CAO	correct answer only	MR	mis-read						
CSO	correct solution only	RA	required accuracy						
AWFW	anything which falls within	FW	further work						
AWRT	anything which rounds to	ISW	ignore subsequent work						
ACF	any correct form	FIW	from incorrect work						
AG	answer given	BOD	given benefit of doubt						
SC	special case	WR	work replaced by candidate						
OE	or equivalent	FB	formulae book						
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme						
-x EE	deduct x marks for each error	G	graph						
NMS	no method shown	с	candidate						
PI	possibly implied	sf	significant figure(s)						
SCA	substantially correct approach	dp	decimal place(s)						

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

0	Solution	Marke	Total	Comments
1(a)	Mid point of $PC = (2, -2)$	D1	Total	Either coordinate correct
1(a)	Nuc-point of $BC = (3, -2)$	DI	2	Deth and a smart Assert = 2 = 2
		BI	2	Both cords correct. Accept $x = 3$, $y = -2$
ക്ര	$\Delta y = \frac{3-1}{2}$	M1		$+\frac{2}{2}$ OE implies M1
(5)(1)	$\Delta x = -2 - 4$			-6 ob imprice titt
	1		-	
	=	AI	2	
	5			
dib	v - 3 = "their grad" $(x + 2)$ or			Or $v = mx + c$ and correct attempt to
(1)	y = 1 = "their grad" $(x = 4)$	M1		find c
	Hence $x + 3y = 7$	Δ1	2	ind c
	Thene $x + 5y = 7$	~ ~ ~	2	
din	y + 5 = "their grad AB " $(x - 2)$	M1		Or "their $x + ay = c$ " and attempt to find c
(11)	y + 5 = unon grad $AD(x - 2)$	IVII		of their $x + qy = c$ and attempt to find c
	$y+5=-\frac{1}{2}(x-2)$ or $x+3y+13=0$	A1	2	OE
	3			
(0)	Grad $BC = 3$ (from $\frac{\Delta y}{\Delta y} - \frac{1+5}{2}$ OF)	B1		Or 2 lengths correct:
	$\frac{\Delta x}{\Delta x} = \frac{1}{4-2} \frac{\Delta z}{\Delta t}$	ы		$AB = \sqrt{40}; BC = \sqrt{40}; AC = \sqrt{80}$
	$m_{m_{r}} = -1$ stated or			
	1 nin2 - 1 suited of			
	grad $BC = 3$ and grad $AB = -\frac{1}{2}$ or			
	° ° 3	MI		Or attempt at Pythagoras or Cosine Rule
	and $PC \times and (P(-3 \times 1))$			
	$grad BC \times grad AB (= 3 \times -\frac{1}{3})$			
	Product of archients = 1			$4C^2$ $4D^2$ DC^2 \rightarrow $4DC$ 000
	Hence AB and BC are perpendicular	AI	3	$AC = AB + BC \Rightarrow \angle ABC = 90^{\circ}$
	Hence AB and BC are perpendicular	CSO		Completing proof and statement
	Total		11	
	dv i z i i	M1		Reduce one power by 1
2(a)	$\frac{dy}{dx} = 4x^3 - 32$	A1		One term correct
	ut .	A1	3	All correct (no $+ c$ etc)
(b)	Stationary point $\rightarrow \frac{dy}{-0}$	M1		
(0)	dx = 0	IVII		
				w dv
	$\Rightarrow x^3 = 8$	A1√		$x'' = k$ following from their $\frac{-y}{dx}$
	$\rightarrow x = 2$	A 1	2	CSO.
	$\rightarrow x - 2$	A1	5	0.50
	12			4.
(c)(i)	$\frac{d^2y}{d^2} = 12x^2$	В1√	1	FT their $\frac{dy}{dt}$
(-)(-)	dx^2			dx
(15)	$d^2 y$	141		Or complete text with $2 + c$ with $\frac{dy}{dy}$
(11)	when $x = 2$, $\frac{1}{dx^2}$ considered	MI		Or complete test with $2 \pm \varepsilon$ using $\frac{1}{dr}$
	\Rightarrow minimum point	E1√	2	a.
		2.14	-	
	dv			
(d)	Putting $x = 0$ into their $\frac{dy}{dx}$ (= -32)	M1		
	dx			
	$\frac{dy}{dy} < 0 \Rightarrow$ decreasing	A1√	2	Allow "increasing" if their $\frac{dy}{dy} > 0$
	dx dx		-	dx
	Total		11	

Q	Solution	Marks	Total	Comments		Q	Solution	Marks	Total	Comments
2(-)	5 6 10 5	DI		$\int \frac{5\sqrt{16}+6}{16} = 0.000$		6(a)(i)	p(-1) = -1 + 7 - 6	M1		Finding p(-1)
5(a)	$5\sqrt{8} = 10\sqrt{2}$	ы		$\sqrt{2}$ gets B1			= 0 therefore $x + 1$ is a factor	A1	2	Shown to $= 0$ plus statement
	$6 6\sqrt{2}$					(1)	$p(x) = (x + 1)(x^2 - x - 6)$	MI		Long division/inspection (2 torus correct)
	$\frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$ (=3 $\sqrt{2}$)	M1		then M1 for rationalising; and A1 answer		(11)	p(x) = (x+1)(x - x - 6)	M1 A1		Cong division/inspection (2 terms correct)
	$\Lambda n c w c = 13 \sqrt{2}$	A1	3	n = 13				AI		May earn MLA1 for correct second factor
	Allswei – $15\sqrt{2}$	AI		n = 15			p(x) = (x+1)(x+2)(x-3)	A1	3	then A1 for $(x+1)(x+2)(x-3)$
	$\sqrt{2} + 2 = 3\sqrt{2} + 4$									
(b)	$\frac{\sqrt{2}}{3\sqrt{2}-4} \times \frac{\sqrt{2}}{3\sqrt{2}+4}$	M1		Multiplying top & bottom by $\pm(3\sqrt{2}+4)$		(b)(i)	A(-2,0)	B1	1	Condone $x = -2$
				Multiplying out (condens one slip)			4 - 2			
	Numerator = $6 + 6\sqrt{2} + 4\sqrt{2} + 8$	mı		Multiplying out (condone one sip)		(ii)	$\frac{x^4}{2} - \frac{7x^2}{2} - 6x$ (+c)	M1		One term correct
	$Denominator = 18 - 16 \ (=2)$	B1						A1		Another term correct
	Final answer = $5\sqrt{2} + 7$	Al	4				(may nave + c or not)	AI		All correct unsimplified
	1	fotal	7		-		$\begin{bmatrix} 81 & 63 \\ -18 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ -7 & +6 \end{bmatrix}$			$\Gamma(2) = \Gamma(-1)$ attaces to d in connect order
4(a)	$x^{2} + (y - 5)^{2}$	B1		b = 5			$\begin{bmatrix} \boxed{4} & \boxed{2} & \boxed{3} & \boxed{4} & \boxed{2} & \boxed{3} \end{bmatrix}$	mı		F(3) - F(-1) attempted in correct order
	RHS = 5	B1	2	k = 5			=-32	A1	5	CSO; OE
(b)(i)	Centre $(0, 5)$	B1.≜	1	ET their h from part (a)						
(0)(1)	Cond (0, 5)	DIV	1	1 1 then b nom part (a)		(iii)	Area of shaded region = 32	B1√.	1	FT their (b)(ii) but positive value needed
GD	$Radius = \sqrt{5}$	B1	1	FT their k from part (a): RHS must be > 0			dv .	MI		One term correct
(1.9	reaction v 5	DIV	1	1 1 then k nom part (a), Kris mast be-		(iv)	$\frac{dy}{dx} = 3x^2 - 7$	Al		All correct (no $+ c$ etc)
(c)(i)	$x^{2} + 4x^{2} - 20x + 20 = 0$	M1		May substitute into original or "their (a)"			When $x = -1$, gradient $= -4$	A1	3	CSO
	$\Rightarrow x^2 - 4x + 4 = 0$	A1	2	CSO; AG						
						(v)	Gradient of normal = $\frac{1}{2}$	B1√		
(ii)	$(x-2)^2 = 0$ or $x = 2$	M1				(.)	4	DIV		
	Repeated root implies tangent	E1		Or $b^2 - 4ac$ shown = 0 plus statement			y = "their gradient" (x ± 1)	M1		Must be finding normal, not tangent
	Point of contact is $P(2, 4)$	A1	3				$y = \frac{1}{2}(x+1)$	A1	3	CSO; any correct form eg $4y - x = 1$
	(Total		10	
(d)	$(CQ^2 =) 1^2 + 1^2$	M1		FT their C		7(a)	$10tat x^{2} + 7 - k(3x + 1) \rightarrow x^{2} - 3kx + 7 - k = 0$	D1	10	AG
	$\sqrt{2} < \sqrt{5} \rightarrow 0$ lies inside circle	A1	2	CO or CO^2 OF must appear for A1		/(a)	$x + 7 = k(3x + 1) \Rightarrow x - 5kx + 7 - k = 0$	ы	1	AO
		CSO		CQ of CQ OE must appear for AT	-					Clear attempt at $b^2 - 4ac$
5(a)	$(0 \pm r)(1 - r)$	lotal M1	11	+(0+x)(1+x)	-	(b)	$b^{*} - 4ac = (-3k)^{*} - 4(7-k)$	M1		Condone slip in one term of expression
5(a)	(9+x)(1-x)		2	$(5 \pm x)(1 \pm x)$			(2 distinct roots when) $b^2 - 4ac > 0$	B1		Must involve k
			2	concer factors			$9k^2 + 4k - 28 > 0$	A1	3	CSO; AG
(h)	$25-(x^2+8x+16)=9-8x-x^2$	B1	1	AG						
(0)	(1			(c)	(9k - 14)(k + 2)	M1		Factors or formula correct unsimplified
(c)(i)	x = -4 is line of symmetry	B1	1				Critical points -2 and $\frac{14}{14}$	A1		
(0)(1)		21					9			
(ii)	Vertex is (-4, 25)	B1,B1	2				Sketch Luor sign diagram correct	м		+ve $-ve$ $+ve$ 14
							Sketch O of sign diagram concer	IVII		$\frac{-2}{0}$
(111)	¥	MI		General shape			14			
	(°)	BI		-9 and 1 marked on x-axis or stated			$k < -2, k > \frac{1}{9}$	A1	4	
	-9 1 x	Al	3	9 marked on y-axis and maximum to the			Total		8	
	7 1.			Must continue below x-axis at both ends			TOTAL	,	75	
	1	Fotal	9]					

General Certificate of Education June 2008 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 1

MPC1

Thursday 15 May 2008 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You must **not** use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- · Answer all questions.
- · Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

y = (x+3)(x-1)

- (a) Sketch on the same axes the line L and the curve C, showing the values of the intercepts on the x-axis and the y-axis. (5 marks)
- (b) Show that the *x*-coordinates of the points of intersection of *L* and *C* satisfy the equation $x^2 x 2 = 0$. (2 marks)
- (c) Hence find the coordinates of the points of intersection of L and C. (4 marks)
- 2 It is given that $x = \sqrt{3}$ and $y = \sqrt{12}$.

Find, in the simplest form, the value of:

(b)
$$\frac{y}{x}$$
; (2 marks)

(c)
$$(x+y)^2$$
. (3 marks)

- 3 Two numbers, x and y, are such that 3x + y = 9, where $x \ge 0$ and $y \ge 0$. It is given that $V = xy^2$.
 - (a) Show that $V = 81x 54x^2 + 9x^3$. (2 marks)
 - (b) (i) Show that $\frac{dV}{dx} = k(x^2 4x + 3)$, and state the value of the integer k. (4 marks)

(ii) Hence find the two values of x for which
$$\frac{dV}{dx} = 0$$
. (2 marks)

(c) Find
$$\frac{d^2 V}{dx^2}$$
. (2 marks)

(d) (i) Find the value of
$$\frac{d^2 V}{dx^2}$$
 for each of the two values of x found in part (b)(ii). (1 mark)

- (ii) Hence determine the value of x for which V has a maximum value. (1 mark)
- (iii) Find the maximum value of V. (1 mark)

- 4 (a) Express $x^2 3x + 4$ in the form $(x p)^2 + q$, where p and q are rational numbers. (2 marks)
 - (b) Hence write down the minimum value of the expression $x^2 3x + 4$. (1 mark)
 - (c) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 3x + 4$. (3 marks)
- 5 The curve with equation $y = 16 x^4$ is sketched below.

The points A(-2, 0), B(2, 0) and C(1, 15) lie on the curve.

(a) Find an equation of the straight line AC. (3 marks)

(b) (i) Find
$$\int_{-2}^{1} (16 - x^4) dx$$
. (5 marks)

- (ii) Hence calculate the area of the shaded region bounded by the curve and the line *AC*. (3 marks)
- 6 The polynomial p(x) is given by $p(x) = x^3 + x^2 8x 12$.
 - (a) Use the Remainder Theorem to find the remainder when p(x) is divided by x 1. (2 marks)
 (b) (i) Use the Factor Theorem to show that x + 2 is a factor of p(x). (2 marks)
 - - (ii) Express p(x) as the product of linear factors. (3 marks)
 - (c) (i) The curve with equation $y = x^3 + x^2 8x 12$ passes through the point (0, k). State the value of k. (1 mark)
 - (ii) Sketch the graph of $y = x^3 + x^2 8x 12$, indicating the values of x where the curve touches or crosses the x-axis. (3 marks)

7 The circle S has centre C(8, 13) and touches the x-axis, as shown in the diagram.

(a) Write down an equation for S, giving your answer in the form

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$
 (2 marks)

- (b) The point P with coordinates (3, 1) lies on the circle.
 - (i) Find the gradient of the straight line passing through P and C. (1 mark)
 - (ii) Hence find an equation of the tangent to the circle S at the point P, giving your answer in the form ax + by = c, where a, b and c are integers. (4 marks)
 - (iii) The point *Q* also lies on the circle *S*, and the length of *PQ* is 10. Calculate the shortest distance from *C* to the chord *PQ*. (3 marks)
- 8 The quadratic equation $(k+1)x^2 + 4kx + 9 = 0$ has real roots.
 - (a) Show that $4k^2 9k 9 \ge 0$. (3 marks)
 - (b) Hence find the possible values of k. (4 marks)

END OF QUESTIONS

AQA – Core 1 – June 2008 – Answers

	Γ
Question 1:	Exam report
$Line \ L: y = 3x - 1$	
<i>Curve</i> $C: y = (x+3)(x-1) = x^2 + 2x - 3$	
<i>a</i>) The line crosses the y-axis at $(0, -1)$ and the x-axis at $(\frac{1}{3}, 0)$	
The curve crosses the y-axis at $(0, -3)$ and the x-axis at $(-3, 0)$ and $(1, 0)$	
b)Solve simultaneously $\begin{cases} y = 3x - 1 \\ y = x^2 + 2x - 3 \end{cases}$ by identification	
$(y=)x^2+2x-3=3x-1$	
$x^2 - x - 2 = 0$	
c) $x^{2}-x-2=(x-2)(x+1)=0$	
x = 2 or $x = -1$	
and $y = 3x - 1$ $y = 5 \text{ or } y = -4$	
The line and the curve cross at $(2,5)$ and $(-1,-4)$	

Question 2:	Exam report
$x = \sqrt{3}$ and $y = \sqrt{12}$	
a) $xy = \sqrt{3} \times \sqrt{12} = \sqrt{36} = 6$	
$b)\frac{y}{x} = \frac{\sqrt{12}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$	
c) $(x + y)^2 = (\sqrt{3} + \sqrt{12})^2 = 3 + 12 + 2\sqrt{36} = 27$	

Question 3:	Exam report
$3x + y = 9 x \ge 0, y \ge 0$	
$V = xy^2$	
a) $y = 9 - 3x$ so $V = xy^2 = x(9 - 3x)^2$	
$V = x \left(81 + 9x^2 - 54x \right)$	
$V = 9x^3 - 54x^2 + 81x$	
$b)i)\frac{dV}{dx} = 9 \times 3x^2 - 54 \times 2x + 81 = 27x^2 - 108x + 81$	
$\frac{dV}{dx} = 27\left(x^2 - 4x + 3\right)$	
$ii)\frac{dV}{dx} = 0 when x^2 - 4x + 3 = 0$	
(x-3)(x-1)=0	
x = 3 or x = 1	
$c)\frac{d^2V}{dx^2} = 27(2x-4) = 54x - 108$	
$d(i)\frac{d^2V}{dx^2}(x=3) = 27(2\times 3 - 4) = 27\times 2 = 54 > 0$	
$\frac{d^2 V}{dx^2} (x=1) = 27(2 \times 1 - 4) = 27 \times -2 = -54 < 0$	
<i>ii</i>) There is a maximum for $x = 1$	
<i>iii</i>) For $x = 1, V = 81 - 54 + 9 = 36$	

Question 4:	Exam report
a) $x^{2} - 3x + 4 = \left(x - \frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2} + 4 = \left(x - \frac{3}{2}\right)^{2} + \frac{7}{4}$	
b) For all x, $\left(x - \frac{3}{2}\right)^2 \ge 0$ so $\left(x - \frac{3}{2}\right)^2 + \frac{7}{4} \ge \frac{7}{4}$	
The minimum value is $\frac{7}{4}$	
$c) x \xrightarrow{\text{translation} \atop 1.5 \text{ units in } x - dir} x - \frac{3}{2} \xrightarrow{f} \left(x - \frac{3}{2} \right)^2 \xrightarrow{\text{translation} \atop \frac{7}{4} \text{ units in } y - dir} \left(x - \frac{3}{2} \right)^2 + \frac{7}{4}$	
$y = x^2$ is mapped into $y = x^2 - 3x + 4$	
by the translation vector $\begin{bmatrix} \frac{3}{2} \\ \frac{7}{4} \end{bmatrix}$	

Question 5: Exam report $y = 16 - x^4$ A(-2,0), B(2,0) and C(1,15) a) Gradient of $AC = m_{AC} = \frac{15 - 0}{1 + 2} = 5$ Equation of AC : y - 0 = 5(x + 2) y = 5x + 10 $b)i) \int_{-2}^{1} (16 - x^4) dx = \left[16x - \frac{1}{5}x^5 \right]_{-2}^{1} = \left(16 - \frac{1}{5} \right) - \left(-32 + \frac{32}{5} \right)$ $= 48 - \frac{33}{5} = 48 - 6\frac{3}{5} = 41\frac{2}{5}$ ii) Call the point H(1,0) the area of the shaded region is (area beneath the curve) - (area of triangle AHC) $41\frac{2}{5} - \frac{1}{2} \times 3 \times 15 = 41\frac{2}{5} - 22\frac{1}{2} = 18\frac{9}{10}$

Question 6:	Exam report
$p(x) = x^3 + x^2 - 8x - 12$	
a) The remainder of the division by $(x-1)$ is $p(1)$	
p(1) = 1 + 1 - 8 - 12 = -18	
b)i) $p(-2) = (-2)^3 + (-2)^2 - 8 \times (-2) - 12$	
= -8 + 4 + 16 - 12 = 0	
-2 is a root of p, so $(x+2)$ is a factor of p.	
<i>ii</i>) $x^{3} + x^{2} - 8x - 12 = (x + 2)(x^{2} - x - 6)$	
=(x+2)(x-3)(x+2)	
$= (x+2)^2 (x-3)$	
(c)i) By substituting x by 0, we have	
p(0) = -12	
The curve passes through the point $(0, -12)$	
<i>ii</i>) The curve crosses the $x - axis$ at (3,0) and it is tangent	
to it at $(-2,0)$.	

GRADE BOUNDARIES									
Component title	Max mark	А	В	С	D	E			
Core 1 – Unit PC1	75	59	51	43	35	28			

Q	Solution	Marks	Total	Comments	Q		Solution	Marks	Total	Comments
1(a)	L: straight line with positive gradient and	B1		Line must cross both axes but need not	3 (a	a) J	$V = x(9 - 3x)^2$	M1		Attempt at V in terms of x (condone slip
	negative intercept on y-axis			reach the curve						when rearranging formula for $y = 9 - 3x$)
	cutting at $\left(\frac{1}{3}, 0\right)$ and $\left(0, -1\right)$	B1		Condone 0.33 or better for $\frac{1}{3}$						or $(9-3x)^2 = 81-54x+9x^2$
	(intercepts stated or marked on sketch)					1	$V = x(81 - 54x + 9x^2)$			
	()						$= 81r - 54r^2 + 9r^3$	A1	2	AG: no errors in algebra
	C: attempt at parabola \cup or \cap	B1		v A			= 61x - 54x + 5x		~	rio, no erroro in algeora
	through $(-3,0)$ and $(1,0)$ or						dV .	M1		One term correct
	values -3 and 1 stated as intercepts				(b)((i) -	$\frac{dx}{dx} = 81 - 108x + 27x^2$	A1		Another correct
	on x-axis						u.	A1		All correct (no $+ c$ etc)
	\cup shaped graph – vertex below x-	NO		-3 $3/1$ x			$= 27(x^2 - 4x + 3)$	A1	4	CSO; all algebra and differentiation
	axis and cutting x-axis twice	MI								correct
				-3			(a. 2)(a. 1) an (27 a. 81)(a. 1) ata			
	through $(0, -3)$ and minimum point	A1	5		a a	II) ((x-3)(x-1) or $(2/x-81)(x-1)$ etc	MI		"Correct" factors or correct use of formula
	to left of y-axis		5	(v-intercept or coordinates marked)		=	$\Rightarrow x = 1, 3$	A1	2	
				Ç						SC: B1,B1 for $x = 1$, $x = 3$ found by
(b)	(x+3)(x-1) = 3x-1	M1								inspection (provided no other values)
	$x^{2} + 3x - x - 3 - 3x + 1 = 0$						1217			417
	$\Rightarrow x^2 - x - 2 = 0$	A1	2	AG; must have " $= 0$ " and no errors	(0	c) _	$\frac{d^2 v}{d^2} = -108 + 54x$ (condone one slip)	M1		ft their $\frac{dv}{dt}$ (may have cancelled 27 etc)
							dx ²	A 1	2	dx CSO: all differentiation connect
(c)	(x-2)(x+1) = 0	M1		$(x\pm 1)(x\pm 2)$ or use of formula (one slip)				AI	2	CSO, all differentiation correct
	$\Rightarrow x = 2, -1$	A1		correct values imply M1A1			$d^2 V$ $d^2 V$			d^2V
				1.2	(d)((i) :	$x=3 \Rightarrow \frac{d^{\prime}}{dr^2}=54; x=1 \Rightarrow \frac{d^{\prime}}{dr^2}=-54$	B1√	1	ft their $\frac{dv}{dv^2}$ and their two x-values
	Substitute one value of x to find y	m1					ux ux			ur ur
										d^2V
	Points of intersection (2, 5) and (-1,-4)	A1	4	May say $x = 2, y = 5$ etc	(i	ii) ((x=) 1 (gives maximum value)	E1	1	Provided their $\frac{dv}{dv^2} < 0$
				SC: $(2, 5) \Rightarrow B2$						ux ux
				$(-1, -4) \Rightarrow B2$ without working	(ii	ii) 1	V = 36	B1	1	CAO
	Total		11		(, ,	max 50	DI	13	
2(a)	xy = 6	B1	1	B0 for $\sqrt{36}$ or ± 6			(2) ²		15	
					4(a	a) {	$\left(x-\frac{3}{2}\right)$	B1		Must have $()^2 p = 1.5$
	$v 2\sqrt{3}$ $\sqrt{12}$ $\sqrt{4}$ $\sqrt{12}$ $\sqrt{3}$						(2)			
(b)	$\frac{1}{r} = \frac{2\sqrt{3}}{\sqrt{2}}$ or $\sqrt{\frac{1}{3}}$ or $\sqrt{\frac{1}{1}}$ or $\frac{\sqrt{12}}{\sqrt{2}} \times \frac{\sqrt{3}}{\sqrt{2}}$	M1		Allow M1 for ± 2			$+\frac{7}{2}$	B1	2	a = 1.75
		A 1	2				4	DI	-	4
	- 2	AI	2							
(2)	$x^{2} + 2xy + y^{2}$ or $(\sqrt{2} + 2\sqrt{2})^{2}$ correct			(5, 5)(5, 5)	a	b) N	Minimum value is $\frac{7}{2}$	B1√	1	ft their <i>a</i> or correct value
(0)	$x + 2xy + y$ of $(\sqrt{3} + 2\sqrt{3})$ context	M1		or $(\sqrt{3} + \sqrt{12})(\sqrt{3} + \sqrt{12})$ expanded as	, i i i i i i i i i i i i i i i i i i i	í	4	DIV		it alon y of confect func
				4 terms – no more than one slip						
	Correct with 2 of x^2 , y^2 , $2xy$ simplified	A1		Correct but unsimplified – one more step	(0	c)]]	Franslation	E1		(not shift, move, transformation etc)
	$a = \sqrt{2\pi}$			× ×		- (and no other transformation stated)			
	$3+2\sqrt{36}+12$ or $3^{*}\times 3$ or $(3\sqrt{3})$						[2]	MI		M1 for one component correct
	= 27	A1	3				$\left \frac{3}{2}\right $	1411		or ft their p or q values
	Total		6			t	hrough $\begin{vmatrix} 2 \\ 7 \end{vmatrix}$ (or equivalent in words)			
							$\left \frac{1}{2}\right $	A1	3	CSO; condone 1.5 right and 1.75 up etc
							L4J			

Total

6

Q	Solution	Marks	Total	Comments
5(a)	Grad $AC = \frac{15}{3} = 5$	B1		OE
	Equation of AC: $y = m(x+2)$ or $(y-15) = m(x-1)$	М1		Or use of $y = mx + c$ with (-2, 0) or (1, 15) correctly substituted for x and y
	y = 5x + 10	A1	3	OE eg $y - 15 = 5(x - 1)$, $y = 5(x + 2)$
(b)(i)	$\left[16x - \frac{x^5}{5}\right]$	M1 A1 A1		Raise one power by 1 One term correct All correct
	$\left(16-\frac{1}{5}\right)-\left(-32+\frac{32}{5}\right)$	m1		F(1) - F(-2) attempted
	$=41\frac{2}{5}$ (or 41.4, $\frac{207}{5}$ etc)	A1	5	CSO; withhold if $+ c$ added
(ii)	Area $\Delta = \frac{1}{2} \times 3 \times 15$ or $22\frac{1}{2}$ or 22.5	B1		Or $\int_{-2}^{1} (5x+10) dx = 22.5$
	Shaded area = "their (b)(i) answer" – correct triangle	M1		Condone "difference" if $\Delta > \int$
	\Rightarrow shaded area = $18\frac{9}{10}$	A1	3	CSO; OE (18.9 etc)
	Total		11	
6(a)	Remainder = $p(1) = 1 + 1 - 8 - 12$ = -18	M1 A1	2	Use of p(1) NOT long division
(b)(i)	p(-2) = -8 + 4 + 16 - 12	M1	2	NOT long division
	$=0 \Rightarrow (x+2)$ is factor	AI	2	p(-2) shown = 0 and statement
(ii)	Quad factor by comparing coefficients or $(x^2 + kx \pm 6)$ by inspection	M1		Or full long division or attempt at Factor Theorem using $f(\pm 3)$
	$p(x) = (x+2)(x^2 - x - 6)$	Al		Correct quadratic factor or $(x-3)$ shown to be factor by Factor Theorem
	$p(x) = (x+2)^2(x-3)$ or (x+2)(x+2)(x-3)	Al	3	CSO; SC: B1 for $(x+2)(x^{***})(x-3)$ by inspection or without working
(c)(i)	(<i>k</i> =) -12	В1	1	Condone $y = -12$ or $(0, -12)$
(ii)	↑ ² /	M1 A1		Cubic shape (one max and one min) Maximum at $(-2,0)$ and through $(3,0)$ – at least one of these values mediad
	-2 $3/x$	A1	3	at least one of these values marked "correct" graph as shown (touching smoothly at -2 , 3 marked and minimum to right of <i>y</i> -axis)
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	$(x-8)^2 + (y-13)^2$	B1		Exactly this with + and squares
	$=13^{2}$	B1	2	Condone 169
(b)(i)	grad $PC = \frac{12}{5}$	В1	1	Must simplify $\frac{-12}{-5}$
(ii)	grad of tangent $=\frac{-1}{\text{grad }PC} = -\frac{5}{12}$	В1√		Condone $-\frac{1}{2.4}$ etc
	tangent has equation $y-1 = -\frac{5}{12}(x-3)$	M1 A1		ft gradient but M0 if using grad PC Correct – but not in required final form
	5x + 12y = 27 OE	A1	4	MUST have integer coefficients
(iii)	half chord $= 5$	B1		Seen or stated
	$P \underbrace{\int_{13}^{13} Q}_{5} d^{2} = (\text{their } r)^{2} - 5^{2}$ $(\text{provided } r > 5)$	М1		Pythagoras used correctly $d^2 = 13^2 - 5^2$
	Distance = 12	A1	3	CSO
	Total		10	
8(a)	$b^2 - 4ac = 16k^2 - 36(k+1)$	M1		Condone one slip
	Real roots: discriminant ≥ 0	B1		
	$\Rightarrow 16k^2 - 36k - 36 \ge 0$ $\Rightarrow 4k^2 - 9k - 9 \ge 0$	A1	3	AG (watch signs)
(b)	(4k+3)(k-3)	M1		Or correct use of formula (unsimplified)
	critical points $(k =) -\frac{3}{4}, 3$	A1		Not in a form involving surds Values may be seen in inequalities etc
	$\frac{3}{4}$ 3 k sketch	M1		Or sign diagram
	$k \ge 3, k \le -\frac{3}{4}$	A1	4	NMS full marks
				Condone use of word "and" but final
				answer in a form such as $3 \le k \le -\frac{3}{4}$
				scores A0
	Total		7	
	TOTAL		/5	

General Certificate of Education January 2009 Advanced Subsidiary Examination AQA

MATHEMATICS Unit Pure Core 1

MPC1

Friday 9 January 2009 9.00 am to 10.30 am

For this paper you must have:

an 8-page answer book

 the blue AQA booklet of formulae and statistical tables You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- · Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- Answer all questions.
- · Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75.
- · The marks for questions are shown in brackets.

Advice

· Unless stated otherwise, you may quote formulae, without proof, from the booklet.

- (a) Find the coordinates of *M*. (2 marks)
- (b) Find the gradient of AB, giving your answer in its simplest form. (2 marks)
- (c) A straight line passes through M and is perpendicular to AB.
 - (i) Show that this line has equation x 2y + 1 = 0. (3 marks)
 - (ii) Given that this line passes through the point (k, k+5), find the value of the constant k. (2 marks)
- 2 (a) Factorise $2x^2 5x + 3$. (1 mark)
 - (b) Hence, or otherwise, solve the inequality $2x^2 5x + 3 < 0$. (3 marks)

3 (a) Express
$$\frac{7+\sqrt{5}}{3+\sqrt{5}}$$
 in the form $m+n\sqrt{5}$, where m and n are integers. (4 marks)

- (b) Express $\sqrt{45} + \frac{20}{\sqrt{5}}$ in the form $k\sqrt{5}$, where k is an integer. (3 marks)
- 4 (a) (i) Express $x^2 + 2x + 5$ in the form $(x + p)^2 + q$, where p and q are integers. (2 marks)
 - (ii) Hence show that $x^2 + 2x + 5$ is always positive. (1 mark)
 - (b) A curve has equation $y = x^2 + 2x + 5$.
 - (i) Write down the coordinates of the minimum point of the curve. (2 marks)
 - (ii) Sketch the curve, showing the value of the intercept on the y-axis. (2 marks)
 - (c) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 2x + 5$. (3 marks)

5 A model car moves so that its distance, x centimetres, from a fixed point O after time t seconds is given by

$$x = \frac{1}{2}t^4 - 20t^2 + 66t, \qquad 0 \le t \le 4$$

(a) Find:

(i)
$$\frac{dx}{dt}$$
; (3 marks)

(ii)
$$\frac{d^2x}{dt^2}$$
. (2 marks)

- (b) Verify that x has a stationary value when t = 3, and determine whether this stationary value is a maximum value or a minimum value. (4 marks)
- (c) Find the rate of change of x with respect to t when t = 1. (2 marks)
- (d) Determine whether the distance of the car from O is increasing or decreasing at the instant when t = 2. (2 marks)
- 6 (a) The polynomial p(x) is given by $p(x) = x^3 + x 10$.
 - (i) Use the Factor Theorem to show that x 2 is a factor of p(x). (2 marks)
 - (ii) Express p(x) in the form $(x-2)(x^2 + ax + b)$, where a and b are constants. (2 marks)
 - (b) The curve C with equation $y = x^3 + x 10$, sketched below, crosses the x-axis at the point Q(2, 0).

- (i) Find the gradient of the curve C at the point Q. (4 marks)
- (ii) Hence find an equation of the tangent to the curve C at the point Q. (2 marks)
- (iii) Find $\int (x^3 + x 10) \, dx$. (3 marks)
- (iv) Hence find the area of the shaded region bounded by the curve *C* and the coordinate axes. (2 marks)

- 7 A circle with centre C has equation $x^2 + y^2 6x + 10y + 9 = 0$.
 - (a) Express this equation in the form

(i) the coordinates of C:

$$(x-a)^2 + (y-b)^2 = r^2$$
 (3 marks)

- (b) Write down:
 - (ii) the radius of the circle. (2 marks)
- (c) The point D has coordinates (7, -2).
 - (i) Verify that the point D lies on the circle. (1 mark)
 - (ii) Find an equation of the normal to the circle at the point *D*, giving your answer in the form mx + ny = p, where *m*, *n* and *p* are integers. (3 marks)
- (d) (i) A line has equation y = kx. Show that the *x*-coordinates of any points of intersection of the line and the circle satisfy the equation

$$(k2 + 1)x2 + 2(5k - 3)x + 9 = 0$$
 (2 marks)

(ii) Find the values of k for which the equation

$$(k^2 + 1)x^2 + 2(5k - 3)x + 9 = 0$$

has equal roots.

(5 marks)

(iii) Describe the geometrical relationship between the line and the circle when k takes either of the values found in part (d)(ii). (1 mark)

END OF QUESTIONS

AQA – Core 1 - Jan 2009 – Answers

Question 1:	Exam report
a) A(1,6) B(5,-2)	
The mid-point $M\left(\frac{5+1}{2};\frac{-2+6}{2}\right) = M(3,2)$	In part (a) most candidates were able to find the correct coordinates of the mid point, although a few transposed the coordinates and others subtracted rather than adding
b) Gradient of $AB = m_{AB} = \frac{-2-6}{5-1} = -2$	the coordinates before halving the results. Full marks were only awarded in part (b) for a gradient of – 2 and quite a few candidates did not give their answer in
c) <i>i</i>)The gradient of the perpendicular to AB is $-\frac{1}{m_{AB}} = \frac{1}{2}$	this simplest form. In part (c)(i) most candidates realised that the product of the gradients should be –1. However, not all were able to
The equation of the perpendicular bisector is :	calculate the negative reciprocal. Others used an incorrect point such as <i>A</i>
$y-2=\frac{1}{2}(x-3)$	or <i>B</i> and therefore found an equation of the wrong line. The most successful used an equation of the form $y - y_1=m(x - x_1)$ as flagged above. The printed answer helped most
2y - 4 = x - 3	candidates to be successful in finding the correct equation
x - 2y + 1 = 0	of the line. In part (c)(ii) most candidates made an attempt at this part
<i>ii</i>)Substitute x by k and y by $k + 5$ in the equation:	of the question, but the failure to use brackets for the second term caused the maiority to find an incorrect value
k - 2(k + 5) + 1 = 0	for k. Others foolishly tried to substitute $x = k$ and $y = k + 5$
k - 2k - 10 + 1 = 0	into their own incorrect line equation rather than using the printed answer from part (c)(i).
k = -9	

Question 2:	Exam report
$a) 2x^{2}-5x+3=(2x-3)(x-1)$	
b) Critical values $\frac{3}{2}$ and 1 $2x^2 - 5x + 3 < 0$ for $1 < x < \frac{3}{2}$ (1, 0) 1 (1.5, 0) 2	In part (a) it was quite alarming to see the number of candidates who were unable to factorise this quadratic. Most candidates scored only a single mark in part (b) for attempting to find the critical values. Many would benefit from practising the solution of inequalities of this type by drawing a suitable sketch or by familiarising themselves with the technique of using a sign diagram as indicated in previous mark schemes

Question 3:	Exam report
$a)\frac{7+\sqrt{5}}{3+\sqrt{5}} = \frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} = \frac{21-7\sqrt{5}+3\sqrt{5}-5}{9-5}$ $= \frac{16-4\sqrt{5}}{4} = 4-\sqrt{5}$	In part (a) it was pleasing to see that most candidates were familiar with the technique for rationalising the denominator in this type of problem and, although there were some who made slips when multiplying out the two brackets in the numerator, most obtained the correct answer in the given form. In part (b) the term $\sqrt{45}$ was usually expressed as $3\sqrt{5}$, but the
$b)\sqrt{45} + \frac{20}{\sqrt{5}} = \sqrt{9 \times 5} + \frac{20\sqrt{5}}{5} = 3\sqrt{5} + 4\sqrt{5} = 7\sqrt{5}$	term $\frac{20}{\sqrt{5}}$ caused far more difficulties than expected.
	better candidates.

Question 4:	Exam report
a) i) $y = x^{2} + 2x + 5 = (x+1)^{2} - 1 + 5 = (x+1)^{2} + 4$	In part (a)(i) the completion of the square was done
ii) For all $y (y+1)^2 > 0$ as $(y+1)^2 + 4 > 4$	the value 6 was seen instead of 4 for q.
(l) For all x , $(x+1) \ge 0$ so $(x+1) + 4 \ge 4$	In part (a)(ii) it was necessary to comment on both
y is always positive.	implies that $(x + 1)^2 + 4 > 0$ for all values of x. Because
b(i) The minimum point is $(-1, 4)$	the word "hence", an argument based on algebra
<i>ii</i>) The curve crosses the y-axis at (0,5)	instance, an answer explaining that $(x + 1)^2 + 4$ has a
translation f = 1 translat	minimum value of 4 was acceptable, but a statement $1)^2 + 4$ about the sume baying a minimum point at (-1, 4) was
$(x+1) \xrightarrow{(x+1)} (x+1)$	not.
summary:Translation vector	In part (b)(i) most candidates were able to write down the correct minimum point. A few chose to use
	differentiation but sometimes made arithmetic slips in
7-	finding the coordinates of the stationary point.
6-	were usually able to produce a correct sketch, althoug
5, (0, 5)	the value of the y-intercept was sometimes missing. Some credit was given to candidates with an incorrect
4-	minimum point, usually (1, 4), provided their graph wa
3-	consistent with this minimum point.
2-	The term translation was required but generally the
1-	wrong word was used or it was accompanied by another transformation such as a stretch. A very
3 -2 -1 0 1 2	
	common (but incorrect) vector stated was 5.
Question 5:	Exam report
$x = \frac{1}{2}t^4 - 20t^2 + 66t \qquad 0 \le t \le 4$	In part (a) almost all candidates were able to find the first and second derivative correctly, although there was an occasional
$\frac{2}{dr}$ 1	arithmetic slip and some could not cope with the fraction term
$a(i)\frac{dx}{dt} = \frac{1}{2} \times 4t^3 - 20 \times 2t + 66$	Those who substituted t = 3 into $\frac{dx}{dt}$ in part (b) did not always
$\frac{dx}{dt} = 2t^3 - 40t + 66$	explain that $\frac{dx}{dx}$ is the condition for a stationary point. Some
$d^2x = c^2 + 10$	<i>dt</i> assumed that a stationary point occurred when t = 3 and went
$u)\frac{dt^2}{dt^2} = 6t^2 - 40$	straight to the test for maximum or minimum and only scored half the marks. It was advisable to use the second derivative te
b) Verify that $\frac{dx}{dt}(t=3) = 0$.	here; those who considered values of $\frac{dx}{dt}$ on either side of t =
$\frac{dx}{dt}(t=3) = 2 \times 3^3 - 40 \times 3 + 66$	usually reached an incorrect conclusion because of the proximity of another stationary point.
= 54 - 120 + 66 = 0	In part (c) the concept of "rate of change" was not understood by many Approximately equal numbers of candidates
There is a stationary point when $t = 3$.	$dx = d^2 x$
$\frac{d^2x}{dt^2}(t=3) = 6 \times 3^2 - 40 = 54 - 40 = 14 > 0$	substituted t = 1 into the expression for $\frac{dt}{dt}$ or $\frac{dt}{dt^2}$ and so only
dt ² This point is a MINIMUM	about half of the candidates were able to score any marks on dr
	this part. Those who used $\frac{dA}{dt}$ often made careless arithmetic
c) The rate of change is $\frac{dx}{dt}(t=1) = 2 - 40 + 66 = 28$	errors when adding three numbers.
dx	In part (d), as in part (c), candidates did not realise which
$d)\frac{d}{dt}(t=2) = 2 \times 2^{3} - 40 \times 2 + 66 = 16 - 80 + 66 = 2 > 0$	derivative. It is a general weakness that candidates do not
The distance is INCREASING when $t = 2$.	realise that the sign of the first derivative indicates whether a function is increasing or decreasing at a particular point.

Question 6:	Exam report
a) $p(x) = x^3 + x - 10$	In part (a)(i) the majority of candidates realised the need to find the
	value of $f(x)$ when $x = 2$. However, it was also necessary, after showing
<i>i</i>) $p(2) = 2^3 + 2 - 10 = 8 + 2 - 10 = p(2) = 0$	that $f(2) = 0$, to write a statement that the zero value implied that $x - $
2 is a root of p , so $(x-2)$ is a factor of p .	2 was a factor. It was good to see more candidates being aware of this.
<i>ii</i>) $x^{3} + x - 10 = (x - 2)(x^{2} + 2x + 5)$	In part (a)(ii), those who used inspection were the most successful here. Methods involving long division or equating coefficients usually contained algebraic errors.
b) <i>i</i>) The gradient of the curve at Q is $\frac{dy}{dx}(x=2)$	In part (b)(i) a surprising number of candidates failed to see the need to differentiate in order to find the gradient at Q. Those who
$\frac{dy}{dx} = 3x^2 + 1 and for \ x = 2, \ \frac{dy}{dx} = m_{\varrho} = 13$	attempted to find $\frac{dy}{dx}$ sometimes wrote it as $3x^2 + x$, but usually
ii) The equation of the tangent at O is :	were aware of the need to substitute $x = 2$.
<i>iii)</i> The equation of the tangent at Q is .	In part (b)(ii) those who had the correct gradient in part (b)(i) were
y - 0 = 13(x - 2)	usually successful in finding the correct equation of the tangent, and
$y = 12x^{2}$	most obtained at least a method mark here.
y - 13x - 20	in part (b)(iii) most were well drilled in integration and earned rul
$iii)\int (x^3 + x - 10)dx = \frac{1}{4}x^4 + \frac{1}{2}x^2 - 10x + c$	marks, although some wrote $\frac{x^4}{4} + \frac{x^2}{2} - 10$ and others gave
iv) The curve is below the x-axis,	x^4 x^2 10^2
	-++ as their answer.
so the area of the shaded part is	4 - 2 - 2 For part (b)(iv) the correct limits were usually used although many
$-\int_{0}^{2} (x^{3} + x - 10) dx = \left[-\frac{1}{4} x^{4} - \frac{1}{2} x^{2} + 10x \right]_{0}^{2}$	sign/arithmetic slips occurred after substitution of the numbers 0 and 2 and it was incredible how many could not evaluate $6 - 20$ without a calculator. Very few candidates realised the need to show clearly that,
=(-4-2+20)-(0)=14	shaded region was 14. A senarate statement was needed and those
Area - 14	who simply wrote $4 + 2 - 20 = -14 = 14$ did not score full marks. Those
	more able candidates who made a statement about the region being
	entirely below the x-axis and who subsequently evaluated the integral
	from 2 to 0 correctly scored full marks.

Question 7:	Exam report
$r^2 + v^2 - 6r + 10v + 9 = 0$	
$a)(x-3)^{2} - 9 + (y+5)^{2} - 25 + 9 = 0$ (x-3) ² + (y+5) ² = 5 ² (x) The centre C(3 - 5)	In part (a) most candidates found the correct values of a and b, but correct values for r^2 were not so common. Some sloppiness was again evident with candidates failing to write squared outside the brackets or omitting the plus sign between the terms on the left hand side. It was common to
ii) radius r = 5	see things such as $25 = 25 = \sqrt{25} = 5^2$ and this could be penalised in the future.
<i>i</i>)Substitute x and y by 7 and -2: $(x-3)^2 + (y+5)^2$	In part (b) the coordinates of the centre, C and the radius r, although not always correct, usually gained full credit when following through from part (a).
$= (7-3)^{2} + (-2+5)^{2} = 16+9 = 25$ D belongs to the circle. <i>ii</i>) The normal to to circle at D is the line CD $m_{CD} = \frac{-2+5}{7-3} = \frac{3}{4}$	In part (c)(i) most candidates attempted to verify that the point D was on the circle, although some, who had obviously worked a previous examination question, were keen to show that the distance from C to D was less than the radius and that D lay inside the circle. This verification was marked fairly strictly and the argument had to be correct including a final concluding statement. Those who simply wrote $4^2 + 3^2 = 25$, for example, did not earn the mark.
The equation of the normal: $y+2 = \frac{3}{4}(x-7)$ 4y+8 = 3x-21 3x = 4y = 20	In part (c)(ii) many candidates found the gradient of CD and then assumed they had to find the negative reciprocal of this since the question asked for the normal at D. Reference to a sketch might have prevented this incorrect assumption.
$d(i)$ Solve simultaneously $\begin{cases} y = kx \\ (x-3)^2 + (y+5)^2 = 25 \end{cases}$	In part (d)(i) most candidates made errors by not using brackets; the expression kx^2 was seen almost as often as the correct form k^2x^2 after substituting y = kx into their circle equation.
by substitution, we have $(x-3)^2 + (kx+5)^2 = 25$ $x^2 + 9 - 6x + k^2x^2 + 25 + 10kx = 25$ $(1+k^2)x^2 + (10k-6)x + 9 = 0$ $(1+k^2)x^2 + 2(5k-3)x + 9 = 0$ <i>ii</i>) This equation has equal roots	In part (d)(ii), although there were some correct solutions seen, the discriminant often contained algebraic slips and the condition for equal roots was rarely stated. Often it was several lines into the working before an "= 0" appeared and many times this was omitted entirely. The value $k = 0$ was often ignored in otherwise correct solutions, but it was more common to see a three term quadratic because of previous algebraic errors.
if the discriminant = 0. $(10k-6)^2 - 4 \times (1+k^2) \times 9 = 0$ $100k^2 + 36 - 120k - 36k^2 - 36 = 0$	In part (d)(iii) several candidates realised that the line would be a tangent for each of the two values of k, but many completely missed the point and talked about transformations, often giving vectors in their answer.
$64k^{2} - 120k = 0$ k(64k - 120) = 0 $k = 0 \text{ or } k = \frac{120}{64} = \frac{15}{8}$	MY SCORE FOR THIS PAPER IS / 75 MY GRADE ;

iii) When k = 0 or $\frac{15}{8}$, the line is tangent to the circle.

 GRADE BOUNDARIES

 Component title
 Max mark
 A
 B
 C
 D
 E

 Core 1 – Unit PC1
 75
 62
 54
 46
 39
 32

Q	Solution	Marks	Total	Comments		
1(a)	<i>M</i> (3, 2)	B1 B1	2	B1 for each coordinate		
(b)	Gradient $AB = \frac{-2-6}{5-1} = \left(\frac{-8}{4}\right)$	M1		May use coords of M instead of A or B - condone one slip		
	= -2	A1	2	CSO Answer must be simplified to -2		
(c) (i)	Gradient of perpendicular = $\frac{1}{2}$	В1√		ft "their" -1/gradient AB		
	$\Rightarrow y-2=\frac{1}{2}(x-3)$	M1		attempt at perp to AB ; ft their M coords		
	$\Rightarrow 2y-4=x-3 \Rightarrow x-2y+1=0$ AG	A1	3	CSO Must write down the printed answer		
(ii)	$k-2(k+5)+1=0$ or $\frac{(k+5)-2}{k-3}=\frac{1}{2}$	M1		Sub into given line equation or correct expression involving gradients Condone omission of brackets or use of x		
	$\Rightarrow k = -9$	A1	2	Condone $x = -9$ (Full marks for correct answer without working)		
	Total		9			
2(a)	(x-1)(2x-3)	В1	1	(1-x)(3-2x) or $2(x-1)(x-1.5)$ etc		
(b)	Critical values are 1, $1\frac{1}{2}$	В1√		Correct or ft their factors from (a)		
	Sign diagram or sketch	M1		+ - +		
	$\Rightarrow 1 < x < 1\frac{1}{2}$	A1	3	$\frac{1}{V_{2}} = \frac{1}{2}$ Full marks for correct inequality without working		
	Total		4			
3(a)	$\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$	M1		Multiply by $\frac{3-\sqrt{5}}{3-\sqrt{5}}$ or $\frac{\sqrt{5}-3}{\sqrt{5}-3}$		
	Numerator = $21 + 3\sqrt{5} - 7\sqrt{5} - (\sqrt{5})^2$	m1		Condone one slip $16 - 4\sqrt{5}$		
	Denominator = $9 - 5 = 4$	B1		(Or $5-9 = -4$ from other conjugate)		
	Answer = $4 - \sqrt{5}$	A1	4	CSO		
(b)	$\sqrt{45} = 3\sqrt{5}$	B1				
	$\frac{20}{\sqrt{5}} = \frac{20\sqrt{5}}{5}$	M1		May score if combined as one expression Must have 5 in denominator		
	Sum = $7\sqrt{5}$	A1	3			
	Total		7			

Q	Solution	Marks	Total	Comments		
4(a)(i)	$(x+1)^2$	B1		p = 1		
	+ 4	B1	2	q = 4		
(ii)	$(x+1)^2 \ge 0 \Longrightarrow (x+1)^2 + 4 > 0$	E1	1	Condone if they say $(x+1)^2$ positive		
	$(\Rightarrow x^2 + 2x + 5 > 0 \text{ for all values of } x)$			and adding 4 so always positive		
(1) (1)	y = 1 or $y = 4$	241		f their $y = -p$ or $y = q$		
(D)(I)	x = -1 or $y = 4$	MI		If then $x = -p$ of $y = q$		
(ii)	Ninimum point is (-1, 4)	AI B1	2	Sketch roughly as shown		
(1)						
	x	BI	2	y-intercept 5 or (0, 5) marked or stated		
(c)	Translation (not shift, move etc)	E1		and NO other transformation stated		
	through $\begin{bmatrix} -1\\ 4 \end{bmatrix}$ (or 1 left, 4 up etc)	M1		either component correct or ft their $-p$, q		
		A1	3	correct translation M1, A1 independent of E mark		
	Total		10			
5(a)(i)	$\frac{dx}{dt} = 2t^3 - 40t + 66$	M1		one term correct		
	d <i>i</i>	A1		another term correct		
	-2	A1	3	all correct unsimplified (no $+ c$ etc)		
(ii)	$\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = 6t^2 - 40$	M1		ft one term correct		
		A1√	2	ft all "correct", 2 terms equivalent		
(b)	$\frac{dx}{dt} = 54 - 120 + 66$	M1		substitute $t = 3$ into their $\frac{dx}{dt}$		
	$= 0 \Rightarrow$ stationary value	A1		CSO		
				shown = 0 (54 or 2×27 seen) and statement		
	Substitute $t = 3$ into $\frac{d^2x}{dt^2}$ (= 14)	M1				
	$\frac{d^2x}{dt^2} > 0 \implies \text{minimum value}$	A1	4	CSO; all values (if stated) must be correct		
(c)	Substitute $t = 1$ into their $\frac{dx}{dt}$	M1		must be their $\frac{dx}{dt}$ NOT $\frac{d^2x}{dt^2}$ etc		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2.8$	A1√	2	ft their $\frac{\mathrm{d}x}{\mathrm{d}t}$ when $t = 1$		
(d)	Substitute $t = 2$ into their $\frac{dx}{dt}$	M1		must be their $\frac{dx}{dt}$ NOT $\frac{d^2x}{dt^2}$ or x		
	=16 - 80 + 66 = 2 (> 0)			Interpreting their value of $\frac{dx}{dt}$		
	\Rightarrow increasing when $t = 2$	E1√	2	Allow decreasing if their $\frac{dx}{dt} < 0$		
	Total		13			

Q	Solution	Marks	Total	Comments		
6(a)(i)	p(2) = 8 + 2 - 10	M1		Must find p(2) NOT long division		
	\Rightarrow p(2) = 0 \Rightarrow (x-2) is factor	A1	2	Shown = 0 plus a statement		
(ii)	Attempt at long division (generous)	M1		Obtaining a quotient $x^2 + cx + d$ or equating coefficients (full method)		
	$p(x) = (x-2)(x^2 + 2x + 5)$	A1	2	a = 2, b = 5 by inspection B1, B1		
(b)(i)	$\frac{dy}{dt} = 3x^2 + 1$	M1		One term correct		
	dx	AI		All correct – no + c etc		
	When $x = 2 \frac{dy}{dx} = 3 \times 4 + 1$	m1		Sub $x = 2$ into their $\frac{dy}{dx}$		
	Therefore gradient at Q is 13	A1	4	CSO		
(ii)	y = 13(x - 2)	M1		Tangent (NOT normal) attempted		
		Al	2	ft their gradient answer from (b)(i) CSO; correct in any form		
	$x^4 x^2$	M1		one term correct		
(iii)	$\int \dots dx = \frac{x}{4} + \frac{x}{2} - 10x (+c)$	A1		second term correct		
		Al	3	all correct (condone no +c)		
6	[4+2-20]-[0] = -14	MI		F(2) attempted and possibly $F(0)$		
(1V)		MI		Must have earned M1 in (b)(iii)		
	Area of shaded region = 14	Al	2	CSO; separate statement following correct		
				evaluation of limits		
	Total		15			

Q	Solution	Marks	Total	Comments
7(a)(i)	$(x-3)^{2} + (y+5)^{2}$ = 25 - 9 + 9 = 25 (=5 ²)	B1 B1 B1	3	One term correct LHS correct with + and squares Condone RHS = 25
(b)(i) (ii)	C (3, -5) Radius = 5	B1√ B1√	2	Correct or ft their RHS provided > 0
(c)(i)	$(7-3)^{2} + (-2+5)^{2} = 16 + 9 = 25$ $\Rightarrow D \text{ lies on circle}$ <i>Must see statement</i>	B1	1	Or sub'n of $(7, -2)$ in original equation $7^{2} + (-2)^{2} - 42 - 20 + 9 = 0$ Or sub <i>x</i> =7 into eqn & showing <i>y</i> = -2 etc
(ii)	Attempt at gradient of <i>CD</i> as normal grad $CD = \frac{-2-(-5)}{7-3} = \frac{3}{4}$	M1		withhold if subsequently uses $m_1m_2 = -1$ $\frac{\Delta y}{\Delta x}$ (condone one slip) FT their centre C
	$y+2 = \frac{5}{4}(x-7)$ or $y+5 = \frac{5}{4}(x-3)$	A1		Correct equation in any form $y = \frac{3}{4}x - \frac{29}{4}$
	\Rightarrow 3x - 4y = 29	A1	3	CSO <i>Integer</i> coefficients Condone $4y - 3x + 29 = 0$ etc
(d)(i)	y = kx sub'd into original circle equation $x^{2} + (kx)^{2} - 6x + 10kx + 9 = 0$	M1		or using their completed square form and multiplying out
	$\Rightarrow (k^2 + 1)x^2 + 2(5k - 3)x + 9 = 0 \qquad \text{AG}$	A1	2	CSO must see at least previous line for A1 any error such as $kx^2 = = k^2 x^2$ gets A0
(ii)	$4(5k-3)^2 - 36(k^2 + 1)$	M1		Discriminant in k (can be seen in quad formula) Condone one slip
	$= 64k^2 - 120k$ Equal roots: $4(5k-3)^2 - 36(k^2+1) = 0$	A1 B1		or $8k^2 - 15k = 0$ OE $b^2 - 4ac = 0$ clearly stated or evident by an equation in k with at most 2 slips.
	$8k^2 - 15k = 0$	ml		Attempt to solve <i>their</i> quadratic or linear equation if k has been cancelled
	$\Rightarrow k = 0, k = \frac{15}{8}$	A1	5	OE but must have <i>k</i> =0
	0			If "=0" is not seen but correct values of k are found, candidate will lose B1 mark but may earn all other marks
(iii)	(Line is a) tangent (to the circle)	E1	1	Line touches circle at one point
	Total		17	
	TOTAL		75	

June 2009

- 1 The line AB has equation 3x + 5y = 11.
 - (a) (i) Find the gradient of AB. (2 marks)
 - (ii) The point A has coordinates (2, 1). Find an equation of the line which passes through the point A and which is perpendicular to AB.
 (3 marks)
 - (b) The line AB intersects the line with equation 2x + 3y = 8 at the point C. Find the coordinates of C. (3 marks)
- 2 (a) Express $\frac{5+\sqrt{7}}{3-\sqrt{7}}$ in the form $m+n\sqrt{7}$, where m and n are integers. (4 marks)
 - (b) The diagram shows a right-angled triangle.

The hypotenuse has length $2\sqrt{5}$ cm. The other two sides have lengths $3\sqrt{2}$ cm and x cm. Find the value of x. (3 marks)

3 The curve with equation $y = x^5 + 20x^2 - 8$ passes through the point P, where x = -2.

(a) Find
$$\frac{dy}{dx}$$
. (3 marks)

(b) Verify that the point P is a stationary point of the curve. (2 marks)

(c) (i) Find the value of
$$\frac{d^2y}{dx^2}$$
 at the point *P*. (3 marks)

- (ii) Hence, or otherwise, determine whether *P* is a maximum point or a minimum point. (1 mark)
- (d) Find an equation of the tangent to the curve at the point where x = 1. (4 marks)

- 4 (a) The polynomial p(x) is given by $p(x) = x^3 x + 6$.
 - (i) Find the remainder when p(x) is divided by x 3. (2 marks)
 - (ii) Use the Factor Theorem to show that x + 2 is a factor of p(x). (2 marks)
 - (iii) Express $p(x) = x^3 x + 6$ in the form $(x+2)(x^2 + bx + c)$, where b and c are integers. (2 marks)
 - (iv) The equation p(x) = 0 has one root equal to -2. Show that the equation has no other real roots. (2 marks)
 - (b) The curve with equation $y = x^3 x + 6$ is sketched below.

The curve cuts the x-axis at the point A(-2, 0) and the y-axis at the point B.

(i) State the *y*-coordinate of the point *B*. (1 mark)

(ii) Find
$$\int_{-2}^{0} (x^3 - x + 6) dx$$
. (5 marks)

(iii) Hence find the area of the shaded region bounded by the curve $y = x^3 - x + 6$ and the line *AB*. (3 marks) 5 A circle with centre C has equation

$$(x-5)^2 + (y+12)^2 = 169$$

(a) Write down:

	(i)	the coordinates of C ;	(1 mark)
	(ii)	the radius of the circle.	(1 mark)
(b)	(i)	Verify that the circle passes through the origin O.	(1 mark)
	(ii)	Given that the circle also passes through the points $(10, 0)$ and $(0, p)$, circle and find the value of p .	sketch the (3 marks)
(c)	The	point $A(-7, -7)$ lies on the circle.	
	(i)	Find the gradient of AC.	(2 marks)
	(ii)	Hence find an equation of the tangent to the circle at the point A, giving answer in the form $ax + by + c = 0$, where a, b and c are integers.	g your (3 marks)
(a)	(i)	Express $x^2 - 8x + 17$ in the form $(x - p)^2 + q$, where p and q are integrated as $x = 1$.	gers. (2 marks)
	(ii)	Hence write down the minimum value of $x^2 - 8x + 17$.	(1 mark)
	(iii)	State the value of x for which the minimum value of $x^2 - 8x + 17$ occu	ırs. (1 mark)
(b)	The	point A has coordinates $(5, 4)$ and the point B has coordinates $(x, 7 - x)$	
	(i)	Expand $(x-5)^2$.	(1 mark)
	(ii)	Show that $AB^2 = 2(x^2 - 8x + 17)$.	(3 marks)
	(iii)	Use your results from part (a) to find the minimum value of the distance varies.	e AB as x (2 marks)

7 The curve C has equation $y = k(x^2 + 3)$, where k is a constant.

The line *L* has equation y = 2x + 2.

(a) Show that the *x*-coordinates of any points of intersection of the curve C with the line L satisfy the equation

$$kx^2 - 2x + 3k - 2 = 0 (1 mark)$$

- (b) The curve C and the line L intersect in two distinct points.
 - (i) Show that

$$3k^2 - 2k - 1 < 0 \tag{4 marks}$$

(ii) Hence find the possible values of k. (4 marks)

END OF QUESTIONS

6
AQA – Core 1 - June 2009 – Answers

Question 1:	Exam report				
$Line \ AB: 3x + 5y = 11$					
a)i) Make y the subject: $5y = -3x + 11$					
$y = -\frac{3}{5}x + \frac{11}{5}$					
The gradient of $AB = m_{AB} = -\frac{3}{5}$					
<i>ii</i>) <i>A</i> (2,1).	In part (a)(i) many candidates were unable to make y the				
The gradient of the line perpendicular to AB is	subject of the equation $3x + 5y = 11$ and, as a result, many				
1 5	incorrect answers for the gradient were seen. Those who				
$-\frac{1}{m_{AB}}=\frac{1}{3}$	rarely successful.				
The equation of the line is : $y-1 = \frac{5}{3}(x-2)$	In part (a)(ii) most candidates realised that the product of the gradients of perpendicular lines should be -1 and credit was given for using this result together with their answer				
3y - 3 = 5x - 10	from part(a)(i). Although many correct answers for the				
5x - 3y = 7	coordinates of C were seen in part (b)(i), the simultaneous equations defeated a large number of candidates. No credit				
b) Solve simultaneously $\begin{cases} 3x + 5y = 11 & (\times 2) \\ 2x + 3y = 8 & (\times -3) \end{cases}$ gives	was given for mistakenly using their equation from part (a)(ii) instead of the correct equation for <i>AB</i> .				
$\begin{cases} 6x+10y=22\\ -6x-9y=-24 \end{cases} and by adding$					
y = -2					
and $3x + 5y = 11$ $3x - 10 = 11$ $x = 7$					
The lines intersect at $(7, -2)$					

Question 2:	Exam report			
$5+\sqrt{7}$ $5+\sqrt{7}$ $3+\sqrt{7}$ $15+5\sqrt{7}+3\sqrt{7}+7$	In part (a) most candidates recognised the first crucial step of			
a) $\frac{1}{3-\sqrt{7}} = \frac{1}{3-\sqrt{7}} \times \frac{1}{3+\sqrt{7}} = \frac{1}{9-7}$	multiplying the numerator and denominator by $3 + \sqrt{7}$ and			
$=\frac{22+8\sqrt{7}}{2}=11+4\sqrt{7}$	many obtained $\frac{22+8\sqrt{7}}{2}$, but then poor cancellation led to a			
b) Using pythagoras' theorem we have	very common incorrect answer of $11+8\sqrt{7}$.			
$x^{2} = \left(2\sqrt{5}\right)^{2} - \left(3\sqrt{2}\right)^{2}$	Candidates found part (b) more difficult than part (a) and revea a lack of understanding of surds. Most candidates realised the need to use Pythagoras' Theorem but many could not square			
$= 4 \times 5 - 9 \times 2 = 2$	$2\sqrt{5}$ and $3\sqrt{2}$ correctly. Little credit was given for those who			
$x = \sqrt{2}$ or $x = -\sqrt{2}$	wrote things such as $x = \sqrt{20} - \sqrt{18} = \sqrt{2}$ and candidates			
but x is a length, $x > 0$, so $x = \sqrt{2}$ is the answer.	need to realise that "getting the right answer" is not always rewarded with full marks. Although the equation $x^2 = 2$ has the			
	solution $x = \pm \sqrt{2}$, it was necessary to consider the context and			
	to give the value of x as $\sqrt{2}$.			

Question 3:	Exam report
$y = x^{5} + 20x^{2} - 8 \qquad P(-2, y_{p})$ $a)\frac{dy}{dx} = 5x^{4} + 40x$	In part (a) almost everyone obtained the correct expression for $\frac{dy}{dx}$, although a few spoiled their solution by dividing each term by 5 or adding "+
b) for $x = -2$, $\frac{dy}{dx} = 5 \times (-2)^4 + 40 \times (-2)$	c" to their answer.
$\frac{dy}{dx} = 5 \times 16 - 80 = 0$	In part (b) most candidates substituted x = -2 into their expression for $\frac{1}{dx}$, $\frac{1}{dx}$
P is a stationary point	but, in order to score full marks, it was necessary to show
c) i) $\frac{d^2y}{dx^2} = 20x^3 + 40$ and for $x = -2$	$(-2)^4$ written as 16 or to show that $\frac{dy}{dx} = 80 - 80 = 0$ and
$= 20 \times (-2)^3 + 40 = -160 + 40 = -120 < 0$	then to write an appropriate conclusion about P being a stationary point. For part (c) many candidates simply wrote down an expression for
<i>ii</i>) <i>P</i> is a MAXIMUM point.	d^2 v
d) when $x = 1$, $y = 1^5 + 20 \times 1^2 - 8 = 1 + 20 - 8 = 13$	$\frac{d^2 y}{dx^2}$ in terms of x when answering part (i) and only evaluated the second
$\frac{dy}{dx}(x=1) = 5 + 40 = 45$	derivative when determining the nature of the stationary point in part (ii). On this occasion full credit was given, but candidates need to realise what is
the equation of the tangent at (1,13) is $y-13 = 45(x-1)$	meant by the demand to "find the value of" since this may be penalized in future examinations.
y = 45x - 32	In part (d) some candidates failed to find the y-coordinate of P, which was
	necessary in order to find the equation of the tangent. It was pleasing to see
	most candidates using the value of $\frac{dy}{dx}$ when x = 1, but unfortunately many
	tried to find the equation of the normal instead of the tangent to the curve.

Question 4:	Exam report
a) $p(x) = x^3 - x + 6$	Those candidates who used the remainder theorem in part (a)(i) were usually
<i>i</i>) The remainder is $p(3)$	successful in finding the correct remainder. Those who tried to use long division were usually confused by the lack of an x^2 term and were rarely successful in
$p(3) = 3^3 - 3 + 6 = 27 - 3 + 6 = 30$	showing that the remainder was 30.
<i>ii</i>) $p(-2) = (-2)^3 - (-2) + 6$	Those who used long division in part (a)(ii) scored no marks. Most candidates realised the need to show that $n(-2) = 0$, but quite a few omitted sufficient
= -8 + 2 + 6 = 0	working such as $p(-2) = -8 + 2 + 6 = 0$ together with a concluding statement
-2 is a root of p, so $(x+2)$ is a factor of p.	about x + 2 being a factor and therefore failed to score full marks.
<i>iii</i>) $p(x) = (x+2)(x^2-2x+3)$	Many candidates have become quite skilled at writing down the correct product of a linear and quadratic factor and these scored full marks in part (a)(iii). Others
<i>iv</i>) $p(x) = 0$ means $(x-2)(x^2-2x+3) = 0$	used long division effectively but lost a mark for failing to write p(x) in the
so $x - 2 = 0$ or $x^2 - 2x + 3 = 0$	required form. Others tried methods involving comparing coefficients, but often after several lines of working were unable to find the correct values of b and c
x = 2 the discriminant	because of poor algebraic manipulation. In part (a)(iv), although many candidates
$=(-2)^2-4\times1\times3=-8<0$	tried to consider the value of the discriminant of their quadratic factor, quite a few used a $=1$ h $=-1$ and $c=6$ (from the subic equation) and second no marks for
no solution.	The used $a = 1$, $b = -1$ and $c = 6$ (from the cubic equation) and scored no marks for this part of the question. Others drow a correct conclusion using the quadratic
(p(0) = 0 - 0 + 6 = 6)	equation formula, indicating that it was not possible to find the square root of -8
$ii) \int_{-\infty}^{0} (x^{3} - x + 6) dx = \left[\frac{1}{4}x^{4} - \frac{1}{2}x^{2} + 6x\right]^{0}$	and others, after completing the square showed that the equation $(x - 1)^2 = -2$ has no real solutions. Some wrongly concluded that because it was not possible
	to factorise their quadratic then the corresponding quadratic equation had no
=(0)-(4-2-12)=10	real roots. Most obtained the correct v-coordinate of B in part (b)(i)
<i>iii</i>) The shaded area	In part $(b)(ii)$ it was pleasing to see most candidates being able to integrate
= area beneath the curve $-$ area of triangle ABO	correctly but a large number did not answer the question set and simply found
1	the indefinite integral in this part. Many candidates use poor techniques when
$=10-\frac{1}{2}\times 2\times 6=4$	finding a definite integral and it was often difficult to see the evaluation of F(0) –
2	F(-2) in their solution. Many obtained an answer of -10 which was
	miraculously converted into +10 with some comment about an area being
	positive. This and similar dubious working was penalized.
	In part (b)(iii) some obtained an answer of -6 for the area of the triangle by using
	-2 as the base. Credit was given to candidates who later realised that the area of
	the triangle was actually 6. Unless candidates had scored full marks in part(ii)
	they were not able to score full marks in this part either, even if they obtained a
	correct value of 4 for the shaded area.

Question 5:	Exam report
$(x-5)^{2} + (y+12)^{2} = 169$	
$(x-5)^{2} + (y+12)^{2} = 169$ a) i) C(5,-12) ii) r = $\sqrt{169} = 13$ b) i) O(0,0) $(0-5)^{2} + (0+12)^{2} = 25 + 144 = 169$ O belongs to the circle. ii) (0, p) : $(0-5)^{2} + (p+12)^{2} = 169$ $(p+12)^{2} = 169$ $(p+12)^{2} = 144$ $p+12 = \pm 12$ p=0 or p=-24 (0,-24) belongs to the circle. c) A(-7,-7) lies on the circle i) gradient of AC = $m_{AC} = \frac{-12+7}{5+7} = -\frac{5}{12}$ ii) The tangent is perpendicular to the radius AC The gradient of the tangent is $\frac{12}{5}$ The equation of the tangent is $y+7 = \frac{12}{5}(x+7)$ 5y+35 = 12x+94	In part (a)(i) most candidates realised what the correct coordinates of the centre were, although some wrote these as (-5, 12) instead of (5, -12). Some gave the radius as 169 and others evaluated $\sqrt{169}$ incorrectly in part (a)(ii). The majority of candidates obtained the correct value of the radius. In part (b)(i) most were able to verify that the circle passed through the origin, although some neglected to make a statement as a conclusion to their calculation and so failed to earn this mark. A surprisingly large number made no attempt at this part. Most sketches were correct in part (b)(ii), though some were very untidy with some making several attempts at the circle so the diagram resembled the chaotic orbit of a planet. In spite of being asked to verify that the circle passed through the origin, although it was good to see some circles drawn using compasses. Many used algebraic methods, putting x = 0, but often their poor algebra prevented them from finding the value of p. Those using the symmetry, doubling the y- coordinate, were usually more successful, although an answer of -25 (from -12-13) was common. In part (c)(i) he majority of candidates tried to find the gradient of AC but careless arithmetic meant that far fewer actually succeeded in finding its correct simplified value. In part (c)(ii), in order to find the tangent, it was necessary to use the negative reciprocal of the answer from part (c)(i) in order to find the gradient. Although some did, many chose to use the same gradient obtained in the previous part of the question and scored no marks at all.
12x - 5y + 49 = 0	
Outpetion ()	From record

Question 6:	Exam report
Question 6: a) i) $x^2 - 8x + 17 = (x-4)^2 - 16 + 17 = (x-4)^2 + 1$ ii) For all x, $(x-4)^2 \ge 0$ so $(x-4)^2 + 1 \ge 1$ The minimum value is 1 iii) the minimum occurs when $(x-4)^2 = 0$ i.e. $x = 4$ b) $A(5,4) B(x,7-x)$ i) $(x-5)^2 = x^2 + 25 - 10x$ ii) $AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$ $= (x-5)^2 + (3-x)^2$ $= x^2 + 25 - 10x + 9 + x^2 - 6x$ $= 2x^2 - 16x + 34$ $AB^2 = 2(x^2 + 8x + 17)$ iii) The minimum value of $x^2 + 8x + 17$ is 1	Exam report Completing the square was done well by most candidates in part (a)(i), although quite a few wrote q as 17 instead of 1. Part (a)(ii) of this question was answered very badly with many giving their answer as coordinates. Candidates were either "hedging their bets" or were simply presenting the coordinates of a minimum point of a curve as their answer. In part (a)(iii) many candidates obtained the correct value for x in this part, but there was confusion with many about how to answer parts (i) and (ii). The question was deliberately designed to test the understanding of the minimum value of a quadratic expression and when this occurred. Those who wrote "(ii) 4 and (iii)1" scored no marks at all for these two parts of the question. In part (b)(i) practically everyone scored a mark for multiplying out (x - 5) ² correctly. In part (b)(ii) only the best candidates obtained a correct expression for AB ² and then completed the resulting algebra to obtain the printed answer. It was good to see that many saw the link between the various parts in part (b)(iii). Many more able candidates substituted x = 4
<i>iii</i>) The minimum value of $x^2 + 8x + 17$ is 1	parts in part (b)(iii). Many more able candidates substituted $x = 4$
so the minimum value of AB^2 is 2	into the expression and obtained $AB^2 = 2$, but they then failed to
the minimum value of AB is $\sqrt{2}$	take the positive square root in order to find the minimum distance.

Question 7:	Exam report
curve C: $y = k(x^2 + 3)$	
<i>line</i> $L: y = 2x + 2$	
<i>a</i>) By indentifying the <i>y</i> 's:	
$k\left(x^2+3\right)=2x+2$	
$kx^2 - 2x + 3k - 2 = 0$	
b) The curve and the line have	
two distinct points of intersection,	Most candidates scored the mark for the correct printed equation in part (a) but some omitted $= 0^{\circ}$ and others made algebraic slips
this means that the discriminant > 0 .	when taking terms from one side of their equation to the other.
$(-2)^2 - 4 \times k \times (3k - 2) > 0$	In part (b)(i) only the more able candidates were able to obtain the printed inequality using correct algebraic steps. Many began by
$4 - 12k^2 + 8k > 0 \qquad (\div - 4)$	stating that the discriminant was less than 0, clearly being
$3k^2 - 2k - 1 < 0$	and c in the expression $b^2 - 4ac$ and others made sign errors when
<i>iii</i>) $(3k+1)(k-1) < 0$	removing brackets. The factorisation was usually correct in part (b)(ii), but many wrote
critical values $-\frac{1}{3}$ and 1	down one of the critical values as 1/3. Most found critical values and either stopped or immediately tried to write down a solution without any working. Candidates are strongly advised to use a sign
$(3k+1)(k-1) < 0 \text{ for } -\frac{1}{3} < k < 1$	quadratic inequality.
-1 (-0.33, 0) -1	

GRADE BOUNDARIES									
Component title Max mark A B C D E									
Core 1 – Unit PC1	75	63	55	48	41	34			

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2009 examination - June series

Key to mark scheme and abbreviations used in marking

М	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
А	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
E	mark is for explanation	mark is for explanation						
√or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
-x EE	deduct x marks for each error	G	graph					
NMS	no method shown	с	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$y = -\frac{3}{5}x + \frac{11}{5}$	M1		Attempt at $y = f(x)$
	Or correct expression for gradient using			Or answer $=\frac{3}{5}$ or $-\frac{3}{5}x$ gets M1
	two correct points			3 $3But answer of \frac{3}{2} r gets M0$
				$\frac{5}{5}$ gets ivio
	(Gradient of $AB = \frac{3}{5}$	A1	2	Correct answer scores 2 marks . Condone error in rearranging formula if answer for gradient is correct.
(ii)	$m_1 m_2 = -1$	M1		Used or stated
	Gradient of perpendicular = $\frac{5}{3}$	A1√		ft their answer from (a)(i) or correct
	$y-1=\frac{5}{3}(x-2) \qquad \text{OE}$	A1	3	$5x-3y=7$; or $y=\frac{5}{3}x+c$, $c=-\frac{7}{3}$ etc
				CSO
(b)	Eliminating x or y but must use 3x+5y=11 & 2x+3y=8	M1		An equation in x only or y only
	x = 7	Al	2	A summary large $f(7, 2)$ second 2 mode
	y = -2	AI	3	Answer only of $(7, -2)$ scores 3 marks
	Total		8	
2(a)	$\frac{5+\sqrt{7}}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$	M1		
	Numerator = $15 + 5\sqrt{7} + 3\sqrt{7} + 7$	ml		Condone one error or omission
	Denominator = $9 - 7 (= 2)$	B1		Must be seen as the denominator
	(Answer =) $11 + 4\sqrt{7}$	A1	4	
(b)	$(2\sqrt{5})^2 = 20$ or $(3\sqrt{2})^2 = 18$	B1		Either correct
	their $(2\sqrt{5})^2 - (3\sqrt{2})^2$	M1		Condone missing brackets and x^2
	$(x^2 = 20 - 18)$			$x^2 = 2 \Rightarrow Bl, Ml$
	$(\Rightarrow x =) \sqrt{2}$	A1	3	$\pm \sqrt{2}$ scores A0 Answer only of 2 scores B0, M0
				Answer only of $\sqrt{2}$ scores 3 marks
	Total		7	

Q	Solution	Marks	Total	Comments
3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^4 + 40x$	M1 A1 A1	3	One of these powers correct One of these terms correct All correct (no $+ c$ etc)
(b)	$x = -2$ $\frac{dy}{dx} = 5 \times (-2)^4 + (40 \times -2)$	M1		Substitute $x = -2$ into their $\frac{dy}{dx}$
	$\frac{dy}{dx} = 5 \times 16 + (40 \times -2) = 0$			
	$\Rightarrow P$ is stationary point	A1		CSO Shown = 0 plus statement eg "st pt", "as required", "grad = 0"etc
	Or their $\frac{dy}{dx} = 0 \implies x^n = k$	(M1)		
	$x^3 = -8 \Rightarrow x = -2$	(A1)	2	CSO $x = 0$ need not be considered
(c)(i)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 20x^3 + 40$	В1√		Correct ft their $\frac{dy}{dx}$
	$= 20 \times (-2)^3 + 40$ (= -160 + 40) = -120	M1 A1	3	Subst $x = -2$ into their second derivative CSO
(ii)	Maximum (value) their c(i) answer must be < 0 Other valid methods acceptable provided "maximum" is the conclusion	E1√	1	Accept minimum if their $c(i)$ answer > 0 and correctly interpreted Parts (i) and (ii) may be combined by candidate but -120 must be seen to award A 1 in part (c)(i)
(d)	(When x = 1)y = 13	B1		
	When $x = 1$, $\frac{dy}{dx} = 5 + 40$	M1		Sub $x = 1$ into their $\frac{dy}{dx}$
	y = (their 45)x + k OE	ml		ft their $\frac{dy}{dx}$
	Tangent has equation $y - 13 = 45(x - 1)$	A1	4	CSO OE $y = 45x + c$, $c = -32$
	Total		13	

Q	Solution	Marks	Total	Comments] .	Q	Solution	Marks	Total
4(a)(i)	p(3) = 27 - 3 + 6	M1		p(3) attempted		5(a)(i)	C(5,-12)	B1	1
	(Remainder) = 30	Al				(ii)	Radius = 13 (or $\sqrt{169}$)	B1	1
	Or long division up to remainder	(MI)							
	Quotient= $x^2 + 3x + 8$ and remainder = 30	(A1)	2			(b)(i)	$(-5)^2 + 12^2$ or $25 + 144$		
	clearly stated or indicated	(AI)	Z			(-)(-)	= 169 \Rightarrow circle passes through O	B1	1
(1)	p(-2) = -8 + 2 + 6	MI		n(2) attempted + NOT long division			v ▲		
(11)	p(-2) = -3 + 2 + 0	IVII		p(-2) attempted : NOT long division		(ii)	Sketch 0 10		
	$p(-2) = 0 \Rightarrow x + 2$ is factor	Al	2	Shown = 0 plus statement			x	DI	
	Minimum statement required "factor"			May make statement <i>first</i> such as " $x+2$ is a factor if $p(-2) = 0$ "				BI	
(iii)	b = -2	B1		No working required for B1 + B1			$25 + (p + 12)^2 = 169$	M1	
	<i>c</i> = 3	B1		Try to mark first using B marks			$(p+12)=\pm 12$ $p=-24$	A1	3
	or long division/comparing coefficients	(M1)		Award M1 if B0 earned and a clear					
	() $($ $)$			Must write final answer in this form if			10.5		
	$p(x) = (x+2)(x^2 - 2x+3)$	(A1)	2	long division has been used to get A 1		(c)(i)	grad $AC = \frac{-12+7}{2}$	M1	
							5+7		
(iv)	$b^2 - 4ac = (-2)^2 - 4 \times 3$	MI		Discriminant correct from their quadratic			$=-\frac{5}{5}$	A1	2
		IVII		M0 if $b = -1$, $c = 6$ used (using cubic ean)			12		~
	$b^2 - 4ac = -8$ (or < 0)			CSO All values must be correct plus		(ii)	grad tangent = $\frac{12}{12}$	В1√	
	\Rightarrow no (other) real roots	Al		statement		()	5	DI	
	$Or (r-1)^2 + 2$	MD		Completion of square for their quadratic			$v + 7 = \frac{12}{(x+7)}$	M1	
	$(x-1)^2 = 0$	(ivii)		compretion of square for their quadrate			5 (11)		
	$(x-1)^{2}+2>0$ therefore no real roots	(A1)	2	Shown to be positive plus statement			$\Rightarrow 12x - 5y + 49 \equiv 0$	AI	3
	Or $(x-1)^2 = -2$ has no real roots			regarding no real roots			Total		11
							10(a)		11
(b)(i)	$(y_B =) 6$	B1	1	Condone (0, 6)					
	$x^4 x^2$.	M1		One term correct					
(ii)	$\frac{1}{4} - \frac{1}{2} + 6x$	Al		Another term correct					
	, <u>2</u>	AI		All correct (ignore $+ c$ or limits)					
	= 0 - (4 - 2 - 12)	m1		F(-2) attempted					
	= 10	A1	5	CSO Clearly from $F(0) - F(-2)$					
(iii)	Area of $\Delta = \frac{1}{2} \times 2 \times 6$	M1		Condone – 2 and ft their y_B value					
	2			c 9					
				Or $\int_{-2}^{-2} (3x+6) dx$ and attempt to integrate					
	= 6	A1		Must be positive allow -6 converted to +6					
	Shaded region area $= 10 - 6 = 4$	A1	3	CSO 10 must come from correct working					
					4				
	Total		17						

Comments

 $\pm\sqrt{169}$ or ± 13 as final answer scores B0

Correct arithmetic plus statement

Or doubling their y_C -coordinate

correct expression, but ft their C

terms on one side of the equation

ft "their $\frac{12}{5}$ " must be tangent and not AC OE with integer coefficients with all

Condone use of y instead of p SC B2 for correct value of p stated or

marked on diagram

Condone $\frac{5}{-12}$

 $\frac{-1}{\text{their grad } AC}$

Eg "O lies on circle", "as required" etc Freehand circle through origin and cutting positive x-axis with centre in 4th quadrant Condone value 10 missing or incorrect

Q	Solution	Marks	Total	Comments
6(a)(i)	$(x-4)^2 \qquad or p=4$	B1		ISW for $p = -4$ if $(x-4)^2$ seen
	+ 1 or $q = 1$	B1	2	
(ii)	(Minimum value is) 1	B1√	1	Correct or FT "their q " (NOT coords)
(iii)	(Minimum occurs when $x =$)4	В1√	1	Correct or FT "their p " – may use calculus Condone (p , **) for this B1 mark
(b)(i)	$(x-5)^2 = x^2 - 10x + 25$	В1	1	
(ii)	$(x-5)^2 + (7-x-4)^2$ = $(x-5)^2 + (2-x)^2$	M1		Condone one slip in one bracket May be seen under $$ sign
	= (x-3) + (3-x) = $x^{2} - 10x + 25 + 9 - 6x + x^{2}$ $AB^{2} = 2x^{2} - 16x + 34$	A1		From a fully correct expression
	$=2\left(x^2-8x+17\right)$	A1	3	AG CSO
(iii)	Minimum $AB^2 = 2 \times$ "their (a)(ii)"	M1		Or use of their $x = 4$ in expression Or use of their $B(4, 3)$ and $A(5, 4)$ in distance formula
				M0 if calculus used
				Answer only of $2 \times$ "their (a)(ii)" scores
				M1, A0
	Minimum $AB = \sqrt{2}$	A1	2	
	Total		10	

Q	Solution	Marks	Total	Comments
7(a)	$k(x^2+3)=2x+2$			
	$\Rightarrow kx^2 - 2x + 3k - 2 = 0$	В1	1	AG OE all terms on one side and $= 0$
(b)(i)	Discriminant = $(-2)^2 - 4k(3k-2)$	M1		Condone one slip (including x is one slip) Condone 2^2 or 4 as first term
	$=4-12k^2+8k$	A1		condone recovery from missing brackets
	Two distinct real roots $\Rightarrow b^2 - 4ac > 0$ $4 - 12k^2 + 8k > 0$	В1√		"their discriminant in terms of k " > 0 Not simply the statement $b^2 - 4ac > 0$
	$\Rightarrow 12k^2 - 8k - 4 < 0$			Change from > 0 to < 0 and divide by 4
	$\Rightarrow 3k^2 - 2k - 1 < 0$	A1	4	AG CSO
(ii)	(3k+1)(k-1)	M1		Correct factors or correct use of formula
	Critical values 1 and $-\frac{1}{3}$	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working
	Use of sign diagram or sketch	М1		If previous A1 earned, sign diagram or
				sketch must be correct for M1
	$\oplus_{-\frac{1}{3}} \bigcirc_{-\frac{1}{3}} \oplus_{-\frac{1}{3}} \oplus_{$			Otherwise, M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$\Rightarrow -\frac{1}{3} < k < 1 \qquad \text{or } 1 > k > -\frac{1}{3}$	A1	4	Full marks for correct final answer with or without working ≤ loses final A mark
	condone $-\frac{1}{3} < k$ AND $k < 1$ for full			
	marks but not OR or "," instead of AND			
				Answer only of $1 < k < -\frac{1}{3}$ or
				$k < -\frac{1}{3}; k < 1$ etc scores M1,A1,M0 since
				the correct critical values are evident
				Answer only of $\frac{1}{3} < k < 1$ etc where
				critical values are not both correct gets M0,M0
	Total		9	
	TOTAL		75	

General Certificate of Education Advanced Subsidiary Examination January 2010

Mathematics

MPC1

Unit Pure Core 1

Monday 11 January 2010 9.00 am to 10.30 am

For this paper you must have:
an 8-page answer book

the blue AQA booklet of formulae and statistical tables

You must not use a calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- · Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The **Examining Body** for this paper is AQA. The **Paper Reference** is MPC1.
- Answer all questions.
- · Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- · The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

· Unless stated otherwise, you may quote formulae, without proof, from the booklet.

- 1 The polynomial p(x) is given by $p(x) = x^3 13x 12$.
 - (a) Use the Factor Theorem to show that x + 3 is a factor of p(x). (2 marks)
 - (b) Express p(x) as the product of three linear factors. (3 marks)
- 2 The triangle ABC has vertices A(1, 3), B(3, 7) and C(-1, 9).
 - (a) (i) Find the gradient of AB. (2 marks)
 - (ii) Hence show that angle *ABC* is a right angle. (2 marks)
 - (b) (i) Find the coordinates of *M*, the mid-point of *AC*. (2 marks)
 - (ii) Show that the lengths of *AB* and *BC* are equal. (3 marks)
 - (iii) Hence find an equation of the line of symmetry of the triangle ABC. (3 marks)
- 3 The depth of water, y metres, in a tank after time t hours is given by

$$y = \frac{1}{8}t^4 - 2t^2 + 4t, \qquad 0 \le t \le 4$$

(a) Find:

(i)

$$\frac{\mathrm{d}y}{\mathrm{d}t};$$
 (3 marks)

(ii)
$$\frac{d^2y}{dt^2}$$
. (2 marks)

- (b) Verify that y has a stationary value when t = 2 and determine whether it is a maximum value or a minimum value. (4 marks)
- (c) (i) Find the rate of change of the depth of water, in metres per hour, when t = 1. (2 marks)
 - (ii) Hence determine, with a reason, whether the depth of water is increasing or decreasing when t = 1. (1 mark)

4 (a) Show that
$$\frac{\sqrt{50} + \sqrt{18}}{\sqrt{8}}$$
 is an integer and find its value. (3 marks)

(b) Express
$$\frac{2\sqrt{7}-1}{2\sqrt{7}+5}$$
 in the form $m + n\sqrt{7}$, where *m* and *n* are integers. (4 marks)

- 5 (a) Express (x-5)(x-3)+2 in the form $(x-p)^2+q$, where p and q are integers. (3 marks)
 - (b) (i) Sketch the graph of y = (x 5)(x 3) + 2, stating the coordinates of the minimum point and the point where the graph crosses the *y*-axis. (3 marks)
 - (ii) Write down an equation of the tangent to the graph of y = (x 5)(x 3) + 2at its vertex. (2 marks)
 - (c) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of y = (x 5)(x 3) + 2. (3 marks)
- 6 The curve with equation $y = 12x^2 19x 2x^3$ is sketched below.

The curve crosses the x-axis at the origin O, and the point A(2, -6) lies on the curve.

- (a) (i) Find the gradient of the curve with equation $y = 12x^2 19x 2x^3$ at the point A. (4 marks)
 - (ii) Hence find the equation of the normal to the curve at the point A, giving your answer in the form x + py + q = 0, where p and q are integers. (3 marks)

(b) (i) Find the value of
$$\int_{0}^{2} (12x^2 - 19x - 2x^3) dx$$
. (5 marks)

(ii) Hence determine the area of the shaded region bounded by the curve and the line *OA*. (3 marks)

- 7 A circle with centre C has equation $x^2 + y^2 4x + 12y + 15 = 0$.
 - (a) Find:

	(i) the coordinates of <i>C</i> ;	(2 marks)
	(ii) the radius of the circle.	(2 marks)
(b)	Explain why the circle lies entirely below the x-axis.	(2 marks)
(c)	The point P with coordinates $(5, k)$ lies outside the circle.	
	(i) Show that $PC^2 = k^2 + 12k + 45$.	(2 marks)
	(ii) Hence show that $k^2 + 12k + 20 > 0$.	(1 mark)
	(iii) Find the possible values of k .	(4 marks)

END OF QUESTIONS

AQA – Core 1 - Jan 2010 – Answers

Question 1:	Exam report
$p(x) = x^3 - 13x - 12$	In part (a), most candidates realised the need to find the value of
a) $p(-3) = (-3)^3 - 13 \times (-3) - 12$	that $f(-3) = 0$, to write a statement that the zero value implied
p(-3) = -27 + 39 - 12 = 0	that x + 3 was a factor. It was good to see quite a large number of candidates being aware of this but others lost a valuable mark.
-3 is a root of p, so $(x+3)$ is a factor of p	In part (b), some candidates used long division effectively to find the quadratic factor and, although this was the most successful
b) $p(x) = x^3 - 13x - 12 = (x+3)(x^2 - 3x - 4)$	method, some were confused by the lack of an x^2 term; others used the method of comparing coefficients or found the terms of
=(x+3)(x-4)(x+1)	the quadratic by inspection; a number used the Factor Theorem to find another linear factor, but seldom found both of the remaining
	factors. Very able candidates were able to write down the correct
	product of three linear factors but many more were unsuccessful
	when they tried to do this without any discernible method.

Exam report

A(1,3), B(3,7), C(-1,9) a)i) Gradient of $AB = m_{AB} = \frac{7-3}{3-1} = 2$ ii) Gradient of BC = $m_{BC} = \frac{9-7}{-1-3} = -\frac{1}{2}$ $m_{BC} \times m_{AB} = 2 \times -\frac{1}{2} = -1$

Question 2:

BC and AB are perpendicular so the traingle ABC is a right-angled triangle

b) i) Mid-point of AC =
$$M\left(\frac{1-1}{2}, \frac{3+9}{2}\right) = M(0, 6)$$

ii) $AB = \sqrt{(3-1)^2 + (7-3)^2} = \sqrt{4+16} = \sqrt{20}$
 $BC = \sqrt{(-1-3)^2 + (9-7)^2} = \sqrt{16+4} = \sqrt{20}$
length $AB = length BC$
iii) The triangle ABC is an isosceles right angled triangle of the second second

iii) The triangle ABC is an isosceles right-angled triangle

The line of symmetry is the line BM.

gradient of
$$BM = m_{BM} = \frac{7-6}{3-0} = \frac{1}{3}$$

Equation of $BM : y-7 = \frac{1}{3}(x-3)$
 $3y-21 = x-3$
 $x-3y+18 = 0$

In part (a)(i), although some made arithmetic errors when finding the gradient of AB, the majority of answers were correct. It was necessary to reduce fractions such as 4/2 in order to score full marks. In part (a)(ii), those who chose to use Pythagoras' Theorem, calculating lengths of sides to prove that the triangle was right angled, scored no marks here. The word "hence" indicated that the gradient of AB needed to be used in the proof that angle ABC was a right angle. A large number of those using gradients failed to score full marks on this part of the question. It was not sufficient to show that the gradient of BC was -1/2 and then to simply say "therefore ABC is a right angle"; an explanation that the product of the gradients was equal to -1 was required.

In part (b)(i), most candidates were able to find the correct coordinates of the mid point, although a few transposed the coordinates and others subtracted, rather than added, the coordinates before halving the results. In part (b)(ii), it was rare to see a solution with all mathematical statements correct. Too often candidates wrote things like

AB = $2^2 + 4^2 = 20 = \sqrt{20}$ and, although this was not penalised on this occasion, examiners in the future might not be quite so generous. It was surprising how many candidates did not know the distance formula. Some wrote down vectors but, unless their lengths were calculated, no marks were scored. In part (b)(iii), many candidates found an equation of the wrong line. The line of symmetry was actually BM, although some chose an equivalent method using the gradient of a line perpendicular to AC. The most successful candidates often used an equation of the form $y - y_1 = m(x - x_1)$; far too often those using y = mx + c were unable to find the correct value of c, usually because of poor arithmetic.

Question 3:	Exam report
$y = \frac{1}{8}t^4 - 2t^2 + 4t \qquad 0 \le t \le 4$	In part (a), almost all candidates were able to find the first and second derivative correctly, although there was an occasional arithmetic slip and some could not
$a)i)\frac{dy}{dt} = \frac{1}{2}t^{3} - 4t + 4$ $ii)\frac{d^{2}y}{dt^{2}} = \frac{3}{2}t^{2} - 4$	cope with the fraction term. In part (b), those who substituted t = 2 into $\frac{dy}{dx}$ did not always explain that $\frac{dy}{dx}$ = 0 is the condition for a
$b)\frac{dy}{dt}(t=2) = \frac{1}{2} \times (2)^3 - 4 \times (2) + 4$ $= 4 - 8 + 4 = 0$	stationary point. Some assumed that a stationary point occurred when t = 2, went straight to the test for maximum or minimum and only scored half the marks. It was advisable to use the second derivative test here;
At $t = 2$, $\frac{dy}{dx} = 0$, there is a stationary point.	those who considered values of $\frac{dy}{dx}$ on either side of t
$\frac{d^2 y}{dt^2}(t=2) = \frac{3}{2} \times (2)^2 - 4 = 6 - 4 = 2 > 0$ The stationary point is a MINIMUM.	 = 2 usually reached an incorrect conclusion because of the proximity of another stationary point. In part (c)(i), the concept of 'rate of change' was not understood by many who failed to realise the need to
<i>c</i>) <i>i</i>) The rate of change is $\frac{dy}{dt}(t=1) = \frac{1}{2} - 4 + 4 = \frac{1}{2} = 0.5 \text{ m/s}$	substitute t = 1 into $\frac{dy}{dx}$. Some candidates wrongly substituted t = 1 into the initial expression for y or into
$ii)\frac{dy}{dt}(t=1) > 0$, so the depth is INCREASING at $t=1$.	their expression for $\frac{d^2 y}{dx^2}$ and these candidates were
	unable to score any marks at all on this part. Even those
	who used $\frac{dy}{dx}$ sometimes made careless arithmetic
	errors when adding three numbers. In part (c)(ii), it was not enough to simply write the
	word "increasing": some explanation about $\frac{dy}{dx}$ being
	positive was also required. Some candidates erroneously found the value of the second derivative when $t = 1$ or calculated the value of y on either side of t = 1.

Question 4:	Exam report
$\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2} = 8$	In part (a), there were far more mistakes than had been
$a)\frac{\sqrt{33}+\sqrt{13}}{\sqrt{8}} = \frac{3\sqrt{2}+3\sqrt{2}}{2\sqrt{2}} = \frac{3\sqrt{2}}{2\sqrt{2}} = \frac{3}{2} = 4$	anticipated; for example, $\sqrt{50} = 2\sqrt{5}$ and $\sqrt{18} = 2\sqrt{3}$. It
$b)\frac{2\sqrt{7}-1}{2\sqrt{7}+5} = \frac{2\sqrt{7}-1}{2\sqrt{7}+5} \times \frac{2\sqrt{7}-5}{2\sqrt{7}-5} = \frac{28-10\sqrt{7}-2\sqrt{7}+5}{28-25}$	was also common to see poor cancelling such as $\frac{8\sqrt{2}}{2\sqrt{2}} = 4\sqrt{2}$
$2\sqrt{7+5}$ $2\sqrt{7+5}$ $2\sqrt{7-5}$ 20 25	. Examiners had to take care that totally incorrect work leading
$-\frac{33-12\sqrt{7}}{-11}$	to the correct answer was not rewarded.
$=\frac{3}{3}=11-4\sqrt{7}$	For instance, $\frac{\sqrt{50} + \sqrt{18}}{\sqrt{8}} = \frac{2\sqrt{5} + 2\sqrt{9}}{2\sqrt{4}} = \frac{10 + 6}{4} = 4$ was
	seen on a number of occasions.
	In part (b), it was pleasing to see that most candidates were
	tamiliar with the technique for rationalising the denominator in
	slips when multiplying out the two brackets in the numerator,
	particularly when trying to calculate $2\sqrt{7} \times 2\sqrt{7}$, many
	obtained the correct answer in the given form and it was good
	to see most getting the final step correct by dividing both terms
	by 5.

Exam report

In part (a)(i), many candidates did not realise that differentiation was required in order to find the gradient of the curve, but instead erroneously used the coordinates of O and A. Some tried to rearrange the terms but usually made sign errors in doing so. In part (a)(ii), those who had the correct gradient in part (a)(i) were usually successful in finding the correct equation of the normal, though not everyone followed through to the required form, and sign errors were common. However, most obtained at least a method mark here, unless they found the equation of the tangent. The main casualties were once again those who always use the y = mx + c form for the equation of a straight line.

In part (b)(i), most candidates were well drilled in integration and scored full marks, although some wrote down terms with incorrect denominators. The limits 2 and 0 were usually substituted correctly, but it was incredible how many could not evaluate 32 - 38 - 8 without a calculator. The correct value of the integral was -14, but far too many thought that they had to change their answer to +14 and so lost a mark. A small number of candidates differentiated or substituted into the expression for y rather than the integrated function.

In part (b)(ii), there was still some apparent confusion about area when a region lies below the x-axis. The area of the triangle was 6 units and hence the area of the shaded region was 14 - 6 = 8 but, not surprisingly, there were all kinds of combinations of positive and negative quantities seen here. It was worrying to see so many candidates failing to calculate the triangle area, with several finding the length of OA instead. Some able candidates found the equation of OA and the area under it by integration, but this was not the expected method.

 $y = 12x^{2} - 19x - 2x^{3} \qquad O(0,0) \text{ and } A(2,-6)$ $a)i)\frac{dy}{dx} = 24x - 19 - 6x^{2}$ $\frac{dy}{dx}(x=2) = m_{A} = 24 \times 2 - 19 - 6 \times 2^{2} = 5$ The gradient of the curve at A is 5. *ii*) The gradient of the normal at A is $-\frac{1}{m_{A}} = -\frac{1}{5}$ The equation of the normal: $y + 6 = -\frac{1}{5}(x-2)$ 5y + 30 = -x + 2 x + 5y + 28 = 0 $b)i)\int_{0}^{2}(12x^{2} - 19x - 2x^{3})dx = \left[4x^{3} - \frac{19}{2}x^{2} - \frac{1}{2}x^{4}\right]_{0}^{2}$ = (32 - 38 - 8) - (0) = -14 *ii*) The area comprised between the curve and the x-axis is 14. The area of the triangle is $\frac{1}{2} \times 2 \times 6 = 6$.

The area of the shaded region is 14-6 = 8

Question 6:

Question 7:	Exam report				
$x^2 + y^2 - 4x + 12y + 15 = 0$					
$(x-2)^2 - 4 + (y+6)^2 - 36 + 15 = 0$					
$(x-2)^2 + (y+6)^2 = 25$	In part (a), most candidates found at least one of the correct coordinates for the centre C, with the most common error being at least one size or a writing the centre of (4 12). However, the				
a)i) Centre $C(2,-6)$	reaction of writing the centre as $(4, -12)$. However, the				
<i>ii) radius</i> $r = \sqrt{25} = 5$	frequently seen.				
b) The distance from C to the x-axis is 6,	In part (b), most explanations involving a comparison of the y-				
which is more that the radius 5.	one mark. In order to score the second mark, some of the better				
c) $P(5,k)$ lies outside the circle	answers explained why the y-coordinate of the "highest" point of the circle was –1, but most comments were insufficient. Those				
<i>i</i>) $PC^{2} = (2-5)^{2} + (-6-k)^{2} = 9 + 36 + k^{2} + 12k$	who proved that the circle did not intersect the x-axis needed to state that the y-coordinate of the centre was negative in order to				
$PC^2 = k^2 + 12k + 45$	score full marks.				
<i>ii</i>) <i>P</i> lies outside the circle so $PC > 5$ or $PC^2 > 25$	circle equation and essentially faked the given result instead of				
we have then $k^2 + 12k + 45 > 25$	asked to "show that" then the full equation needs to be seen in				
$k^2 + 12k + 20 > 0$	the final line of the proof and an essential part of the working was to see a statement such as $PC^2 = 3^2 + (k + 6)^2$, leading to the printe				
$iii)k^2 + 12k + 20 > 0$	answer. In part (c)(ii), the word "hence" indicated that the expression for				
(k+2)(k+10) > 0	PC^{2} in part (c)(i) needed to be used. Candidates needed to realise				
critical values: -10 and -2	this result immediately leads to the given inequality. The inequality				
(k+2)(k+10) > 0 for $k < -10$ or $k > -2$	sign here caused confusion with many looking for a discriminant. In part (c)(iii), many candidates scored only the two marks				
(-10, 0) (-2, 0) 0	available for finding the critical values –2 and –10. No doubt some would have benefited from practising the solution of inequalities of this type by drawing a suitable sketch, or by familiarising themselves with the technique of using a sign diagram as indicated in previous mark schemes.				

GRADE BOUNDARIES								
Component title	Max mark	А	В	С	D	E		
Core 1 – Unit PC1	75	62	54	47	40	33		

Q	Solution	Marks	Total	Comments		Q	Solution	Marks	Total	Comments
1(a)	$p(-3)=(-3)^3-13(-3)-12$	M1		must attempt p(-3) NOT long division			$dv = 4t^3$	M1		one term correct
	27 20 12					3(a)(i)	$\frac{dy}{dt} = \frac{1}{8} - 4t + 4$	A1		another term correct
	= -27 + 39 - 12	A1	2	shown =0 plus statement			u 8	Al	3	all correct (no $+ c$ etc) unsimplified
	$=0 \implies x+3 \text{ is factor}$						12 10.2			
						(ii)	$\frac{d^2 y}{d^2} = \frac{12t^2}{2} - 4$	M1		ft one term "correct"
(h)	$(x+3)(x^2+bx+c)$	MI		Full long division, comparing coefficients			dr* 8	.1	2	
()	()			or by inspection either $b = -3$ or $c = -4$				AI	2	+c once only in question)
	$(r^2 - 3r - 4)$ obtained	A 1		or M1A1 for either $(x-4)$ or $(x+1)$			dv			dv
	(x 5x 4)obtanied	AI		clearly found using factor theorem		(b)	$t=2$; $\frac{dy}{dt}=4-8+4$	M1		Substitute $t=2$ into their $\frac{dy}{dt}$
	(x+3)(x-4)(x+1)	A1	3	CSO; must be seen as a product of 3			dr dv			dr
				factors			$\frac{dy}{dt} = 0 \implies$ stationary value	A1		CSO; shown = 0 plus statement
				NMS full marks for correct product			di 12			-2
				SC B1 for $(x+3)(x-4)($			$t=2:\frac{d^2y}{d^2}=6-4=2$	M1		$\operatorname{Sub} t = 2$ into their $\frac{d^2 y}{d^2 y}$
				or $(x+3)(x+1)($)			dt^2			dt^2
				or $(x+3)(x+4)(x-1)$ NMS			$\Rightarrow y$ has MINIMUM value	AI	4	cso
	Total		5		1					
	7-3			Δν		(c)(i)	$t=1; \frac{dy}{dt} = \frac{1}{2} - 4 + 4$	M1		Substitute $t=1$ into their $\frac{dy}{dt}$
2(a)(i)	grad $AB = \frac{1}{3-1}$	M1		Ar correct expression, possibly implied			dt = 2			dt
	=2 (must simplify 4/2)	A1	2				=	A 1	2	OF: CSO
	_ (must simplify)		-				2	AI	2	dy
	7-9 2									NMS full marks if $\frac{dy}{dt}$ correct
(ii)	grad $BC = \frac{1}{3+1} = -\frac{1}{4}$	M1		Condone one slip						u/
	5+1 4			NOT Pythagoras or cosine rule etc			dv			dv
	grad $AB \times$ grad $BC = -1$					(ii)	$\frac{dy}{dt} > 0 \Rightarrow$ (depth is) INCREASING	E1√	1	allow decreasing if states that their $\frac{dy}{dt} < 0$
	$\Rightarrow \angle ABC = 90^\circ$ or AB & BC perpendicular	A1	2	convincingly proved plus statement			u.			Reason must be given not just the word
				SC B1 for -1/(their grad AB)						increasing or decreasing
				or statement that $m_1m_2 = -1$ for			Total		12	
				perpendicular lines if M0 scored						$\sqrt{8}$ $(\sqrt{2})$ $\sqrt{25}$ $\sqrt{9}$
				1 - 1		4(a)	$\sqrt{50} = 5\sqrt{2}; \sqrt{18} = 3\sqrt{2}; \sqrt{8} = 2\sqrt{2}$	M1		or $\times \frac{1}{\sqrt{8}}$ or $\times \frac{1}{\sqrt{2}}$ or $\sqrt{\frac{1}{4}} + \sqrt{\frac{1}{4}}$
(b)(i)	M(0,6)	B2	2	B1 + B1 each coordinate correct			At least two of these correct			V ⁰ (V ²) 1 · 1
(ii)	(10^2) $(21)^2$ $(72)^2$									
	$(AB^{*}=)$ $(3-1) + (7-3)$	MI		either expression correct, simplified or			$5\sqrt{2} + 3\sqrt{2}$			any correct expression all in terms of $\sqrt{2}$
	$(BC^2 =)$ $(3+1)^2 + (7-9)^2$	IVII		unsimplified			$2\sqrt{2}$	AI		or with denominator of 8, 4 or 2
										$\sqrt{400} + \sqrt{144}$
	$AB^2 = 2^2 + 4^2$ or $BC^2 = 4^2 + 2^2$	A1		Must see either $AB^2 =$, or $BC^2 =$,						simplifying numerator eg
	or $\sqrt{20}$ found as a length						Answer = 4	A1	3	CSO
	$AB^2 = BC^2 \implies AB = BC$									
	(D. 200 - 1 DG 200)	A1	3				$(2\sqrt{7}-1)(2\sqrt{7}-5)$			
	or $AB = \sqrt{20}$ and $BC = \sqrt{20}$					(b)	$\frac{1}{(a F_{a}, z)(a F_{a}, z)}$	M1		OE
	grad $BM = \frac{7-6}{2}$	MI		ft their M coordinates			$(2\sqrt{7}+5)(2\sqrt{7}-5)$			
(iii)	3-0						$mumerator = 4 \times 7 - 2\sqrt{7} - 10\sqrt{7} + 5$	ml		expanding numerator
	or -1/(grad AC) attempted									(condone one error or omission)
	=	Al		correct gradient of line of symmetry			denominator = 3	BI		(seen as denominator)
	3			······································		L	Answer = $11 - 4\sqrt{7}$	Al	4	
	BM has equation $y = \frac{1}{x+6}$	A1	3	CSO, any correct form			Total		7	
	3		~		1					
	Total		12		1					

Q	Solution		Marks	Total	Comments
5(a)	$x^2 - 8x + 15 + 2$		B1		Terms in x must be collected, PI
	their $(x-4)^2$ $(+)$	k)	M1		ft $(x-p)^2$ for their quadratic
	$=(x-4)^2 +$	1	A1	3	ISW for stating $p = -4$ if correct expression seen
(b)(i)) ^y		М1		∪ shape in any quadrant (generous)
	17 1 0 4 x		A1		correct with min at (4, 1) stated or 4 and 1 marked on axes condone within first quadrant only
			В1	3	crosses y-axis at (0, 17) stated or 17 marked on y-axis
(ii)	y = k		M1		y = constant
	y =1		A1	2	Condone $y = 0x + 1$
(c)	Translation (not shift more etc)		F1		and no other transformation
(0)	[4]	′	M		One component correct
	with vector 1		1911		or ft either their p or q
			A1	3	csO; condone 4 across, 1 up; or two separate vectors etc
	1	Total		11	
Q	Solution	Marks	Total		Comments
6(a)(i)	$\frac{dy}{dx} = 24x - 19 - 6x^2$	M1		2 terms	correct
	dv dv	AI		all corre	eet(no + c eec)
	when $x=2, \frac{1}{dx}=48 - 19 - 24$	ml			
	\Rightarrow gradient = 5	A1	4	CSO	
(ii)	grad of normal $=-\frac{1}{5}$	ві√		ft their a	answer from (a)(i)
	$y+6 = \left(their - \frac{1}{5}\right)(x-2)$ or $y = \left(their - \frac{1}{5}\right)x + c$ and c evaluated using $x = 2$ and $y = -6$	MI		ft grad o coordin condone	of their normal using correct ates BUT must not be tangent e omission of brackets
	x + 5y + 28 = 0	A1	3	CSO; co order	ondone all on one side in different
(b)(i)	12 1 19 2 2 4	M1		one term	n correct
	$\frac{1}{3}x^{2} - \frac{1}{2}x^{2} - \frac{1}{4}x^{*}$	A1 A1	-	another all corre	term correct ect (ignore $\pm c$ or limits)
	= 32 - 38 - 8	ml		F(2) at	ttempted
	= -14	A1	5	CSO; w	vithhold A1 if changed to +14 here
(ii)	Area $\Delta = \frac{1}{2} \times 2 \times 6 = 6$	B1		condone	e - 6
	Shaded region area =14-6	M1		differen	ace of $\pm \mathbf{j} \pm \Delta $
	= 8	A1	3	CSO	
	Total		15		

Q	Solution	Marks	Total	Comments
7(a)(i)	$x = \pm 2$ or $y = \pm 6$ or $(x-2)^2 + (y+6)^2$	M1		
	C(2, -6)	A1	2	correct
(ii)	$(r^2 =)4 + 36 - 15$	M1		$(RHS =)$ their $(-2)^2 +$ their $(6)^2 - 15$
	$\Rightarrow r=5$	A 1	2	Not +5 or \$\frac{125}{25}
			~	100 10 425
(b)	explaining why $ y_c > r$; 6 > 5	E1		Comparison of y_C and r , eg $-6 + 5 = -1$ or indicated on diagram
	full convincing argument, but must have correct v_c and r	E1	2	Eg "highest point is at $y = -1$ " scores E2
	concery, and y			E1: showing no real solutions when $y = 0$
				+E1 stating centre or any point below x- axis
(c)(i)	$(PC^2 =) (5-2)^2 + (k+6)^2$			ft their C coords
	$=9+k^2+12k+36$	M1		and attempt to multiply out
	$PC^2 = k^2 + 12k + 45$	Δ1	2	AC CSO (must see PC^2 = at least once)
	1 = -k + 12k + 45	~ ~ 1	2	AG CSO (must see TC = at least once)
	$PC > r \Rightarrow PC^2 > 25$			$k^{2} + 12k + 45 > 25$
(ii)	$\rightarrow h^2 + 12h + 20 > 0$	B1	1	AG Condone $\xrightarrow{k^2} 12k + 20 \ge 0$
	$\Rightarrow \kappa +12\kappa +20 > 0$			$\Rightarrow k + 12k + 20 > 0$
(111)	(k+2)(k+10)	MI		Correct factors or correct use of formula
(111)	(n+2)(n+10)	1911		May score M1 A1 for correct critical
	k = -2, k = -10 are critical values	A1		values seen as part of incorrect final
				answer with or without working.
	Use of skotsh or sign diagram:			
	Ose of sketch of sign diagram.			
		M		If previous A1 earned, sign diagram or
	-10 -2	MI		M1 may be earned for an attempt at the
	+ _ +			sketch or sign diagram using their critical
	-10 -2			values.
	$\Rightarrow k > -2, k < -10$	Δ1	4	$k \ge -2$, $k \le -10$ loses final A mark
		~	-	*> 2, *< 10 10505 mm 11 mm
	Condone $k > 2$ OR $k < -10$ for full			Answer only of $k > -2$, $k > -10$ etc
	marks but not AND instead of OR			scores M1, A1, M0 since the critical
	Take Gralling of their energy			values are evident.
	Take final line as mell answer			Answer only of $k > 2$, $k < -10$ etc scores
				M0, M0 since the critical values are not
				both correct.
	Total		13	
	TOTAL		75	

General Certificate of Education Advanced Subsidiary Examination June 2010

Mathematics

MPC1

Unit Pure Core 1

Monday 24 May 2010 1.30 pm to 3.00 pm

For this paper you must have:
the blue AQA booklet of formulae and statistical tables.

You must not use a calculator.

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- · Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is not permitted.

Information

- · The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet. The trapezium ABCD is shown below.

1

The line AB has equation 2x + 3y = 14 and DC is parallel to AB.

- (a) Find the gradient of AB. (2 marks)
- (b) The point D has coordinates (3, 7).
- (i) Find an equation of the line DC. (2 marks)
- (ii) The angle *BAD* is a right angle. Find an equation of the line *AD*, giving your answer in the form mx + ny + p = 0, where *m*, *n* and *p* are integers. (4 marks)
- (c) The line *BC* has equation 5y x = 6. Find the coordinates of *B*. (3 marks)

2 (a) Express $(3 - \sqrt{5})^2$ in the form $m + n\sqrt{5}$, where m and n are integers. (2 marks)

(b) Hence express
$$\frac{(3-\sqrt{5})^2}{1+\sqrt{5}}$$
 in the form $p+q\sqrt{5}$, where p and q are integers.
(4 marks)

3 The polynomial p(x) is given by

$$p(x) = x^3 + 7x^2 + 7x - 15$$

- (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x). (2 marks)
- (ii) Express p(x) as the product of three linear factors. (3 marks)
- (b) Use the Remainder Theorem to find the remainder when p(x) is divided by x 2. (2 marks)
- (c) (i) Verify that p(-1) < p(0). (1 mark)
- (ii) Sketch the curve with equation $y = x^3 + 7x^2 + 7x 15$, indicating the values where the curve crosses the coordinate axes. (4 marks)

The curve with equation $y = x^4 - 8x + 9$ is sketched below.

The point (2, 9) lies on the curve.

4

(a) (i) Find
$$\int_0^2 (x^4 - 8x + 9) \, dx$$
. (5 marks)

- (ii) Hence find the area of the shaded region bounded by the curve and the line y = 9. (2 marks)
- (b) The point A(1, 2) lies on the curve with equation y = x⁴ 8x + 9.
 (i) Find the gradient of the curve at the point A. (4 marks)
 (ii) Hence find an equation of the tangent to the curve at the point A. (1 mark)
- 5 A circle with centre C(-5, 6) touches the y-axis, as shown in the diagram.

C.

$$(x-a)^2 + (y-b)^2 = r^2$$
 (3 marks)

x

(b) (i) Verify that the point P(-2, 2) lies on the circle. (1 mark)

0

- (ii) Find an equation of the normal to the circle at the point *P*. (3 marks)
- (iii) The mid-point of PC is M. Determine whether the point P is closer to the point M or to the origin O. (4 marks)

6

The diagram shows a block of wood in the shape of a prism with triangular cross-section. The end faces are right-angled triangles with sides of lengths 3x cm, 4x cm and 5x cm, and the length of the prism is y cm, as shown in the diagram.

The total surface area of the five faces is 144 cm^2 .

- (a) (i) Show that $xy + x^2 = 12$. (3 marks)
 - (ii) Hence show that the volume of the block, $V \text{ cm}^3$, is given by

$$V = 72x - 6x^3 \tag{2 marks}$$

(b) (i) Find
$$\frac{dV}{dx}$$
. (2 marks)

(ii) Show that V has a stationary value when x = 2. (2 marks)

- (c) Find $\frac{d^2 V}{dx^2}$ and hence determine whether V has a maximum value or a minimum value when x = 2. (2 marks)
- 7 (a) (i) Express $2x^2 20x + 53$ in the form $2(x p)^2 + q$, where p and q are integers. (2 marks)
 - (ii) Use your result from part (a)(i) to explain why the equation $2x^2 20x + 53 = 0$ has no real roots. (2 marks)
 - (b) The quadratic equation $(2k-1)x^2 + (k+1)x + k = 0$ has real roots.
 - (i) Show that $7k^2 6k 1 \le 0$. (4 marks)
 - (ii) Hence find the possible values of k. (4 marks)

END OF QUESTIONS

AQA – Core 1 - June 2010 – Answers

Question 1: Exam report $AB: 2\overline{x+3} \, \overline{y=14}$ $y = -\frac{2}{3}x + \frac{14}{3}$ *a*) 3y = -2x + 14Part (a) Many candidates were unable to make y the subject of the equation 2x+3y = 14 and, as a result, many incorrect answers for the gradient The gradient of AB is $-\frac{2}{2}$. were seen. Those who tried to use two points on the line to find the gradient were rarely successful. b)i) D(3,7) and Dc is paralle to AB so $m_{DC} = m_{AB} = -\frac{2}{2}$ Part (b)(i) Those candidates who obtained a value for the gradient in part (a) were usually aware that the line *DC* had the same gradient. The equation of DC: $y-7 = -\frac{2}{3}(x-3)$ Those using *y=mx+c* often made errors when finding the value of *c*, whereas those writing 3y - 21 = -2x + 6down an equation of the form $y - y_1 = m(x - x_1)$ usually scored full marks. 2x + 3y = 27Part (b)(ii) Most candidates realised that the product of the gradients of perpendicular lines *ii*) The line AD is perpendicular to AB so $m_{AD} = -\frac{1}{m_{aD}} = \frac{3}{2}$ should be -1 and credit was given for using this result together with their answer from part (a). Careless arithmetic prevented many from The equation of AD: $y-7 = \frac{3}{2}(x-3)$ obtaining the final equation in the given form with integer coefficients. Part (c) Although many correct answers for the 2y-14 = 3x-9coordinates of B were seen, the simultaneous 3x - 2y + 5 = 0equations defeated a large number of candidates. No credit was given for mistakenly c) The point B is the intersection of AB and BC. using their equation from part (b)(i) or part (b)(ii) instead of the correct equation for AB, clearly Solve simultaneously $\begin{cases} 2x+3y=14\\ -x+5y=6 \end{cases} (\times 2) \begin{cases} 2x+3y=14\\ -2x+10y=12 \end{cases}$ printed below the diagram. Many did not recognize the need to use the equation of AB at all. It was common to see x = 0 or y = 013y = 26 so y = 2substituted into the equation for BC and then solved to obtain the other coordinate. and x = 5y - 6 = 10 - 6 = 4The coordinates of B are (4, 2).

Question 2:	Exam report
$a)(3-\sqrt{5})^{2} = 9+5-6\sqrt{5} = 14-6\sqrt{5}$ $b)\frac{(3-\sqrt{5})^{2}}{1+\sqrt{5}} = \frac{(3-\sqrt{5})^{2}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{(14-6\sqrt{5})(1-\sqrt{5})}{1-5}$ $= \frac{14-14\sqrt{5}-6\sqrt{5}+30}{-4} = \frac{44-20\sqrt{5}}{-4}$ $= -11+5\sqrt{5}$	Part (a) Many candidates were successful with this part, although sign errors and arithmetic slips were common. Part (b) Most candidates recognised the first crucial step of multiplying the numerator and denominator by $1 - \sqrt{5}$ and many obtained $\frac{44 - 20\sqrt{5}}{-4}$, but then inaccurate evaluation of the numerator or poor cancellation led to many failing to obtain the correct final answer.

Question 3:

 $p(x) = x^3 + 7x^2 + 7x - 15$ a)i) $p(-3) = (-3)^3 + 7 \times (-3)^2 + 7 \times (-3) - 15$ = -27 + 63 - 21 - 15 = 63 - 63 = 0-3 is a root of p, so (x+3) is a foacto of p *ii*) $x^{3} + 7x^{2} + 7x - 15 = (x+3)(x^{2} + 4x - 5)$ =(x+3)(x+5)(x-1)b) The remainder of the division by (x-2) is p(2) $p(2) = 2^3 + 7 \times 2^2 + 7 \times 2 - 15$ p(2) = 8 + 28 + 14 - 15 = 35c)i) p(-1) = -1 + 7 - 7 - 15 = -16p(0) = -15p(-1) < p(0)*ii*) The curve crosses the x - axis at (-3,0), (-5,0), (1,0)The curve crosses the y-axis at (0, -15)

Exam report

Part (a)(i) Those who used long division instead of the Factor Theorem scored no marks. Most candidates realised the need to show that p(-3) = 0. However quite a few omitted sufficient working such as p(-3) =-27 + 63 - 21 - 15 = 0, together with a concluding statement about x + 3 being a factor, and therefore failed to score full marks. Part (a)(ii) Many candidates have become quite skilled at writing down the correct product of a linear and quadratic factor and then writing p(x) as the product of three linear factors and these scored full marks. Others used long division or the Factor Theorem effectively but lost a mark for failing to write p(x) as a product of linear factors. Others tried methods involving comparing coefficients, but often after several lines of working were unable to find the correct values of the coefficients because of poor algebraic manipulation. Speculative attempts to write down p(x) immediately as the product of three factors were rarely successful. Part (b) Those candidates who used the Remainder Theorem were

usually able to find the correct remainder, though once again arithmetic errors abounded. Those who used long division, synthetic division or other algebraic methods again scored no marks since the question specifically asked candidates to use the Remainder Theorem. Part (c)(i) This part of the question was intended to help candidates when sketching the curve. Those who found the correct values of p(-1) and p(0) usually scored the mark but in future a carefully written proof may be called for. Here again many arithmetic errors were seen. Part (c)(ii) The sketch was intended to bring various parts of the question together but even very good candidates ignored the hint from part (c)(i) and showed a minimum point on the y-axis. A few lost the final mark when their curve stopped on the x-axis. Confusion between roots and factors spoiled many sketches and several showed the y-intercept of -15 on the positive y-axis. It was disappointing that many candidates did not recognize the shape of a cubic curve at all.

Exam report

Part (a)(i) Most candidates were able to integrate the expression with only the weakest candidates unable to do this basic integration. Poor notation was used with many including the integral sign after integrating. It would have been thought that this bad habit would have been corrected by the time of the examination. Many candidates did not find the actual value of the definite integral until part (a)(ii) and on this occasion full credit was given. It was alarming that many candidates who had correct fractions were unable to combine these to give a value of 8.4 or equivalent. Weaker candidates were seen substituting values into the expression for y or

 $\frac{dy}{dt}$ showing a complete lack of understanding. dx

Part (a)(ii) It was necessary to consider a rectangle of area 18 and then to subtract their answer from part (a)(i) in order to obtain the area of the shaded region. Many believed that the area of the rectangle was 9 and others failed to do this basic subtraction correctly, even when their answer to part (a)(i) was correct.

Part (b)(i) Many candidates did not realise the need to find $\frac{dy}{dy}$ before

substituting the value x = 1 and thus failed to score some easy marks for finding the gradient of the curve. A substantial number of candidates tried to calculate the gradient of the straight line between two points on the curve and scored no marks for this.

Part (b)(ii) Unfortunately many candidates tried to find the equation of the normal instead of the tangent to the curve. Otherwise, since there was a generous follow through in this part of the question, most were able to score this final mark. The only exceptions were those who insisted on using y = mx + c where poor arithmetic often prevented them from finding a value for c.

Question 4:

$$y = x^{4} - 8x + 9$$

$$a)i) \int_{0}^{2} (x^{4} - 8x + 9) dx = \left[\frac{1}{5}x^{5} - 4x^{2} + 9x\right]_{0}^{2}$$

$$= \left(\frac{32}{5} - 16 + 18\right) - (0) = 8\frac{2}{5}$$

(0, -15)

-20

(-1, -16)

ii) The area of the shaded region is

area rectangle – area beneath the curve

$$9 \times 2 - 8\frac{2}{5} = 9\frac{3}{5}$$

b A(1,2) lies on the curve.

i) The gradient of the curve at a is
$$\frac{dy}{dx}(x=1)$$
.

$$\frac{dy}{dx} = 4x^3 - 8$$
 and

for
$$x = 1, m_A = 4 \times 1^3 - 8 = -4$$

ii) The equation of the tangent at A is :

$$y - 2 = -4(x - 1)$$

Ouestion 5:	Exam report						
a)Centre of the circle $C(-5,6)$	Part (a) Most candidates obtained the correct left hand side of the						
the circle touches the v-axis, the radius is 5.	circle equation but many failed to recognize that the radius was 5.						
The equation of the circle is	Alarmingly many thought that r was equal to -5 or wrote down the right hand side of the equation as Γ^2 , thus displaying a						
$(x+5)^{2} + (y-6)^{2} = 5^{2}$	fundamental misunderstanding of the idea of radius as a length. Part (b)(i) Most who had the correct circle equation were able to						
b)i)P(-2,2)	verify that the circle passed through the point P, although those who neglected to make a statement as a conclusion to their						
$(-2+5)^2 + (2-6)^2$	calculation failed to earn this mark. Part (b)(ii) The negative signs caused problems for many when						
$= 3^{2} + (-4)^{2} = 9 + 16 = 25 = 5^{2}$	finding the gradient of PC and only the better candidates obtained the correct value. Many candidates then found the negative						
P lies on the circle.	reciprocal of this fraction instead of using the gradient of PC to find						
<i>ii</i>) The normal to the circle at P is the line CP	the normal to the circle at the point P. Part (b)(iii) There were basically two approaches to this question,						
Gradient of $CP = m_{CP} = \frac{2-6}{-2+5} = \frac{-4}{3}$	although some candidates were merely guessing and no credit was given for a correct answer without supporting working. The most						
The equation of the normal is $: y - 2 = -\frac{4}{3}(x+2)$	made errors in finding the coordinates of M and then struggled with the fractions when squaring and adding to find the length of						
3y-6 = -4x-8	PM; whereas others noted that the length of PM was simply half the radius. A simple comparison with the length of PO led to the						
4x + 3y = -2	correct conclusion.						
iii) The distance $PM = \frac{1}{r} = 2.5$	The second approach was essentially one using vectors or the differences of coordinates, but this method was not always						
$\frac{1}{2}$	explained correctly and left examiners in some doubt as to						
The distance $PQ = \sqrt{(-2)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2} > 2.5$	whether candidates really understood what they were doing. The						
	reasoned that these vectors had the same y-component but						
$(\sqrt{2} \approx 1.4)$	different x-components and it was then easy to deduce that P was						
The point P is closer to M.	closer to the point M.						
Question 6:	Evam report						
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)	Examineport						
$S = \frac{1}{2} \times 3x \times 4x + \frac{1}{2} \times 3x \times 4x + 5x \times y + 4x \times y + 3x \times y$	realised that they had to add together the areas of the various faces. Once they had the correct expression for the total surface area most candidates were able to obtain the printed result.						
$S = 12x^2 + 12xy = 144cm^2 (\div 12)$	There was clearly some fudging on the part of weaker candidates and they could earn little more than a single method mark.						
$x^2 + xy = 12 \tag{1}$	Part (a)(ii) This was surprisingly one of the biggest discriminators on the paper with only the best candidates being able to obtain						
<i>ii</i>) The volume $V = \left(\frac{1}{2} \times 3x \times 4x\right) \times y = 6x^2 y$	the correct expression for V. Trying to make y the subject of the equation from part (a)(i) caused problems for many who took						
Making y the subject in (1): $y = \frac{12 - x^2}{x}$	this approach; others substituted for xy in the formula $V = 6x(xy)$ and were often more successful. Once again it was quite common to see totally incorrect expressions being miraculously						
<i>Now</i> , substituting y in V, we have	Part (b)(i) Most candidates scored full marks for this basic						
$12 - r^2$	differentiation although it was not always clearly identified as						
$V = 6x^2 y = 6x^2 \times \frac{12}{x} = 72x - 6x^3$	$\frac{dV}{dV}$ in their working.						
dV \sim	dx						
$b(i)\frac{dx}{dx} = 72 - 18x^2$	Part (b)(ii) Most substituted x = 2 into their expression for $\frac{dV}{dx}$						
<i>ii</i>)When $x = 2$, $\frac{dV}{dx} = 72 - 18 \times 2^2 = 72 - 72 = 0$	and found the value to be zero. It was then necessary to make a statement about the implication of there being a stationary						

There is a stationary point when x = 2.

c)
$$\frac{d^2V}{dx^2} = -36x$$
 and when $x = 2$, $\frac{d^2V}{dx^2} = -72 < 0$
For $x = 2$, The value of V is a MAXIMUM.

value in order to score full marks. Part (c) Some made a sign error when finding the second derivative, but the majority of candidates scored full marks in this part. Credit was given if the correct conclusion was drawn from the sign of their second derivative, provided no further arithmetic errors occurred.

Question 7:	Exam report
$a)i) 2x^{2} - 20x + 53 = 2(x^{2} - 10x) + 53$	
$=2[(x-5)^2-25]+53$	
$= 2(x-5)^2 - 50 + 53$	
$=2(x-5)^2+3$	
<i>ii</i>) $2x^2 - 20x + 53 = 0$ is equivalent to	
$2(x-5)^2 + 3 = 0 \text{ or } (x-5)^2 = -\frac{3}{2}$	Part (a)(i) Candidates did not seem well drilled in completing the square when the coefficient of x^2 is not equal to 1. It was very rare to see a correct answer here although a few did realise that $p = 5$.
For all x, $(x-5)^2 \ge 0$ so there is no solution.	Clearly further practice is required at this type of question. Part (a)(ii) Only the more able candidates were able to reason
b) $(2k-1)x^{2} + (k+1)x + k = 0$ has real roots,	sufficiently well using the result from part (a)(i) as well as providing a concluding statement. No credit was given for using the
This means that the discriminant ≥ 0	discriminant to show that the equation had no real roots since the
i.e $(k+1)^2 - 4 \times (2k-1) \times (k) \ge 0$	Part (b)(i) This kind of question has been set several times before
$k^2 + 2k + 1 - 8k^2 + 4k \ge 0$	and the usual errors were seen. Candidates should state the condition for real roots ($b^2 - 4ac \ge 0$) and find an expression in
$-7k^2 + 6k + 1 \ge 0 \qquad (\times -1)$	terms of k for the discriminant using the correct inequality
$7k^2 - 6k - 1 \le 0$	negative number. Again, many candidates would benefit from
$iii)7k^2 - 6k - 1 \le 0$	practising this technique, using brackets where appropriate to avoid algebraic errors.
$(7k+1)(k-1) \le 0$	Part (b)(ii) The factorisation of the quadratic was usually correct, but several candidates wrote down one of the critical values as 1/7.
critical values $-\frac{1}{7}$ and 1	Most found critical values and either stopped or immediately tried to write down a solution without any working. Candidates are strongly advised to use a sign diagram or a sketch graph showing their critical values when solving a guadratic inequality.
$(7k+1)(k-1) \le 0 \text{ for } -\frac{1}{7} \le k \le 1$	
-0.5 0 0.5 1 1. (-0.14 0) (1, 0) -2 -	

GRADE BOUNDARIES									
Component title	Max mark	А	В	С	D	E			
Core 1 – Unit PC1	75	63	55	47	40	33			

Q	Solution	Marks	Total	Comments	Q	Solution	Marks	Total	Comments
1(a)	$v = \frac{14}{2} = \frac{2}{r}$	MI		Attempt at v =	3(a)(i)	$p(-3) = (-3)^3 + 7(-3)^2 + 7(-3) - 15$	M1		p(-3) attempted; NOT long division
1(a)	^y = 3 3 ⁿ	111		Precimpt at y =		= -27 + 63 - 21 - 15			This line alone implies M1
	Gradient $AB = -\frac{2}{2}$	A1	2	Condone error in rearranging equation		$p(-3)=0 \implies (x+3 \text{ is}) \text{ factor}$	A1	2	p(-3) shown = 0 plus statement
(b)(i)	y - 7 ="their grad AB " $(x - 3)$	М1		or $2x+3y = k$ and $sub x = 3, y = 7$ or $y = mx + c$, $m = their grad AB$ and	(ii)	$p(x) = (x+3)(x^2 + px + q)$	M1		Full long division, comparing coefficients or by inspection either $p = 4$ or $q = -5$
	2			attempt to find c using $x = 3, y = 7$		(Quadratic factor) $(x^2 + 4x - 5)$	A1		<i>clearly</i> found using Factor Theorem
	$y - 7 = -\frac{2}{3}(x - 3)$ OE	A1	2	$2x+3y = 27$, $y = -\frac{2}{3}x+9$ etc		(p(x) =) (x+3)(x-1)(x+5)	A1	3	Must be seen as a product of 3 factors
(ii)	$m_1 m_2 = -1$	M1		or negative reciprocal (stated or used PI)					Wills full marks for confect product
	\Rightarrow grad $AD = \frac{3}{2}$	A1√		FT their grad AB					SC B2 for 3 correct factors listed NMS SC B1 for $(x + 3)(x - 1)()$ or $(x + 3)(x + 5)()$
	$y-7=\frac{3}{2}(x-3)$	A1		Any correct equation unsimplified					or $(x+3)(x+1)(x-5)$
	$\Rightarrow 3x - 2y + 5 = 0$	A1	4	Integer coefficients; all terms on one side, condone different order or multiples. eg $0 = 4y - 6x - 10$	(b)	$p(2) = 2^{3} + 7 \times 2^{2} + 7 \times 2 - 15$ or (2+3)(2-1)(2+5)	M1	2	NOT long division; must be p(2) May use "their" product of factors
(0)	2x + 3y = 14 and $5y = x = 6$ used					(Remainder) = 35	Alcso	2	
(0)	with x or y eliminated (generous)	M1		2(5y-6)+3y=14 etc	(c)(i)	p(-1) = -16; p(0) = -15	B1	1	Values must be evaluated correctly
	$\begin{array}{c} x = 4 \\ y = 2 \end{array}$	A1 A1	3	B(4,2) full marks NMS		$\Rightarrow p(-1) < p(0)$			
	Total		11		(ii)		D1		wintercent 15 mericed or (0, 15) stated
2(a)	$\left(3 - \sqrt{5}\right)^2 = 9 - 6\sqrt{5} + \left(\sqrt{5}\right)^2$	M1		Allow one slip in one of these terms M0 if middle term is omitted		ý í /	ы		y- intercept =15 marked of (0,-15) stated
	$=14 - 6\sqrt{5}$	A1	2				M1		Cubic graph – 1 max, 1 min
	$(a, E)^2$			F .		-5 -3 1 x	A1		\bigwedge shape with -5, -3, 1 marked
(b)	$\frac{(3-\sqrt{5})}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$	M1		or× $\frac{\sqrt{5}-1}{\sqrt{5}-1}$		/-15	A1	4	Graph correct with minimum point to left of y-axis and going beyond both -5 and 1
						Cannot score M1A0A1 but can score			Previous A1 must be scored
	$14 + 6\sqrt{5}\sqrt{5} - 6\sqrt{5} - 14\sqrt{5}$	m1		Expanding <i>their</i> numerator		Total		12	
	(=44−20√5)			(condone one error or offission)		•			•
	(Denominator) = -4	B1		Must be seen as denominator					
	$(\text{Answer}) = -11 + 5\sqrt{5}$	A1	4	Accept "answer $=5\sqrt{5}-11$ "					
	Total		6		1				

Q	Solution	Marks	Total	Comments
4(a)(i)	$\frac{x^5}{5} - \frac{8}{2}x^2 + 9x$	M1 A1		One term correct Another term correct All correct (may have $\pm c$)
	$\frac{32}{5} - 16 + 18$	m1		F(2) attempted
	$=8\frac{2}{5}$	A1	5	$\frac{42}{5}$, 8.4
(ii)	Shaded area = $18 - their integral$	M1		PI by $18 - (a)(i)$ NMS
	$=9\frac{5}{5}$	A1	2	$\frac{48}{5}$, 9.6 NMS full marks
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3 - 8$	M1 A1		One term correct All correct (no $+ c$ etc)
	$x = 1 \Rightarrow \frac{dy}{dx} = 4 - 8$	m1		sub $x = 1$ into their $\frac{dy}{dx}$
	(Gradient of curve $) = -4$	Alcso	4	No ISW
(ii)	y-2 = -4(x-1); y = -4x+c, c=6	В1√	1	any correct form; FT <i>their</i> answer from (b)(i) but must use $x = 1$ and $y = 2$
	Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$(-z)^2 (-z)^2 - z^2$	M1		One term correct LHS
- ()	$(x+5)^{-} + (y-6)^{-} = 5^{-}$	Al D1	2	LHS all correct
		DI	3	KHS correct. condone – 25
(b)(i)	sub $x = -2$, $y = 2$ into circle equation			Circle equation must be correct
	$3^{2} + (-4)^{2} = 25$			-
	\Rightarrow lies on circle			
		BI	1	Must have concluding statement
	4			- 4
(ii)	$Grad PC = -\frac{1}{3}$	B1		Condone -3
	Normal to circle has equation			
	y-6 = 'their gradient PC'(x+5)	M1		M0 if tangent attempted or incorrect
	or $v-2 = 'their gradient PC'(x+2)$			coordinates used
	4			
	$y-6 = -\frac{1}{3}(x+5)$			Any correct form eg $4x+3y+2=0$
	4(2)	Alcso	3	$y = -\frac{4}{2}x + c, c = -\frac{2}{2}$
	or $y-2 = -\frac{1}{3}(x+2)$			3 3
				Alternative 1
(iii)	$PM = \frac{1}{2} \times radius$	M1		Attempt at $M\left(-\frac{7}{2},4\right)$ with at least one
	2			(2)
				$_2$ 9 25
	= 2.5	Alcso		$PM^2 = \frac{-}{4} + 4 = \frac{-}{4}$
	$PO = \sqrt{8}$	B1		$PO^2 = 4 + 4 = 8$
	P is closer to the point M	Elcso	4	Statement following correct values
				Alternative 2
				Attempt at $M\left(-\frac{7}{2}, 4\right)$ with at least one
		(M1)		correct coordinate and attempt at vectors
				or difference of coordinates
		(Alcso		$\overline{PM} = \begin{pmatrix} -1.5 \end{pmatrix} OF$
)		
		(E1cso)		P is closer to the point M
		(E1)	(4)	Components of their \overline{PM} and \overline{OP}
	17 - 4 - 1	()	11	considered – totally independent of M1
	1 otal	ļ	11	ļ

-				~ .	1					
Q	Solution	Marks	Total	Comments	Q		Solution	Marks	Total	Comments
6(a)(i)	$S.A. = 4xy + 5xy + 3xy + 6x^2 + 6x^2 OE$	M1		Condone one slip or omission	7(a)(i)	$2(x-5)^2$	B1		p = 5
	$=12xy+12x^{2}$	A1					+ 3	B1	2	q = 3
	$144 = 12xy + 12x^2$			Must see this line		(ii)	Stating both $(x-5)^2 \ge 0$ and $3 > 0$	M1		FT their $p \& q$, but must have $q > 0$
	$\Rightarrow xy + x^2 = 12$	A1cso	3	AG			$\Rightarrow 2x^2 - 20x + 53 > 0 \text{ or } 2(x-5)^2 + 3 > 0$			
							$\Rightarrow 2r^2 - 20r + 53 = 0$ has no real roots	Alcso	2	Must have statement and correct $p \& q$.
(1)	$(Volume =)$ $\frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = 0E$	MI					$\rightarrow 2x$ $20x + 05 = 0$ has no real roots		_	······································
(1)	$(\text{volume} -) \frac{1}{2} - $	1111			(h	m	$b^2 - 4ac = (k+1)^2 - 4k(2k-1)$	M1		Condone one slip (including x is one slip)
	$(12 - r^2)$			Must see $(y-)\frac{(12-x^2)}{x^2}$ or $xy=12-x^2$		~	$= -7k^2 + 6k + 1$	A 1		Condone recovery from missing brackets
	$= 6x^2 \times \frac{(12 - x)}{x}$			$\begin{array}{c} x \\ x \\ x \end{array}$			$= -7\pi + 6\pi + 1$	AI		Their discriminant > 0 (in terms of <i>l</i>)
				for Al			The from the formation $real = 100000000000000000000000000000000000$	DIA		Then discriminant ≥ 0 (in terms of k)
	$(V=)72x-6x^3$	A1	2	from answer			$-7k^{-}+6k+1 \ge 0$	BI∧		Need not be simplified & may earn earlier
				nom unswor			$\Rightarrow 7k^2 - 6k - 1 \leq 0$	Alcso	4	AG (must see sign change)
(h)(h)	$dV = 72 + 18x^2$	M1		One term correct						
(0)(1)	$\frac{1}{dx} = 72 - 18x$	A1	2	All correct (no $+ c$ etc)		(ii)	(7k+1)(k-1)	M1		Correct factors or correct use of formula
							Critical values $k = 1$	A 1		May score M1, A1 for correct critical
(ii)	$x=2 \Rightarrow \frac{dV}{dt} = 72 - 18 \times 2^2$	M1		Substitute $x=2$ into their $\frac{dV}{dx}$			Critical values $k = 1, -\frac{1}{7}$	AI		answer with or without working
	dx			dx						and we will of white a working.
	$\Rightarrow \frac{dV}{dv} = 72 - 72 = 0$						Use of sign diagram or sketch	M1		If previous A1 earned, sign diagram or
	dx \rightarrow stationary (value when $r = 2$)	A1	2	Shown = 0 plus statement						sketch must be correct for M1
	\Rightarrow stationally (value when $x = 2$)		-	Statement may appear first			$\oplus_{-\frac{1}{7}} \ominus_{-\frac{1}{7}} \ominus_{-\frac{1}{7}} \oplus_{-\frac{1}{7}} \oplus_{$			
				Statement may appear mist						Otherwise M1 may be earned for an
(1)	$d^2 V$ 26 π	DIA		ET their dV						attempt at the sketch or sign diagram
(0)	$\frac{1}{dx^2} = -36x$	DIV		$\frac{dx}{dx}$			$-\frac{1}{7}$ 1			using <i>their</i> critical values.
	$\frac{d^2 V}{d^2} = -72$ or when $x = 2 \Rightarrow \frac{d^2 V}{d^2} < 0$						$-\frac{1}{7} \leq k \leq 1$	A1	4	$\left(-\frac{1}{2} < k < 1\right), \left(k \ge -\frac{1}{2} \text{ OR } k \le 1\right),$
	dx^2 dx^2			-2			7			
	⇒maximum	E1√	2	FT their $\frac{d^2 V}{d^2}$ value when $x = 2$			Full marks for correct answer NMS			$\left(k \ge -\frac{1}{7}, k \le 1\right)$ score M1A1M1A0
				dx ⁻ with appropriate conclusion						
	Total		11				Condone $-\frac{2}{2}$ throughout			Answer only of $k < -\frac{1}{7}$, $k < 1$ etc
+		1		•	1		14 Intolghout			scores M1. A1. M0 since the critical
							Condone $k \ge -\frac{1}{k}$ AND $k \le 1$ for full			values are evident.

Condone $k \ge -\frac{1}{7}$ AND $k \le 1$ for full

Take their final line as their answer.

Total

TOTAL

marks

Answer only of $\frac{1}{7} \leq k \leq 1$ etc

are not both correct.

12

75

scores M0, M0 since the critical values

