Quadratic functions

VOCABULARY

- A quadratic function can be written $f(x)=a x^{2}+b x+c$, where a, b, and c are 3 real numbers.
- The graph of a quadratic function is called a PARABOLA
if $a>0$, the parabola is \cup-shaped
if $a<0$, the parabola is \cap-shaped
- The maximum or minimum point of the parabola is called the VERTEX.
- The parabola is symmetrical around the 'vertical' line going through the vertex.

COMPLETED SQUARE FORM

$-a x^{2}+b x+c$ can be re-arrange into $a(x+p)^{2}+q$.
This is the completed square form

- The vertex of the parabola is $V(-p, q)$.
- The axis of symmetry of the parabola has equation $x=-p$.
-Transformation: $y=x^{2}$ is mapped onto $y=(x+p)^{2}+q$ by a translation with vector $\left[\begin{array}{l}-p \\ q\end{array}\right]$

QUADRATIC EQUATIONS

A quadratic equation can be written $a x^{2}+b x+c=0$

- The discriminant is the value of the expression $b^{2}-4 a c$.

> | if $b^{2}-4 a c<0$, there is no solution. |
| :--- |
| if $b^{2}-4 a c=0$, there is a repeated/double root. |
| if $b^{2}-4 a c>0$, there are two solutions/roots: $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ |

- The roots are the values of x, where the parabola crosses the x-axis.
$b^{2}-4 a c>0$
$f(x)=a x^{2}+b x+c$
$f(x)=a(x-\alpha)(x-\beta)$

$b^{2}-4 a c=0$
$f(x)=a x^{2}+b x+c$
$f(x)=a(x-\alpha)^{2}$
The parabola is TANGENT
to the x-axis

$b^{2}-4 a c<0$
$f(x)=a x^{2}+b x+c$
$f(x)$ can't be factorised
The parabola does not cross the x-axis.

