Polynomials

Algebraic division

We use algebraic division to divide algebraic expression:
$\left(x^{3}+3 x^{2}-5 x+2\right) \div(x+2)$

$$
\text { Conclusion: } x^{3}+3 x^{2}-5 x+2=(x+2)\left(x^{2}+x-7\right)+16
$$

The remainder and factor theorem.
a) The remainder theorem.

$$
\text { The remainder of the division of } f(x) \text { by }(x-a) \text { is } f(a) \text {. }
$$

Example: $f(x)=x^{3}+2 x-5 x+3$

- If we divide $f(x)$ by $(x-2)$, the remainder is $f(2)=(2)^{3}-2 \times 2-5 \times 2+3=-3$
- If we divide $f(x)$ by $(2 x-3)$, the remainder is $f\left(\frac{3}{2}\right)=\left(\frac{3}{2}\right)^{3}-2 \times \frac{3}{2}-5 \times \frac{3}{2}+3=-\frac{33}{8}$ The remainder of the division of $f(x)$ by $(a x-b)$ is $f\left(\frac{b}{a}\right)$.
b) The factor theorem.

The following statements are equivalent:

- a is a root of f
- $f(a)=0$ (The remainder of the division by $(x-a)$ is 0)
- $(x-a)$ is a factor of $f(x)$.

Example : $f(x)=x^{3}+2 x-6 x+3$
Show that $(x-1)$ is a factor of f.

$$
f(1)=1^{3}+2 \times 1-6 \times 1+3=1+2-6+3=0
$$

1 is a root of $f,(x-1)$ is a factor of f.
Factorising cubic expressions
To factorise a cubic expression, $f(x)$,

1) you need to find or be given a factor or a root of f, for example " a ".
2) Use the algebraic division to factorise f by $(x-a)$

$$
f(x)=(x-a)\left(b x^{2}+c x+d\right)
$$

3) Factorise the quadratic expression $b x^{2}+c x+d$.

Example: a) Showthat 2is a root of $f(x)=2 x^{3}+3 x^{2}-11 x-6$
b) Factorise fully $f(x)$.
a) $f(2)=2 \times 2^{3}+3 \times 2^{2}-11 \times 2-6=16+12-22-6=0 \quad(x-2)$ is a factor
b) $f(x)=(x-2)\left(2 x^{2}+7 x+3\right)=(x-2)(2 x+1)(x+3)$.

