Polar coordinates

Specifications:

Polar Coordinates

Relationship between polar and Cartesian coordinates.

The convention r > 0 will be used. The sketching of curves given by equations of the form $r = f(\theta)$ may be required.

Use of the formula

$$area = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta.$$

Principle and definition

So far, in geometry, we have been working with CARTESIAN coordinates:

The position of the point A can also be defined with

its distance from O and

the angle made by OA with the x-axis.

The distance OA is noted "r" with r > 0. The angle is noted " θ ".

The polar coordinates of A are: $A(r, \theta)$

To ensure the unicity of the polar coordinates, we choose θ in a 2π – interval either $-\pi < \theta \le \pi$ $0 < \theta \le 2\pi$

- The plane in which the points are located with polar coordinates is called the $r - \theta$ plane
- The point O is called the POLE.

or

• The line $\theta = 0$, is called the initial line.

Sketching a curve

In cartesian coordinates, the equation of the curve will be given as

$$y = f(x)$$

In polar coordinates, the equation of a curve is given by

$$r = f(\theta)$$

(The radius depends on the angle with ox)

Complete the table of values and plot the curve with equation

$$r = 4 - 2Cos\theta$$
 $-\pi < \theta \le \pi$

θ					
r					

Complete the table of values and plot the curve with equation

$$r = 6Cos\theta + 8Sin\theta$$
 $0 \le \theta \le \pi$

θ					
r					

Complete the table of values and plot the curve with equation

$$r = 1 + 6e^{-\frac{\theta}{\pi}} \qquad 0 \le \theta \le 2\pi$$

θ					
r					

Distance between two points

The polar coordinates of the point A and B are:

$$A(2,\frac{\pi}{6})$$
 and $B(3,-\frac{\pi}{2})$

- a) Find the angle between OA and OB, where O is the pole.
- b) Work out the length AB is the triangle OAB.

Cos rule

In a triangle ABC,

$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times Cos(\widehat{ABC})$$

General case:

Good to remember:

$$A(r_1, \theta_1)$$
 and $B(r_2, \theta_2)$ are two points

$$AB^2 = r_1^2 + r_2^2 - 2r_1r_2Cos(\theta_2 - \theta_1)$$

Changing between Cartesian and Polar coordinates

The point A has cartesian coordinates A(x, y)and polar coordinates $A(r,\theta)$

Relationship between cartesian and polar coordiantes

$$x = r \cos \theta$$
, $y = r \sin \theta$

$$x = r \cos \theta$$
, $y = r \sin \theta$
 $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$

Be careful:

$$\theta = \operatorname{Arctan}\left(\frac{y}{x}\right) if \ x > 0$$

$$\theta = \operatorname{Arctan}\left(\frac{y}{x}\right) \pm \pi \ if \ x < 0$$

Summary:

Relationship between cartesian and polar coordiantes

$$x = r\cos\theta$$
, $y = r\sin\theta$

$$x = r \cos \theta$$
, $y = r \sin \theta$
 $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$

Be careful:

$$\theta = \operatorname{Arctan}\left(\frac{y}{x}\right) if \ x > 0$$

$$\theta = \operatorname{Arctan}\left(\frac{y}{x}\right) \pm \pi \ if \ x < 0$$

Exercises:

1 Find the polar coordinates of the following points

$$\mathbf{c}$$
 (-5, -12)

e
$$(\sqrt{3}, -1)$$

Find Cartesian coordinates of the following points. Angles are measured in radians.

$$\mathbf{a} \left(6, \frac{\pi}{6}\right)$$

b
$$(6, -\frac{\pi}{6})$$

$$\mathbf{c} \left(6, \frac{3\pi}{4} \right)$$

d
$$(10, \frac{5\pi}{4})$$

Equations of curves in polar and cartesian form

Find Cartesian equations of the following curves.

a
$$r = 5$$

b
$$r = 2 + \cos 2\theta$$

$$\mathbf{c} \ r^2 = \sin 2\theta \ 0 < \theta < \frac{\pi}{2}$$

Find polar equations for the following:

a
$$y^2 = 4x$$

b
$$x^2 - y^2 = 5$$

c
$$y\sqrt{3} = x + 4$$

Exercises:

Find Cartesian equations for the following curves where *a* is a positive constant.

1 **a**
$$r = 2$$

b
$$r = 3 \sec \theta$$

c
$$r = 5 \csc \theta$$

2 a
$$r = 4a \tan \theta \sec \theta$$

b
$$r = 2a \cos \theta$$

$$\mathbf{c} r = 3a \sin \theta$$

3 a
$$r = 4(1 - \cos 2\theta)$$

b
$$r = 2 \cos^2 \theta$$

$$\mathbf{c} \ r^2 = 1 + \tan^2 \theta$$

Find polar equations for the following curves:

4 a
$$x^2 + y^2 = 16$$

b
$$xy = 4$$

$$(x^2 + y^2)^2 = 2xy$$

5 a
$$x^2 + y^2 - 2x = 0$$

b
$$(x + y)^2 = 4$$

c
$$x - y = 3$$

6 a
$$y = 2x$$

b
$$y = -\sqrt{3}x + a$$

$$\mathbf{c} \ y = x(x-a)$$

$$\theta$$
 398 θ + θ 396 θ = 130 θ

6 a
$$\theta = \arctan 2$$
 b $r = \frac{a}{2} \operatorname{cosec} \left(\theta + \frac{\pi}{3}\right)$

$$a = arctan 2$$

$$\mathbf{c} \quad \mathbf{r} = \frac{\sqrt{2}}{3} \sec(\theta + \frac{\pi}{4})$$

$$\frac{\hbar}{\theta \sin 2} = \frac{\hbar}{1}$$
 d $\theta \cos 2 = 1$ **a d**

$$\theta$$
 so $S = 1$ ϵ

$$\theta Z \text{ uis} = z I \mathbf{3}$$

$$\mathbf{p}$$
 $t_3 = 8 \cos c \, 5 \, \theta$

$$x = x = 1$$
 or $x = +1$

$$x^2 = \frac{1}{2}(x^2 + y^2)$$

3 a
$$(x^2 + y^2)^{\frac{1}{2}} = 8y^2$$
 b $(x^2 + y^2)^{\frac{1}{2}} = 2x^2$

$$\mathbf{c}$$
 $\mathbf{x}_{5} + \lambda_{5} = 3ay$ of $\mathbf{x}_{5} + (y - \frac{2}{3a})^{2} = \frac{9a^{2}}{9a^{2}}$

a
$$x_2 + y^2 = 2ax$$
 or $(x - a)^2 + y^2 = a^2$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$$
 so $\frac{1}{2} \frac{1}{2} \frac{1}$

$$\mathbf{y} = \mathbf{x} + \mathbf{y}^2 = \mathbf{y}$$
 $\mathbf{p} = \mathbf{x} = \mathbf{y}$ $\mathbf{c} \quad \mathbf{y} = \mathbf{z}$

$$\xi = x$$

$$\mathbf{y} = x_2 + \lambda_2 = x_3$$

The area bounded by a polar curve

Consider the curve

$$r = f(\theta), \qquad \alpha \le \theta \le \beta.$$

Suppose that $r \ge 0$ throughout the interval $\alpha \le \theta \le \beta$. Let P and Q be the points on the curve at which $\theta = \alpha$ and $\theta = \beta$, respectively.

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, \mathrm{d}\theta$$

in formulae booklet

 $r = 6\cos\theta + 8\sin\theta$

Work out the are of the shaded shape

Find the total area of the two loops of the curve $r = a \cos 2\theta$, where a > 0 and $-\pi < \theta \le \pi$.

 $\frac{\pi a^2}{4}$

- **a** On the same diagram sketch the curves with equations $r = 2 + \cos \theta$, $r = 5 \cos \theta$.
- **b** Find the polar coordinates of the points of intersection of these two curves.
- ${f c}$ Find the exact value of the area of the finite region bounded by these two curves.

θ					
r					
θ	1				
r					

Exercises:

Find the area of the finite region bounded by the curve with the given polar equation and the half-lines $\theta = \alpha$ and $\theta = \beta$.

1
$$r = a \cos \theta$$

1
$$r = a \cos \theta$$
, $\alpha = 0$, $\beta = \frac{\pi}{2}$

$$2 \quad r = a \ (1 + \sin \theta),$$

2
$$r = a (1 + \sin \theta),$$
 $\alpha = -\frac{\pi}{2}, \beta = \frac{\pi}{2}$

3
$$r = a \sin 3\theta$$

$$3 \quad r = a \sin 3\theta, \qquad \qquad \alpha = \frac{\pi}{6}, \ \beta = \frac{\pi}{4}$$

4
$$r^2 = a^2 \cos 2\theta$$
, $\alpha = 0$, $\beta = \frac{\pi}{4}$

$$\alpha = 0$$
, $\beta = \frac{\pi}{4}$

5
$$r^2 = a^2 \tan \theta$$
, $\alpha = 0$, $\beta = \frac{\pi}{4}$

$$\alpha = 0$$
, $\beta = \frac{\pi}{4}$

$$6 \quad r = 2a\theta,$$

$$6 \quad r = 2a\theta, \qquad \qquad \alpha = 0, \, \beta = \pi$$

7
$$r = a(3 + 2 \cos \theta),$$
 $\alpha = 0, \beta = \frac{\pi}{2}$

$$\alpha = 0, \beta = \frac{\pi}{2}$$

- 8 Show that the area enclosed by the curve with polar equation $r = a(p + q \cos \theta) \text{ is } \frac{2p^2 + q^2}{2} \pi a^2.$
- **9** Find the area of a single loop of the curve with equation $r = a \cos 3\theta$.
- **10** Find the finite area enclosed between $r = a \sin 4\theta$ and $r = a \sin 2\theta$ for $0 \le \theta \le \frac{\pi}{2}$.
- 11 Find the area of the finite region R enclosed by the curve with equation $r = (1 + \sin \theta)$ that lies entirely within the curve with equation $r = 3 \sin \theta$.

Answers

_			
1	O .	2	$\frac{3\pi a^2}{4}$
3	$\frac{(\pi+2)a^2}{48}$	4	$\frac{a^2}{4}$
5	2 1		$\frac{2a^2\pi^3}{3}$
7	$\frac{a^2}{4}(11\pi + 24)$	8	$\frac{a^2(2p^2+q^2)\pi}{2}$
9	$\frac{\pi a^2}{12}$ 10	0	$\frac{a^2}{4} \left[\frac{\pi}{4} - \frac{3\sqrt{3}}{16} \right]$
11	$\frac{5\pi}{4}$		

Miscellaneous questions:

In terms of polar coordinates (r, θ) , the equation of a curve C is

$$r = \tan 2\theta$$
 , $0 \le \theta < \frac{\pi}{4}$.

(a) Write down expressions in terms of θ for the Cartesian coordinates (x, y) of a general point on C.

(b)

The diagram shows a sketch of part of the curve C. The point P lies on the curve and is such that $\angle POQ = \frac{\pi}{6}$, where Q is the foot of the perpendicular from P to the x-axis.

- (i) Find the exact value of the area of the triangle OPQ.
- (ii) Show that the area of the shaded region bounded by OQ, PQ and the arc of the curve between O and P is

$$\frac{\pi}{12} + \frac{\sqrt{3}}{8}.$$

The diagram shows a sketch of the curve $y^2 = 4(1-x)$.

- (a) Show that the area of region R bounded by the axes and the curve is $\frac{4}{3}$.
- (b) (i) Show that the equation of the curve can be expressed as $x^2 + y^2 = (2 x)^2$.
 - (ii) Hence, obtain the polar equation of the above curve in the form $r = f(\theta)$.
- (c) Hence, or otherwise, show that

$$\int_0^{\frac{1}{2}\pi} \frac{\mathrm{d}\theta}{\left(1+\cos\theta\right)^2} = \frac{2}{3}.$$