Polar coordinates

	Definitions A point M can be placed in a set of two axis using CARTESIAN coordinates $M(x, y)$ This position can also be determied by the distance from the origin O or POLE and the angle made by the line OM with the positive x -axis or INITHA The POLAR coordiantes of $\mathrm{M}(\mathrm{r}, \theta)$ In order to have unicity in the polar coordinates of a given point, we will use the following conventions: $r>0 \text { and }-\pi<\theta \leq \pi \text { or } 0 \leq \theta<2 \pi$
	Curve in Polar coordinates In cartesian coordinates, an explicit equation of a curve will be given as $y=f(x)$. In polar coordinates, an explicit equation of a curve will be given as $r=f(\theta)$. Examples: $r=2 \operatorname{Sin} \theta, r=e^{-2 \theta}, r=3, \ldots$
	Conversions A point M has cartesian coordinates $M(x, y)$ and polar coordinates $\mathrm{M}(\mathrm{r}, \theta)$ Using the pythagoras' theorem and trigonometry, we have $\left\{\begin{array} { l } { x = r \operatorname { C o s } \theta } \\ { y = r \operatorname { S i n } \theta } \end{array} \text { and } \left\{\begin{array}{l} r^{2}=x^{2}+y^{2} \\ \operatorname{Tan} \theta=\frac{y}{x} \end{array}\right.\right.$ Note: If $x>0, \theta=\operatorname{ArcTan}\left(\frac{y}{x}\right)$ but if $x<0, \theta=\operatorname{ArcTan}\left(\frac{y}{x}\right) \pm \pi$
	Area bounded by a polar curve The are bounded by a polar curve and the ray $\theta=\alpha$ and $\theta=\beta$ is $A=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta$ IMPORTANT :This formula is valid only if $r>0$ for $\alpha \leq \theta \leq \beta$.

