mathcentre

Particles on a slope

When resolving forces, the directions generally taken are horizontal and vertical. However, there are situations when it is preferential to consider other directions for resolving. Motion on a slope is one such case, where it is common practice to resolve parallel and perpendicular to the slope.

Worked Example 1.

A box, of mass 6 kg , is held at rest on a smooth slope by a force P. The slope is inclined at an angle of $\theta=30^{\circ}$ to the horizontal. What is the normal reaction force between the box and the slope? (Figure 1 shows the box modelled as a particle, with the forces acting on it)

Solution

Here, as the value of R needs to be found it is more convenient to resolve perpendicular to the slope, so that only R and a component of the weight are involved in the calculations.

Hence, using Newton's Second Law of Motion:

Figure 1

Worked Example 2.

A mother is out pushing her baby in its pram. She comes to a hill which is inclined at an angle of 12° to the horizontal. Assuming there is no resistance to motion and given that the pram and baby have a total mass of 11 kg , what force, P, does the mother have to push the pram with (parallel to the hill) for it to travel up the hill at a constant velocity?

Solution

As there is constant velocity this means the acceleration equals zero. As the value of P needs to be found it is more convenient to resolve parallel to the slope.

Therefore, using Newton's Second Law of Motion (parallel to the slope):

$$
\begin{aligned}
F & =m a \\
P-m g \sin 12^{\circ} & =0 \\
P & =11 \times 9.81 \times \sin 12^{\circ}=22.44 \\
\Rightarrow P & =22 \mathrm{~N}(2 \mathrm{s.f.})
\end{aligned}
$$

Figure 2

Exercises

1. A box is held at rest on a smooth slope. The slope is inclined at an angle of $\theta=18^{\circ}$ to the horizontal. Given that the normal reaction force between the box and the slope is 79 N , what is the mass of the box?
2. A box, of mass 9 kg , is held at rest on a smooth slope, which is inclined at an angle of θ to the horizontal. Given that the normal reaction force between the box and the slope is 85 N what is the angle of the incline θ ?
3. A mother is out pushing her baby in its pram. She comes to a hill which is inclined at an angle of 8° to the horizontal and pushes the baby up the hill at a constant speed in a straight line. Assuming there is no resistance to motion and that the mother pushes with a force of 13 N parallel to the slope, what is the combined mass of the pram and baby?
4. A mother is out pushing her baby in its pram. She comes to a hill which is inclined at an angle of θ to the horizontal and pushes the baby up the hill at a constant speed in a straight line. Assume there is no resistance to motion and that the pram and baby have a combined mass of 10 kg . If the mother pushes with a force of 8.5 N parallel to the slope, what is the incline of the slope? Also, what is the normal reaction force between the pram and the ground?
5. A father pulls his child, on a sledge, up a snowy hill at a constant velocity. Assume there is no resistance to the motion and that the the child and sledge have a combined mass of 22 kg . If the hill is inclined at 20° to the horizontal and the father pulls with a force of 82 N at an angle of θ to the slope (see figure 3), find θ. What is the normal reaction force between the sledge and the hill?

Figure 3
6. A father pulls his child, on a sledge, up a snowy hill at a constant velocity. Assume there is no resistance to the motion and that the normal reaction force is R. If the hill is inclined at 15° to the horizontal and the father pulls with a force of 45 N at an angle of 35° to the horizontal (i.e. 20° to the slope), what is the combined mass of the child and sledge?

Answers (all to 2 s.f.)

1. 8.5 kg
2. 16°
3. 9.5 kg
4. $5.0^{\circ}, \mathrm{R}=98 \mathrm{~N}$
5. $26^{\circ}, 170 \mathrm{~N}$
6. 17 kg
