mathcentre

Particles on a slope (with Friction)

Mechanics 2.10.

Here, as in leaflet 2.7, particles on a slope are considered, but this time including friction.

Worked Example 1.

If a particle, of mass $M \mathrm{~kg}$, is on the point of slipping down a rough plane that is inclined at an angle θ to the horizontal, what is the coefficient of friction?

Solution

Resolving perpendicular to the plane:

$$
R=M g \cos \theta
$$

Resolving parallel to the plane:

$$
F=M g \sin \theta
$$

As the particle is on the point of slipping, friction

Figure 1 is limiting, $F=F_{M A X}$, so:

$$
\begin{aligned}
F & =\mu R \\
M g \sin \theta & =\mu \times M g \cos \theta \\
\frac{M g \sin \theta}{M g \cos \theta} & =\mu \\
\tan \theta & =\mu \quad \text { Note: } \tan \theta=\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

This can be written as $\theta=\arctan \mu ; \theta$ is referred to as the Angle of Friction.

Worked Example 2.

A box of mass 6 kg is on the point of slipping down a rough slope, which is inclined at an angle 30° to the horizontal. A force S is applied to the box and acts up the plane. Given that the coefficient of friction is 0.45 , what is the magnitude of S ? (Figure 2 shows the forces acting on the box, when modelled as a particle.)

Solution

Resolving perpendicular to the plane:

$$
R=6 g \cos 30^{\circ}
$$

Resolving parallel to the plane:

$$
F=6 g \sin 30^{\circ}-S
$$

As the box is on the point of slipping, friction is

Figure 2 limiting, $F=F_{M A X}$, so:

$$
F=\mu R
$$

$$
6 g \sin 30^{\circ}-S=0.45 \times 6 g \cos 30^{\circ}
$$

$$
S=6 g \sin 30^{\circ}-0.45 \times 6 g \cos 30^{\circ}=6.5 \mathrm{~N}(2 \text { s.f. })
$$

Worked Example 3.

A ski is dropped by a skier ascending a ski slope. The ski begins to slide down the slope, which is inclined at an angle 25° to the horizontal. Given the ski has a mass $m \mathrm{~kg}$ and the coefficient of sliding friction between the ski and the slope is 0.21 , what is the acceleration of the ski? (Figure 3 shows the forces acting on the ski, when modelled as a particle.)

Solution

As the motion is down the slope, the sum of the perpendicular forces equals zero.
Resolving perpendicular to the plane:

$$
R=m g \cos 25^{\circ}
$$

As the ski is sliding, the frictional force is given by:

$$
F=\mu R=0.21 \times m g \cos 25^{\circ}
$$

Figure 3

Use Newton's Second Law, parallel to the plane. The resultant force is $m g \sin 25^{\circ}-F$:

$$
\begin{aligned}
m g \sin 25^{\circ}-0.21 \times m g \cos 25^{\circ} & =m a \\
a=g \sin 25^{\circ}-0.21 \times g \cos 25^{\circ} & =2.3 \mathrm{~m} \mathrm{~s}^{-2}(2 \text { s.f. })
\end{aligned}
$$

Exercises

1. If a particle, of mass 11 kg , is on the point of slipping down a rough plane that is inclined at an angle 16° to the horizontal, what is the coefficient of friction?
2. A box of mass 5 kg is on the point of slipping down a rough slope, which is inclined at an angle 12° to the horizontal. A force S is applied to the box and acts up the plane. Given friction is acting and the coefficient of friction is 0.12 , what is the magnitude of S ?
3. A ski is dropped by a skier ascending a ski slope. The ski begins to slide down the slope, which is inclined at an angle 22° to the horizontal. Given the ski has a mass 2 kg and the coefficient of sliding friction between the ski and the slope is 0.19 , what is the acceleration of the ski?
4. If a particle, of mass $m \mathrm{~kg}$, is on the point of slipping down a rough inclined plane that has a coefficient of friction of 0.14 , what is the angle of the incline from the horizontal?
5. A box of mass 4 kg is on the point of slipping down a rough slope, which is inclined at an angle 40° to the horizontal. A force S of magnitude $\frac{1}{4} R$ (where R is the normal reaction force) is applied to the box and acts up the plane. Given friction is acting, what is the coefficient of friction?
6. A ski is dropped by a skier ascending a ski slope. The ski begins to slide down the slope, which is inclined at an angle 15° to the horizontal. Given the ski has a mass $m \mathrm{~kg}$ and has an acceleration of $1.2 \mathrm{~m} \mathrm{~s}^{-2}$, what is the coefficient of sliding friction between the ski and the slope?

Answers (all to 2 s.f.)

1. $0.29 \quad 2.4 .4 \mathrm{~N}$
2. $1.9 \mathrm{~m} \mathrm{~s}^{-2}$
3. 8.0°
4. 0.59
5. 0.14
