Parallel Forces acting together

In leaflet 2.3 several types of force were introduced, one at a time. However, in practice it is more likely that more than one force will be acting on an object at any given time.
Here the idea of a net or resultant force is considered. This is the sum of forces acting in one direction minus the sum of forces acting in the opposite direction, given that all the forces act parallel to a given direction. For non-parallel forces, see leaflet 2.6.

Equilibrium is the term used to describe a zero net or resultant force.
In such a case, the object will either:

1. Move with a constant velocity (Newton's 1st Law) or
2. Remain at rest.

Worked Example 1.

A car, of mass 1100 kg , is being towed by a truck, along a straight horizontal road. The only horizontal forces acting on the car are the tension in the tow bar and a resistive force. Given the acceleration of the car is $0.7 \mathrm{~m} \mathrm{~s}^{-2}$ and the resistive force is 125 N , what is the tension in the tow bar?

Solution

Modelling the car as a particle and constructing the diagram with horizontal forces on, as in Figure 1, it can be seen that the resultant force is $T-125$.

Applying Newton's Second Law of Motion:

$$
\begin{aligned}
F & =m a \\
T-125 & =1100 \times 0.7 \\
\Rightarrow T & =770+125=895 \mathrm{~N}=900 \mathrm{~N}(2 \text { s.f. })
\end{aligned}
$$

Figure 1

Worked Example 2.

A newsagent pushes a box of magazines, of mass 6 kg , across a horizontal floor in a straight line. If he pushes with a force of 75 N and the box moves with a constant speed, what is the size of the resistive force, R_{f} ?

Solution

Modelling the box of magazines as a particle and constructing the diagram with horizontal forces on, as in Figure 2, it can be seen that the resultant force is $75-R_{f}$. It is also important to recognise that the acceleration is $0 \mathrm{~m} \mathrm{~s}^{-2}$, because the speed is constant.

Applying Newton's Second Law of Motion:

$$
\begin{aligned}
F & =m a \\
75-R_{f} & =6 \times 0 \\
\Rightarrow R_{f} & =75 \mathrm{~N}
\end{aligned}
$$

Figure 2

Worked Example 3.

A small boat of mass 8500 kg is cruising near shore in a straight line and has a driving force of 8000 N . If there is a horizontal resistive force of 1200 N , opposing the motion, what is the acceleration of the boat?

Solution

Modelling the boat as a particle and constructing the diagram with horizontal forces on, as in Figure 3 , it can be seen that the resultant force is $8000-1200$.

Using Newton's Second Law of Motion:

$$
\begin{aligned}
F & =m a \\
8000-1200 & =8500 a \\
\Rightarrow a & =\frac{6800}{8500}=0.8 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

Figure 3

Exercises

1. A car, of mass 1400 kg , is being towed by a truck, along a straight horizontal road. The only horizontal forces acting on the car are the tension in the tow bar, 790 N , and a resistive force of 230 N . What is the acceleration of the car?
2. A newsagent pushes a box of magazines, of mass 4 kg , across the horizontal floor in a straight line. If he/she pushes with a force of 8.9 N and the box moves with an acceleration of $0.9 \mathrm{~m} \mathrm{~s}^{-2}$, what is the size of the resistive force?
3. A speed boat of mass 5750 kg is cruising near shore in a straight line and has a driving force of 11500 N . If there is a horizontal resistive force of 1150 N , opposing the motion, what is the acceleration of the boat?
4. A motorbike and its rider have a combined mass of 570 kg . If the motorbike travels along a straight horizontal road with an acceleration of $3 \mathrm{~m} \mathrm{~s}^{-2}$, whilst experiencing a resistive force of 135 N , what is the driving force of the engine?
5. Two men have constructed a shed but now need to move it a short distance into position. They decide to push it across the garden. They both push horizontally, with the same force, so that the shed moves at a slow but constant speed. Given there is a resistance of 540 N , what force does each man push with?
6. A car of mass 1250 kg accelerates from rest to $28 \mathrm{~m} \mathrm{~s}^{-1}$ in a straight line along a horizontal road in 8 seconds. Given there is a constant resistive force of 225 N , find the driving force of the car.

Answers (all to 2 s.f.)

1. $0.40 \mathrm{~m} \mathrm{~s}^{-2} \quad 2.5 \mathrm{~N}$
2. $1.8 \mathrm{~m} \mathrm{~s}^{-2}$
3. 1800 N
4. 270 N
5. 4600 N
