	In this chapter, we want to solve equations which can be written $\frac{d y}{d x}=f(x, y) \quad \text { and } \quad y\left(x_{0}\right)=y_{0}$ There are three methods to solve numerically this equation. Formulae to be used will be stated explicitly in questions.
	Knowing $P_{0}\left(x_{0}, y_{0}\right)$, we work out P_{1} then P_{2} then P_{3} etc.
	Euler's formula To work out P_{r+1}, we consider that the gradient of the line $P_{r} P_{r+1}$ is (approx.) equal to the gradient at P_{r}. This gives: $y_{r+1}=y_{r}+h f\left(x_{r}, y_{r}\right)$
	The mid-point formula We consider that the gradient of the line $P_{r-1} P_{r+1}$ is (approx.) equal to the gradient at P_{r} : This gives $\quad y_{r+1}=y_{r-1}+2 h f\left(x_{r}, y_{r}\right)$
	The improved Euler's formula We consider that the gradient of the line $P_{r} P_{r+1}$ is (approx.) the mean of the gradient at P_{r} and the gradient at P_{r+1}. This gives : $\begin{gathered} y_{r+1}=y_{r}+\frac{h}{2}\left[f\left(x_{r}, y_{r}\right)+f\left(x_{r+1}, y_{r+1}^{*}\right)\right] \\ \text { with } y_{r+1}^{*}=y_{r}+h f\left(x_{r}, y_{r}\right) \end{gathered}$ Or as it is given in the exam question: $y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)$ where $k_{1}=h f\left(x_{r}, y_{r}\right)$ and $k_{2}=h f\left(x_{r}+h, y_{r}+k_{1}\right)$ Possible layout for your workings out:

