Relative position - key points

The set-up:
Two objects A and B arer moving in a set of axis
Their initial position (relative to the origin O) are the position vectors \mathbf{a}_{0} and \mathbf{b}_{0} and they have a speed \mathbf{v}_{A} and \mathbf{v}_{B}.

- At any time t, the position vector of the point A is $r_{A}=\mathbf{a}_{0}+t \mathbf{v}_{A}$ the position vector of the point B is $r_{B}=\mathbf{b}_{0}+t \mathbf{v}_{B}$
- The position of B RELATIVE to A is given by the vector $\overrightarrow{A B}=r_{B}-r_{A}$

This position vector is noted ${ }_{A} r_{B}$

- The speed of B relative to A is the vector ${ }_{A} \mathbf{v}_{B}=\mathbf{v}_{B}-\mathbf{v}_{A}$
-The two points will meet if it exists a time t for which $\overrightarrow{A B}=\mathbf{0}$
- The distance between the two point is given by $|\overrightarrow{A B}|=s$.

The points A and B are the closest to each other when s is minimum
which is equivalent to s^{2} is minimum(We use s^{2} to avoid working with square roots)
So, to work out when the two points are the CLOSEST to each other:
Find the value of t for which $\frac{d\left(s^{2}\right)}{d t}=0$

Example:

The unit vectors \mathbf{i} and \mathbf{j} are directed due east and due north respectively.
Two cyclists, Aazar and Ben, are cycling on straight horizontal roads with constant velocities of $(6 \mathbf{i}+12 \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$ and $(12 \mathbf{i}-8 \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$ respectively. Initially, Aazar and Ben have position vectors $(5 \mathbf{i}-\mathbf{j}) \mathrm{km}$ and $(18 \mathbf{i}+5 \mathbf{j}) \mathrm{km}$ respectively, relative to a fixed origin.

The position of B relative to A is : $\binom{18-5}{5--1}+t\binom{12-6}{-8-12}$

$$
{ }_{A} r_{B}=\binom{13}{6}+t\binom{6}{-20}
$$

-Are they going to meet?

$$
{ }_{A} r_{B}=0 \Leftrightarrow\left\{\begin{array} { l }
{ 1 3 + 6 t = 0 } \\
{ 6 - 2 0 t = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
t=-13 / 6 \\
t=6 / 20
\end{array}\right.\right. \text { Inconsistent. }
$$

A and B do not meet.
-When are they the closest to each other?

$$
\begin{aligned}
s^{2} & =(13+6 t)^{2}+(6-20 t)^{2} \\
\text { and } \frac{d s^{2}}{d t} & =12(13+6 t)-40(6-20 t)=-84+872 t \\
\frac{d s^{2}}{d t} & =0 \text { for } t=\frac{21}{218}=0.0963
\end{aligned}
$$

