Relative position – key points

The set-up:

Two objects A and B arer moving in a set of axis

Their initial position (relative to the origin O) are the position vectors \mathbf{a}_0 and \mathbf{b}_0 and they have a speed \mathbf{v}_A and \mathbf{v}_B .

- At any time t, the position vector of the point A is $r_A = \mathbf{a}_0 + t\mathbf{v}_A$ the position vector of the point B is $r_B = \mathbf{b}_0 + t\mathbf{v}_B$
- The position of B RELATIVE to A is given by the vector $\overline{AB} = r_B r_A$ This position vector is noted $_A r_B$
- The speed of B relative to A is the vector $_{A}\mathbf{v}_{B} = \mathbf{v}_{B} \mathbf{v}_{A}$
- •The two points will meet if it exists a time t for which $\overline{AB} = \mathbf{0}$

• The distance between the two point is given by $|\overrightarrow{AB}| = s$.

The points A and B are the closest to each other when s is minimum

which is equivalent to s^2 is minimum (We use s^2 to avoid working with square roots)

So, to work out when the two points are the CLOSEST to each other:

Find the value of t for which
$$\frac{d(s^2)}{dt} = 0$$

Example:

The unit vectors i and j are directed due east and due north respectively.

Two cyclists, Aazar and Ben, are cycling on straight horizontal roads with constant velocities of $(6\mathbf{i} + 12\mathbf{j}) \,\mathrm{km} \,\mathrm{h}^{-1}$ and $(12\mathbf{i} - 8\mathbf{j}) \,\mathrm{km} \,\mathrm{h}^{-1}$ respectively. Initially, Aazar and Ben have position vectors $(5\mathbf{i} - \mathbf{j}) \,\mathrm{km}$ and $(18\mathbf{i} + 5\mathbf{j}) \,\mathrm{km}$ respectively, relative to a fixed origin.

The position of B relative to A is $\begin{pmatrix} 18-5\\5-1 \end{pmatrix} + t \begin{pmatrix} 12-6\\-8-12 \end{pmatrix}$

$${}_{A}r_{B} = \begin{pmatrix} 13\\6 \end{pmatrix} + t \begin{pmatrix} 6\\-20 \end{pmatrix}$$

•Are they going to meet?

$$_{A}r_{B} = 0 \Leftrightarrow \begin{cases} 13+6t=0\\ 6-20t=0 \end{cases} \Leftrightarrow \begin{cases} t=-13/6\\ t=6/20 \end{cases}$$
 Inconsistent.

A and B do not meet.

•When are they the closest to each other?

$$s^{2} = (13+6t)^{2} + (6-20t)^{2}$$

and $\frac{ds^{2}}{dt} = 12(13+6t) - 40(6-20t) = -84 + 872t$
 $\frac{ds^{2}}{dt} = 0$ for $t = \frac{21}{218} = 0.0963$