Matrix algebra – exam questions

Question 1: June 2010 - Q2

Let
$$\mathbf{A} = \begin{bmatrix} 1 & x \\ 2 & 3 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$ and $\mathbf{C} = \begin{bmatrix} 4 - 4x & 8 \\ 8x - 4 & 4 \end{bmatrix}$.

(a) Find **AB** in terms of x.

(2 marks)

(b) Show that $\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = \mathbf{C}$ for some value of x.

(5 marks)

Question 2: June 2008 - Q3

The matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 4 & 3 & k \end{bmatrix}$$
, where k is a constant.

Determine, in terms of k where appropriate:

(a) $\det \mathbf{A}$; (2 marks)

(b) A^{-1} . (5 marks)

Question 3: June 2007 – Q6

The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & t \end{bmatrix}$$

(a) Find, in terms of t, the matrices:

(i) **AB**; (3 marks)

(ii) BA. (2 marks)

(b) Explain why AB is singular for all values of t. (1 mark)

Question 4: June 2011 - Q1

The matrices **A** and **B** are given in terms of p by

$$\mathbf{A} = \begin{bmatrix} 1 & p & 4 \\ -3 & 2 & 1 \\ 2 & -1 & 1 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} p & 1 & 5 \\ 9 & p & -1 \\ 2 & 0 & 1 \end{bmatrix}$$

(a) Find each of $\det \mathbf{A}$ and $\det \mathbf{B}$ in terms of p. (3 marks)

(b) Without finding AB, determine all values of p for which AB is singular. (3 marks)

Question 5: June 2009 - Q1

Let $\mathbf{P} = \begin{bmatrix} 1 & 4 & 2 \\ -1 & 2 & 6 \end{bmatrix}$ and $\mathbf{Q} = \begin{bmatrix} k & 1 \\ 2 & -1 \\ 3 & 1 \end{bmatrix}$, where k is a constant.

- (a) Determine the product matrix PQ, giving its elements in terms of k where appropriate.

 (3 marks)
- (b) Find the value of k for which **PQ** is singular. (2 marks)

Question 6: June 2006 - Q6

The matrices P and Q are given by

$$\mathbf{P} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & t & -2 \\ 3 & 2 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \begin{bmatrix} 1 & 1 & 1 \\ -7 & -1 & 5 \\ 11 & -1 & -7 \end{bmatrix}$$

where t is a real constant.

- (a) Find the value of t for which P is singular. (2 marks)
- (b) (i) Determine the matrix $\mathbf{R} = \mathbf{PQ}$, giving its elements in terms of t where appropriate. (3 marks)
 - (ii) Find the value of t for which $\mathbf{R} = k\mathbf{I}$, for some integer k. (2 marks)
 - (iii) Hence find the matrix \mathbf{Q}^{-1} . (1 mark)

Question 7: January 2009 - Q2

The 2×2 matrices **A** and **B** are such that

$$\mathbf{AB} = \begin{bmatrix} 9 & 1 \\ 7 & 13 \end{bmatrix} \quad \text{and} \quad \mathbf{BA} = \begin{bmatrix} 14 & 2 \\ 1 & 8 \end{bmatrix}$$

Without finding A and B:

- (a) find the value of det **B**, given that det A = 10; (3 marks)
- (b) determine the 2×2 matrices **C** and **D** given by

$$\mathbf{C} = (\mathbf{B}^T \mathbf{A}^T)$$
 and $\mathbf{D} = (\mathbf{A}^T \mathbf{B}^T)^T$

where \mathbf{M}^{T} denotes the transpose of matrix \mathbf{M} . (3 marks)

Question 8: January 2006 - Q2

The matrices \mathbf{P} and \mathbf{Q} are defined in terms of the constant k by

$$\mathbf{P} = \begin{bmatrix} 3 & 2 & 1 \\ 1 & -1 & k \\ 5 & 3 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \begin{bmatrix} 5 & 4 & 1 \\ 3 & k & -1 \\ 7 & 3 & 2 \end{bmatrix}$$

(a) Express $\det \mathbf{P}$ and $\det \mathbf{Q}$ in terms of k.

(3 marks)

(b) Given that $det(\mathbf{PQ}) = 16$, find the two possible values of k.

(4 marks)

Question 9: January 2007 - Q8

The matrix $\mathbf{P} = \begin{bmatrix} 4 & -1 & 2 \\ 1 & 1 & 3 \\ -2 & 0 & a \end{bmatrix}$, where a is constant.

(a) (i) Determine $\det \mathbf{P}$ as a linear expression in a.

(2 marks)

(ii) Evaluate det **P** in the case when a = 3.

(1 mark)

(iii) Find the value of a for which P is singular.

(2 marks)

(b) The 3×3 matrix **Q** is such that **PQ** = 25I.

Without finding Q:

(i) write down an expression for P^{-1} in terms of Q;

(1 mark)

(ii) find the value of the constant k such that $(\mathbf{PQ})^{-1} = k\mathbf{I}$;

(2 marks)

(iii) determine the numerical value of det \mathbf{Q} in the case when a=3.

(4 marks)

Question 10: January 2008 - Q7

The non-singular matrix $\mathbf{M} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$.

(a) (i) Show that

$$\mathbf{M}^2 + 2\mathbf{I} = k\mathbf{M}$$

for some integer k to be determined.

(3 marks)

(ii) By multiplying the equation in part (a)(i) by \mathbf{M}^{-1} , show that

$$\mathbf{M}^{-1} = a\mathbf{M} + b\mathbf{I}$$

for constants a and b to be found.

(3 marks)

iviatrix algebra – exam questions						
Question 1: June 2010 – Q2	Ques	stion 6: June 2006 – Q6				
(a) $\begin{bmatrix} 2x+1 & 2x-1 \end{bmatrix}$	M1		6(a)	Setting det P $(2t-6+2-3t+8-1)$		
(a) $AB = \begin{bmatrix} 2x+1 & 2x-1 \\ 8 & 4 \end{bmatrix}$				=3-t)=0		
	A1	2		$\Rightarrow t=3$	A1	2
				[6 0 0]	M1	
(b) $\mathbf{B}^{T} \mathbf{A}^{T} = (\mathbf{A} \mathbf{B})^{T} \mathbf{Or} \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ x & 3 \end{bmatrix}$			(b)(i)	$\begin{vmatrix} -7t - 21 & 3 - t & 15 + 5t \end{vmatrix}$		
$\begin{vmatrix} \mathbf{D} \mathbf{A} - (\mathbf{A}\mathbf{D}) & \mathbf{O} \\ -1 & 2 \end{vmatrix} \begin{vmatrix} x & 3 \end{vmatrix}$	M1			$\begin{bmatrix} 6 & 0 & 0 \\ -7t - 21 & 3 - t & 15 + 5t \\ 0 & 0 & 6 \end{bmatrix}$	A1	
[2r+1 8]	A1√				A1	3
$= \begin{vmatrix} 2x+1 & 8 \\ 2x-1 & 4 \end{vmatrix}$	AI√		(ii)	When $t = -3$, $\mathbf{PQ} = 6\mathbf{I}$	B1 B1	2
					2121	-
2x + 1 = 4 - 4x Or $2x - 1 = 8x - 4$	M1		(iii)			
$x = \frac{1}{2}$	A1			$\mathbf{Q}^{-1} = \frac{1}{6} \mathbf{P} = \frac{1}{6} \begin{vmatrix} 2 & 1 & 1 \\ 1 & -3 & -2 \\ 3 & 2 & 1 \end{vmatrix}$	B1	1
Checking/noting $x = \frac{1}{2}$ in other eqn.	B1	5		3 2 1		
Total 7 Question 7: January 2009 – Q2						
Question 2: June 2008 – Q3		•		$\det \mathbf{AB} = 110$	B1	
(a) Det $A = k + 3 + 12 - 4 - 9 - k = 2$	M1		1	Use of $\det \mathbf{AB} = \det \mathbf{A} \det \mathbf{B}$	M1	
	A1	2	($\det \mathbf{B} = 11$	A1F	3
(b) $\mathbf{A}^{-1} = \frac{1}{\text{Det } \mathbf{A}} (\text{adj } \mathbf{A})$	B1		a .	$\mathbf{C} = (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \begin{bmatrix} 9 & 7 \end{bmatrix}$	M1	
$(\mathbf{b}) \mid \mathbf{A} - \frac{\mathbf{Det} \mathbf{A}}{\mathbf{Det} \mathbf{A}} $	M1		(p)	$\mathbf{C} = (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \begin{bmatrix} 9 & 7 \\ 1 & 13 \end{bmatrix}$	A1	
$\begin{bmatrix} k-9 & 3-k & 2 \end{bmatrix}$	M1					
$= \frac{1}{2} \begin{bmatrix} k-9 & 3-k & 2\\ 12-k & k-4 & -2 \end{bmatrix}$	A1]	$\mathbf{D} = [(\mathbf{B}\mathbf{A})^{\mathrm{T}}]^{\mathrm{T}} = \mathbf{B}\mathbf{A} = \begin{bmatrix} 14 & 2 \\ 1 & 8 \end{bmatrix}$	B1	3
$\frac{1}{2}$				[1 8]		
[-1 1 0]	A1	7				
1000			-	Tota	.1	6
Question 3: June 2007 – Q6	1 3.01	ı	Oues	stion 8: January 2006 – Q2	11	1 0
(a)(i) $AB = a \ 3 \times 3 \text{ matrix}$	M1			Attempt at either determinant	M1	
$= \begin{pmatrix} 3 & 2 & t+1 \\ 1 & 2 & t-1 \\ 3 & 2 & t+1 \end{pmatrix}$	A1		(a)	recompt at crimer acteriminant	IVII	
$= \begin{bmatrix} 1 & 2 & t-1 \end{bmatrix}$	A 1	2		$\det \mathbf{P} = k - 2 \qquad \det \mathbf{Q} = 3k - 28$	A1 A1	3
$\begin{pmatrix} 3 & 2 & t+1 \end{pmatrix}$	A1	3		Use of $\det (\mathbf{PQ}) = (\det \mathbf{P})(\det \mathbf{Q})$	M1	,
(ii) $\mathbf{B}\mathbf{A} = \mathbf{a} \ 2 \times 2 \text{ matrix}$	M1		(0)	Ose of $\operatorname{det}(\mathbf{IQ}) - (\operatorname{det}\mathbf{I})(\operatorname{det}\mathbf{Q})$	IVII	
	1,11			Creating a quadratic	dM1	
(2 2)						
$=\begin{pmatrix} 2 & 2 \\ t & t+4 \end{pmatrix}$	A1	2		$3k^2 - 34k + 40 = 0$	A1√	
(b) $R_1 = R_3 \ (\Rightarrow \det \mathbf{AB} = 0)$	B1	1		$k = \frac{4}{3}$ or 10	B1	4
Question 4: June 2011 – Q1				3		
(a) $\det \mathbf{A} = 5p - 1$	B1			stion 9: January 2007 – Q8	1 1	
$\det \mathbf{B} = p^2 - 10p - 11$	M1A1	3	(a)(i)	$\det \mathbf{P} = 4a + 6 + 4 + a = 5a + 10$	M1 A1	2
			(#)	When $a = 3$, det $\mathbf{P} = 25$	B1F	1
(b) Use of $det(AB) = det A det B$	B1		(ii)	when $u = 3$, act $\mathbf{r} = 23$	БІГ	1
Finding three values of p	M1	3	(iii)	Setting their det $P = 0 \implies a = -2$	M1	
$p = \frac{1}{5}, 11, -1$	A1F		. ,		A1F	2
Total		6	(b)(i)	$\mathbf{P}^{-1} = \frac{1}{25} \mathbf{Q}$	B1	1
Question 5: June 2009 – Q1	1	I		25		-
(a) $\begin{bmatrix} 1 & 4 & 2 \\ -1 & 2 & 6 \end{bmatrix} \begin{bmatrix} k & 1 \\ 2 & -1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} k+14 & -1 \\ 22-k & 3 \end{bmatrix}$	7.61		(ii)	mov-1 (2-7)-1 1-	M1 A1	2
$\begin{vmatrix} 1 & 2 & -1 \\ 1 & 2 & 6 \end{vmatrix} \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix}$	M1		(11)	$(\mathbf{PQ})^{-1} = (25 \ \mathbf{I})^{-1} = \frac{1}{25} \mathbf{I}$	MIAI	_
$\begin{bmatrix} \begin{bmatrix} -1 & 2 & 0 \end{bmatrix} \end{bmatrix}$ 3 1 $\begin{bmatrix} \begin{bmatrix} 22-\kappa & 3 \end{bmatrix} \end{bmatrix}$	A1 A1	3		,		
	AI	3		$Or (PQ)^{-1} = Q^{-1}P^{-1}$	(M1)	
(b) $Det(\mathbf{PQ}) = 3k + 42 + 22 - k$	M1				4.4	(2)
= 2k + 64 = 0	1411			$= \mathbf{Q}^{-1} \cdot \frac{1}{25} \mathbf{Q} = \frac{1}{25} \mathbf{I}$	(A1)	(2)
k = -32	A1	2.		25 25		
Total		5	(iii)	$\det \mathbf{PQ} = \det (25 \ \mathbf{I}) = 25^3 \text{ or } 15625$	M1 A1	
·	. '		(111)	$\det \mathbf{PQ} = \det (23\mathbf{I}) - 23 \text{of } 13623$ $\det \mathbf{PQ} = \det \mathbf{P} \cdot \det \mathbf{Q}$	M1	
				$\det \mathbf{PQ} = \det \mathbf{P} \cdot \det \mathbf{Q}$ $\Rightarrow 25^3 = 25 \det \mathbf{Q}$	IVII	
				$\Rightarrow \det \mathbf{Q} = 25^2 \text{ or } 625$	A1	4
				Total		12
					,	

Question 10: January 2008 – Q7

(a)(i)
$$\mathbf{M}^{2} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & -3 & 3 \\ 3 & -2 & 3 \\ 3 & -3 & 4 \end{bmatrix}$$

$$\mathbf{M}^{2} + 2\mathbf{I} = \begin{bmatrix} 4 & -3 & 3 \\ 3 & -2 & 3 \\ 3 & -3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -3 & 3 \\ 3 & 0 & 3 \\ 3 & -3 & 6 \end{bmatrix} = 3\mathbf{M}$$
A1

(ii) Multiplying by
$$\mathbf{M}^{-1}$$
 to get $\mathbf{M} + 2\mathbf{M}^{-1} = 3\mathbf{I}$ A1 so that $\mathbf{M}^{-1} = \frac{3}{2}\mathbf{I} - \frac{1}{2}\mathbf{M}$ A1

A1

3

3