Lines and planes - exam questions

Question 1: Jan 2006 Q3

(a) The plane
$$\Pi$$
 has equation $\mathbf{r} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} + \mu \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$.

- (i) Find a vector which is perpendicular to both $\begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$. (2 marks)
- (ii) Hence find an equation for Π in the form $\mathbf{r} \cdot \mathbf{n} = d$. (2 marks)
- (b) The line L has equation $\begin{pmatrix} \mathbf{r} \begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = \mathbf{0}$.

Verify that
$$\mathbf{r} = \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$
 is also an equation for L . (2 marks)

(c) Determine the position vector of the point of intersection of Π and L. (4 marks)

Question 2: Jun 2006 Q1

Two planes, Π_1 and Π_2 , have equations $\mathbf{r} \cdot \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix} = 0$ and $\mathbf{r} \cdot \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} = 0$ respectively.

- (a) Determine the cosine of the acute angle between Π_1 and Π_2 . (4 marks)
- (b) (i) Find $\begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix} \times \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$. (2 marks)
 - (ii) Find a vector equation for the line of intersection of Π_1 and Π_2 . (2 marks)

Question 3: Jun 2006 Q7

The diagram shows the parallelepiped OABCDEFG.

Points A, B, C and D have position vectors

$$\mathbf{a} = \begin{bmatrix} 4 \\ -1 \\ 7 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 6 \\ 1 \\ 6 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \text{ and } \mathbf{d} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$

respectively, relative to the origin O.

- (a) Show that **a**, **b** and **c** are linearly dependent. (1 mark)
- (b) Determine the volume of the parallelepiped. (3 marks)
- (c) Determine a vector equation for the plane ABDG:

(i) in the form
$$\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}$$
; (2 marks)

(ii) in the form
$$\mathbf{r} \cdot \mathbf{n} = d$$
. (4 marks)

(d) Find cartesian equations for the line *OF*, and hence find the direction cosines of this line. (4 marks)

Question 4: Jan 2008 Q6

- (a) The line l has equation $\mathbf{r} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 2 \\ 6 \end{bmatrix}$.
 - (i) Write down a vector equation for l in the form $(\mathbf{r} \mathbf{a}) \times \mathbf{b} = \mathbf{0}$. (1 mark)
 - (ii) Write down cartesian equations for 1. (2 marks)
 - (iii) Find the direction cosines of l and explain, geometrically, what these represent.

 (3 marks)
- (b) The plane Π has equation $\mathbf{r} = \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$.
 - (i) Find an equation for Π in the form $\mathbf{r} \cdot \mathbf{n} = d$. (4 marks)
 - (ii) State the geometrical significance of the value of d in this case. (1 mark)
- (c) Determine, to the nearest 0.1° , the angle between l and Π . (4 marks)

Question 5: Jun 2008 Q4

Two planes have equations

$$\mathbf{r} \cdot \begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix} = 12 \quad \text{and} \quad \mathbf{r} \cdot \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} = 7$$

- (a) Find, to the nearest 0.1°, the acute angle between the two planes. (4 marks)
- (b) (i) The point P(0, a, b) lies in both planes. Find the value of a and the value of b.

 (3 marks)
 - (ii) By using a vector product, or otherwise, find a vector which is parallel to both planes. (2 marks)
 - (iii) Find a vector equation for the line of intersection of the two planes. (2 marks)

Question 6: Jan 2009 Q1

The line *l* has equation $\mathbf{r} = (1 + 4t)\mathbf{i} + (-2 + 12t)\mathbf{j} + (1 - 3t)\mathbf{k}$.

- (a) Write down a direction vector for *l*. (1 mark)
- (b) (i) Find direction cosines for *l*. (2 marks)
 - (ii) Explain the geometrical significance of the direction cosines in relation to l. (1 mark)
- (c) Write down a vector equation for l in the form $(\mathbf{r} \mathbf{a}) \times \mathbf{b} = \mathbf{0}$. (2 marks)

Question 7: Jan 2009 Q6

The line L and the plane Π are, respectively, given by the equations

$$\mathbf{r} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$
 and $\mathbf{r} \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 20$

- (a) Determine the size of the acute angle between L and Π . (4 marks)
- (b) The point P has coordinates (10, -5, 37).
 - (i) Show that P lies on L. (1 mark)
 - (ii) Find the coordinates of the point Q where L meets Π . (4 marks)
 - (iii) Deduce the distance PQ and the shortest distance from P to Π . (3 marks)

Question 8: Jun 2009 Q3

The plane Π has equation $\mathbf{r} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + \mu \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$.

- (a) Find an equation for Π in the form $\mathbf{r} \cdot \mathbf{n} = d$. (4 marks)
- (b) Show that the line with equation $\mathbf{r} = \begin{bmatrix} 7 \\ 1 \\ 4 \end{bmatrix} + t \begin{bmatrix} 10 \\ 1 \\ 5 \end{bmatrix}$ does not intersect Π , and explain

the geometrical significance of this result.

(4 marks)

Question 9: Jan 20120 Q6

(a) Find the value of p for which the planes with equations

$$\mathbf{r} \cdot \begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix} = 42$$
 and $\mathbf{r} \cdot \begin{bmatrix} 4p+1 \\ p-2 \\ 1 \end{bmatrix} = -7$

- (i) are perpendicular; (3 marks)
- (ii) are parallel. (3 marks)
- (b) In the case when p = 4:
 - (i) write down a cartesian equation for each plane; (2 marks)
 - (ii) find, in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$, an equation for l, the line of intersection of the planes. (6 marks)
- (c) Determine a vector equation, in the form $\mathbf{r} = \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}$, for the plane which contains l and which passes through the point (30, 7, 30). (2 marks)

Question 10: Jun 2010 Q3

The plane Π_1 is perpendicular to the vector $9\mathbf{i} - 8\mathbf{j} + 72\mathbf{k}$ and passes through the point A(2, 10, 1).

- (a) Find, in the form $\mathbf{r} \cdot \mathbf{n} = d$, a vector equation for Π_1 . (3 marks)
- (b) Determine the exact value of the cosine of the acute angle between Π_1 and the plane Π_2 with equation $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 11$. (4 marks)

Lines and planes - exam questions

2

A1√

M1

A1

M1 A1

M1

dM1

A1√

2

Question 1: Jan 2006 Q3

(a)
$$| (i) \mathbf{n} = (3\mathbf{j} + \mathbf{k}) \times (4\mathbf{i} - \mathbf{j}) = \mathbf{i} + 4\mathbf{j} - 12\mathbf{k}$$
 | M1A1 | 2

(ii)
$$d = (2i + 5j + k) \cdot (i + 4j - 12k) = 10$$

(b) Either substituting.
$$\mathbf{r} = \begin{bmatrix} 2+3t \\ 2 \\ 5-t \end{bmatrix} \text{ into } \begin{pmatrix} \mathbf{r} - \begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$$

Or

(c)

Subst^g.
$$\mathbf{r} = \begin{bmatrix} 2+3t \\ 2 \\ 5-t \end{bmatrix}$$
 into their plane eqn.

Pt. of i/sctn. at
$$14\mathbf{i} + 2\mathbf{j} + \mathbf{k}$$

Question 2: Jun 2006 Q1

1(a)	$\cos \theta = \frac{\text{scalar product}}{}$	M1	
	product of moduli	1411	
	Scalar product in numerator = 24	B1	
	Both moduli in denominator:		
	$\sqrt{50}$ and $\sqrt{18}$	B1	
	$\cos \theta = \frac{4}{5} \text{or } 0.8$	A1	4
b)(i)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 5 & 3 \\ 4 & 1 & 1 \end{vmatrix} = 2\mathbf{i} + 8\mathbf{j} - 16\mathbf{k}$	M1 A1	2

(ii)
$$\mathbf{r} = \lambda \begin{bmatrix} 1 \\ 4 \\ -8 \end{bmatrix}$$
 or $\mathbf{r} \times \begin{bmatrix} 1 \\ 4 \\ -8 \end{bmatrix} = \mathbf{0}$ B1 $^{\checkmark}$ B1

Question 3: Jun 2006 Q7

(a)
$$\begin{vmatrix} \mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \begin{vmatrix} 4 & -1 & 7 \\ 6 & 1 & 6 \\ 2 & 2 & -1 \end{vmatrix} = 0$$

B1

M1 m1

A1

M1

A1

M1

A1√

M1 A1√

B1

B1√

M1

A1√

M1

1

2

3

15

Total

1

3

2

(b)
$$\begin{vmatrix} \mathbf{a} \cdot \mathbf{c} \times \mathbf{d} = \begin{vmatrix} 4 & -1 & 7 \\ 2 & 2 & -1 \\ 1 & 3 & -2 \end{vmatrix} = 21$$

(i)
$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{d} - \mathbf{a})$$

$$\mathbf{r} = \begin{bmatrix} 4 \\ -1 \\ 7 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} + \mu \begin{bmatrix} -3 \\ 4 \\ -9 \end{bmatrix}$$

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & -1 \\ -3 & 4 & -9 \end{vmatrix} = -14\mathbf{i} + 21\mathbf{j} + 14\mathbf{k}$$

$$d = \begin{bmatrix} 4 \\ -1 \\ 7 \end{bmatrix}, \begin{bmatrix} -2 \\ 3 \\ 2 \end{bmatrix} = 3$$

(d)
$$\mathbf{r} = \nu(\mathbf{a} + \mathbf{c} + \mathbf{d}) = \nu(7\mathbf{i} + 4\mathbf{j} + 4\mathbf{k})$$

Cartesian equations are
$$\frac{x}{7} = \frac{y}{4} = \frac{z}{4}$$

$$\sqrt{7^2 + 4^2 + 4^2} = 9$$
siving dos $\frac{7}{4}$ and

giving d.c.s
$$\frac{7}{9}$$
, $\frac{4}{9}$ and $\frac{4}{9}$

Question 4: Jan 2008 Q6

(a)(i)
$$| \mathbf{a} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} \text{ and } \mathbf{b} = 3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}$$

(ii) Equating for
$$\lambda$$
: $\frac{x-1}{3} = \frac{y-1}{2} = \frac{z-2}{6}$

(iii)
$$\sqrt{3^2 + 2^2 + 6^2} = 7$$
 B1

Direction cosines are
$$\frac{3}{7}$$
, $\frac{2}{7}$ and $\frac{6}{7}$

These are the cosines of the angles

between the line and the
$$x$$
-, y - and z -axes (respectively)

(b)(i)
$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & 2 \\ 1 & 1 & 3 \end{vmatrix} = 7\mathbf{i} - 10\mathbf{j} + \mathbf{k}$$
 M1A1

$$d = \begin{bmatrix} 7 \\ 5 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ -10 \\ 1 \end{bmatrix} = 0$$
 M1 A1 4

(ii)
$$d = 0 \implies \text{plane through / contains the origin}$$
 B1

(c)
$$\sin \theta / \cos \theta = \frac{\text{scalar product}}{\text{product of moduli}}$$
Numerator = $21 - 20 + 6 = 7$
Denominator = $7.\sqrt{150}$
B1
$$\theta = 4.7^{\circ}$$
A1

Total

Ques	tion 5: Jun 2008 Q4		
4 (a)	Use of $\cos \theta = \frac{\text{scalar product}}{\text{product of moduli}}$	M1	
	Numerator = 7 Denominator = $\sqrt{21}\sqrt{27}$ $\theta = 72.9^{\circ}$	B1,B1 A1	4
b)(i)	a + 4b = 7 and $a - b = 12a = 11$ and $b = -1$	B1 M1 A1	3
(ii)	$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 1 & -1 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -22 \\ 3 \end{bmatrix}$	M1	3
	$\begin{bmatrix} 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$	A1	2
		Al	2
(iii)	$\mathbf{r} = \begin{bmatrix} 0 \\ 11 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ -22 \\ 3 \end{bmatrix}$	M1	
	or other equivalent line form eg $(\mathbf{r} - \mathbf{a}) \times \mathbf{d} = 0$	A1	2
	Total		11
1 (a)	tion 6: Jan 2009 Q1 4i + 12j - 3k or equivalent	B1	1
b)(i)	$\sqrt{4^2 + 12^2 + 3^2} = 13$	M1	
	$\sqrt{4^2 + 12^2 + 3^2} = 13$ d.c.'s are $\frac{4}{13}$, $\frac{12}{13}$ and $-\frac{3}{13}$	A1F	2
(ii)	The cosines of the angles between the line and the coordinate axes	B1	1
(c)	$\mathbf{a} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \text{their d.v.}$	B1 B1F	2
	Total	DII	6
	tion 7: Jan 2009 Q6 Use of $\sin \theta$ or $\cos \theta$	l I	
0(1)	= (dot product)/(product of moduli) Num ^r . = 3	M1 B1F	
	$Denom^r = \sqrt{18}\sqrt{2}$	B1F	
	θ=30°	A1	4
(b)(i) (ii)	$\lambda = 8$ noted or found $\begin{bmatrix} 2 + \lambda \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	B1	1
	$\begin{bmatrix} 3 - \lambda \\ 5 + 4\lambda \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 20$	M1	
	$3 - \lambda + 5 + 4\lambda = 20 \implies \lambda = 4$ giving $Q = (6, -1, 21)$	M1 A1 B1F	4
(iii)	$PQ = \sqrt{4^2 + 4^2 + 16^2} = 12\sqrt{2}$	M1 A1	
	Sh. Dist. = $12\sqrt{2} \cdot \sin 30^{\circ} = 6\sqrt{2}$	B1F	3
	Total		12

Ques	stion 8: Jun 2009 Q3		
3(a)	$\mathbf{n} = (3\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \times (4\mathbf{i} - \mathbf{j} + \mathbf{k})$	M1	
	$= 3\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}$ $d = (2\mathbf{i} + \mathbf{j} + \mathbf{k}) \bullet (\text{their } \mathbf{n}) = 4$	A1 M1 A1	4
(b)	$\begin{bmatrix} 7+10t \\ 1+t \\ 4+5t \end{bmatrix}$ subst ^d . into their plane eqn.	M1	
	21 + 30t + 5 + 5t - 28 - 35t = 4	dM1	
	Since $-2 \neq 4$, no intersection	A1	
	Line parallel to plane OR	B1	
	$\begin{bmatrix} 3 \\ 5 \\ -7 \end{bmatrix} \bullet \begin{bmatrix} 10 \\ 1 \\ 5 \end{bmatrix} = 0$	(M1) (A1) (B1)	
	Line perp ^r . to nml. \Rightarrow line // to plane OR	(B1)	
	$\begin{bmatrix} 7+10t \\ 1+t \\ 4+5t \end{bmatrix} $ equated to $\begin{bmatrix} 2+3\lambda+4\mu \\ 1+\lambda-\mu \\ 4+2\lambda+\mu \end{bmatrix}$	(M1)	
	Eliminating λ , μ to get linear eqn. in t	(dM1)	
	Since $-2 \neq 4$, no intersection	(A1)	
	Line parallel to plane Total	(B1)	<u>4</u>
	10131		0

Ouestion 9: Jan 20120 O6

Ques	tion 9: Jan 20120 Q6		
(a)(i)	$\lceil 6 \rceil \lceil 4p+1 \rceil$		
	$\begin{bmatrix} -3 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} p-2 \\ 1 \end{bmatrix} = 0$ $24p+6-3p+6+2=0$ $p = -\frac{2}{3}$	M1	
	24p + 6 - 3p + 6 + 2 = 0	M1	
	$p = -\frac{2}{3}$	A1	3
(ii)		M1 A1,A1	3
	$\underbrace{\mathbf{ALT}}_{2} \begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix} \times \begin{bmatrix} 4p+1 \\ p-2 \\ 1 \end{bmatrix} = 0 \qquad \begin{bmatrix} 1-2p \\ 8p-4 \\ 18p-9 \end{bmatrix}$ $p = \frac{1}{2}$	(M1A1) (A1)	
	6x - 3y + 2z = 42, $17x + 2y + z = -7eg 2.② - ①: 7[4x + y = -8]\frac{x+2}{-1} = \frac{y}{4} = \lambdaSubstituting back to find 3^{\text{rd}} variable$	B1,B1 M1A1 M1	2
	$z = 9\lambda + 27$	A1	
	$\mathbf{r} = \begin{bmatrix} 0 \\ -8 \\ 9 \end{bmatrix}, \begin{bmatrix} 1 \\ -12 \\ 0 \end{bmatrix} \text{ or } \begin{bmatrix} -2 \\ 0 \\ 27 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 4 \\ 9 \end{bmatrix}$	B1	6
	OR method for finding the d.v. $\begin{bmatrix} -1\\4\\9 \end{bmatrix}$	(M2A1)	
	Method for finding any pt. on <i>l</i> Putting them together as a line eqn.	(M1A1) (B1)	
(c)	$\mathbf{r} = \mathbf{a} + u \mathbf{d}_1 + v \mathbf{d}_2$ where \mathbf{a} is an pt. on plane $\mathbf{d}_1 = \text{any d.v.}$		
	$\mathbf{d}_2 = \begin{vmatrix} 7 \\ 30 \end{vmatrix} - \text{any } \mathbf{a} \text{ in plane}$		2
	Total		16

Question 10: Jun 2010 Q3

ГоЛ		
Clearly identifying $\mathbf{n} = \begin{bmatrix} 9 \\ -8 \\ 72 \end{bmatrix}$	B1	
$d = \begin{bmatrix} 9 \\ -8 \\ 72 \end{bmatrix} \bullet \begin{bmatrix} 2 \\ 10 \\ 1 \end{bmatrix} = 10$	M1 A1	3
Use of $\frac{\text{Sc.prod. of normals}}{\text{prod. of their moduli}}$ $N^r = 73$	M1 B1√	
$\cos\theta = \frac{1}{\sqrt{3}}$	A1	4
Total		7
	$d = \begin{bmatrix} 9 \\ -8 \\ 72 \end{bmatrix} \bullet \begin{bmatrix} 2 \\ 10 \\ 1 \end{bmatrix} = 10$ Use of $\frac{\text{Sc.prod. of normals}}{\text{prod. of their moduli}}$ $N^{r} = 73$ $D^{r} = 73\sqrt{3} \text{ or } \sqrt{15987}$ $\cos \theta = \frac{1}{\sqrt{3}}$	$d = \begin{bmatrix} 9 \\ -8 \\ 72 \end{bmatrix} \bullet \begin{bmatrix} 2 \\ 10 \\ 1 \end{bmatrix} = 10$ $Use of \frac{Sc.prod. of normals}{prod. of their moduli}$ $N^{r} = 73$ $D^{r} = 73\sqrt{3} \text{ or } \sqrt{15987}$ $\cos \theta = \frac{1}{\sqrt{3}}$ $A1$