Limits

	Limits you have to know: You are allowed to use the following results without proof: -when $x \rightarrow \infty, x^{k} e^{-x} \rightarrow 0$ for any real number k. - when $x \rightarrow 0, x^{k} \ln (x) \rightarrow 0$ for $k>0$.
	Improper integrals The integral $\int_{a}^{b} f(x) d x$ is said IMPROPER if a) the interval of integration is infinite, or b) $f(x)$ is not defined at one or both of the end points $x=a$ and $x=b$.
	Method To work out if an improper integral has a value or not (exists or not) 1) Replace " ∞ " or "a", the value where f is not defined, by a letter. " N " for example. 2) Integrate to find an expression in terms of "N". 3) Work out the limit of this expression when "N" tends to " ∞ " or "a". 4) If the limit exists then the improper integral has a value. If the limit is " ∞ ", the improper integral does not exist. Example: $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$ is an improper integral. Let's work out $\int_{0}^{N} \frac{1}{1+x^{2}} d x=[\operatorname{Arctan}(x)]_{0}^{N}=\operatorname{Arctan}(\mathrm{N})-\operatorname{Arctan}(0)$ $\operatorname{Arctan}(0)=0$ and when $\mathrm{N} \rightarrow \infty, \operatorname{Arctan}(\mathrm{N}) \rightarrow \frac{\pi}{2}$. conclusion : $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$ exists and $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\frac{\pi}{2}$

