## Limits



## Limits you have to know:

You are allowed to use the following results without proof:

•when  $x \to \infty$ ,  $x^k e^{-x} \to 0$  for any real number k.

•when  $x \to 0$ ,  $x^k \ln(x) \to 0$  for k > 0.



## Improper integrals

The integral  $\int_{a}^{b} f(x)dx$  is said IMPROPER if

a) the interval of integration is infinite,

or b) f(x) is not defined at one or both of the end points x = a and x = b.



## Method

To work out if an improper integral has a value or not (exists or not)

1) Replace " $\infty$ " or "a", the value where f is not defined, by a letter. "N" for example.

2) Integrate to find an expression in terms of "N".

3) Work out the limit of this expression when "N" tends to "∞" or "a".

4) If the limit exists then the improper integral has a value. If the limit is " $\infty$ ", the improper integral does not exist.

Example:  $\int_0^\infty \frac{1}{1+x^2} dx$  is an improper integral.

Let's work out  $\int_0^N \frac{1}{1+x^2} dx = \left[ \operatorname{Arc} \tan(x) \right]_0^N = \operatorname{Arctan}(N) - \operatorname{Arctan}(0)$ 

Arctan(0) = 0 and when  $N \to \infty$ , Arctan(N)  $\to \frac{\pi}{2}$ .

conclusion:  $\int_0^\infty \frac{1}{1+x^2} dx \text{ exists and } \int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}$