Invariant lines and points - Exam questions

Question 1: Jan 2006 - Q5

The transformation T maps (x, y) to (x', y'), where

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- (a) Describe the difference between an invariant line and a line of invariant points of T.

 (1 mark)
- (b) Evaluate the determinant of the matrix $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and describe the geometrical significance of the result in relation to T. (2 marks)
- (c) Show that T has a line of invariant points, and find a cartesian equation for this line.

 (2 marks)
- (d) (i) Find the image of the point (x, -x + c) under T. (2 marks)
 - (ii) Hence show that all lines of the form y = -x + c, where c is an arbitrary constant, are invariant lines of T. (2 marks)
- (e) Describe the transformation T geometrically. (3 marks)

Question 2: June 2006 - Q2

A transformation is represented by the matrix $\mathbf{A} = \begin{bmatrix} 0.28 & -0.96 & 0 \\ 0.96 & 0.28 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- (a) Evaluate det **A**. (1 mark)
- (b) State the invariant line of the transformation. (1 mark)
- (c) Give a full geometrical description of this transformation. (3 marks)

Question 3: June 2006 - Q4

The plane transformation T maps points (x, y) to points (x', y') such that

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{where } \mathbf{A} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

- (a) (i) State the line of invariant points of T. (1 mark)
 - (ii) Give a full geometrical description of T. (2 marks)
- (b) Find A^2 , and hence give a full geometrical description of the single plane transformation given by the matrix A^2 . (3 marks)

Question 4: Jan 2007 - Q7

The transformation S is a shear with matrix $\mathbf{M} = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$. Points (x, y) are mapped under S to image points (x', y') such that

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

- (a) Find the equation of the line of invariant points of S. (2 marks)
- (b) Show that all lines of the form y = x + c, where c is a constant, are invariant lines of S. (3 marks)
- (c) Evaluate $\det \mathbf{M}$, and state the property of shears which is indicated by this result. (2 marks)
- (d) Calculate, to the nearest degree, the acute angle between the line y = -x and its image under S. (3 marks)

Question 5: June 2009 - Q4

(a) Show that the system of equations

$$3x - y + 3z = 11$$

 $4x + y - 5z = 17$
 $5x - 4y + 14z = 16$

does not have a unique solution and is consistent.

(You are not required to find any solutions to this system of equations.) (4 marks)

(b) A transformation T of three-dimensional space maps points (x, y, z) onto image points (x', y', z') such that

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x - y + 3z - 2 \\ 2x + 6y - 4z + 12 \\ 4x + 11y + 4z - 30 \end{bmatrix}$$

Find the coordinates of the invariant point of T.

(8 marks)

The plane transformation T is represented by the matrix $\mathbf{M} = \begin{bmatrix} -3 & 8 \\ -1 & 3 \end{bmatrix}$.

(a) The quadrilateral ABCD has image A'B'C'D' under T.

Evaluate det M and describe the geometrical significance of both its sign and its magnitude in relation to ABCD and A'B'C'D'. (3 marks)

(b) The line y = px is a line of invariant points of T, and the line y = qx is an invariant line of T.

Show that $p = \frac{1}{2}$ and determine the value of q. (5 marks)

- (c) (i) Find the 2×2 matrix **R** which represents a reflection in the line $y = \frac{1}{2}x$. (2 marks)
 - (ii) Given that T is the composition of a shear, with matrix S, followed by a reflection in the line $y = \frac{1}{2}x$, determine the matrix S and describe the shear as fully as possible.

(5 marks)

Question 7: Jun 2011 – Q6

(a) The transformation U of three-dimensional space is represented by the matrix

$$\begin{bmatrix} 1 & 4 & -3 \\ 2 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$

(i) Write down a vector equation for the line L with cartesian equation

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{6}$$
 (2 marks)

- (ii) Find a vector equation for the image of L under U, and deduce that it is a line through the origin. (4 marks)
- **(b)** The plane transformation V is represented by the matrix $\begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}$.

 L_1 is the line with equation $y = \frac{1}{2}x + k$, and L_2 is the image of L_1 under V.

- (i) Find, in the form y = mx + c, the cartesian equation for L_2 . (4 marks)
- (ii) Deduce that L_2 is parallel to L_1 and find, in terms of k, the distance between these two lines. (3 marks)

Invariant lines and points - Exam questions

	In	ıva	riar	١t	line
Qu	estion 1: Jan 2006 – Q5				
5(a)	For an <i>invariant line</i> , all points on the l have image points also on the line.	ine			
	For a line of invariant points, all points	on	ъ.		
(b)	the line map onto themselves. Det = 3		B1 B1		1
(6)	The s.f., of area enlargement under T		B1		2
5(c)	Setting $x' = x$ and $y' = y$ and solving		M1		
	$\Rightarrow y = x$		A1		
	Or Char. Eqn. is $\lambda^2 - 4\lambda + 3 = 0$		M1		
	$\lambda = 1$ gives l.o.i.p.s and $y = x$		A1		2
d)(i)	$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ -x+c \end{bmatrix}$		M1		
	$= \begin{bmatrix} 3x - c \\ -3x + 2c \end{bmatrix}$		A1		2
(ii)	y' = -x' + c also		M1		
	$\Rightarrow y = -x + c$ invariant for all c		A1		2
(e)	Stretch, s.f. 3, perp ^r . to $y = x$ (or $ $ to $y = -x$)		M1 A	1	3
0	To	tal			12
(a)	estion 2: June 2006 – Q2 det A = 1		В1		1
(b)	The principle of the second of				
(c)	The z-axis (i.e $x = y = 0$) Rotation		B1 M1		1
(0)	about the z-axis		Al		
	through $\cos^{-1} 0.28$		A1		3
0		tal			5
(a)(i)	estion 3: June 2006 – Q4 The x-axis		В	1	1
(ii)			M		
	mapping e.g. $(0, 1) \rightarrow (3, 1)$ or $(1, 1) \rightarrow (4, 1)$		A	1	2
(b)					
	$\mathbf{A}^2 = \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix}$		B	l	
	Shear (parallel to the <i>x</i> -axis)		M	1	
	mapping e.g. $(0, 1) \rightarrow (6, 1)$ or $(1, 1) \rightarrow (7, 1)$		A	1	3
-	* * * * * * * * * * * * * * * * * * * *	otal			6
	estion 4: Jan 2007 – Q7 Setting $x' = x$ and $y' = y$	x .	11		
	x = -x + 2y and $y = -2x + 3y$				
(b)	gives $y = x$ $\begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} x & 7 & [x+2c] \end{bmatrix}$	A	1	2	
	$\begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x \\ x+c \end{bmatrix} = \begin{bmatrix} x+2c \\ x+3c \end{bmatrix}$	M1	A1		
(c)	And $y' = x' + c$ also	В	31	3	
	$\det \mathbf{M} = 1 \implies \text{Areas of shapes invariant}$	В1	В1	2	
(d)	$\begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} a \\ -a \end{bmatrix} = \begin{bmatrix} -3a \\ -5a \end{bmatrix}$	N	11		
	\Rightarrow Image of $y = -x$ under S is $y = \frac{5}{3}x$	A	1		
	Angle is $135^{\circ} - \tan^{-1} \frac{5}{3} = 76^{\circ}$	В	1F	3	
	N.B. Final angle can be gained via scalar product:				
	$\cos \theta = \left \frac{(\mathbf{i} - \mathbf{j}) \cdot (-3\mathbf{i} - 5\mathbf{j})}{\sqrt{2}\sqrt{34}} \right $				
	$\Rightarrow \theta = \cos^{-1}(1/\sqrt{17}) = 76^{\circ}$				_
	Total			10)

Question 5: June 2009 - Q4 4(a) $3 \times [1] - [2] \Rightarrow 5x - 4y + 14z = 16$ M2 A1 El Giving no unique soln. and consistent For those who just show $\Delta = 0$ to (M1) conclude that there is no unique soln. (A1) Solving e.g. in [1] & [2]: (M1) $\frac{x-4}{2} = \frac{y-1}{27} = \frac{z}{7} = \lambda$ (A1) Subst^g. in [3] for x, y, z in terms of λ (M1) Showing LHS = RHS = 16(A1) OR $3 \quad -1 \quad 3 \quad | \ 11 \qquad \quad 3 \quad -1 \quad 3 \quad | \ 1$ (M1)(A1) $4 \quad 1 \quad -5 \quad 17 \quad \rightarrow \quad 1 \quad 2 \quad -8 \quad 6$ (A1) 5 -4 14 16 -1 -2 8 -6 $R_2' = -R_3' \implies$ no unique soln. and (E1) consistency (M1)Showing $\Delta = 0 \implies$ no unique soln. (A1) Attempt at each of $\Delta_x = \begin{vmatrix} 11 & -1 & 3 \\ 17 & 1 & -5 \\ 16 & -4 & 14 \end{vmatrix}$, $\Delta_y = \begin{vmatrix} 3 & 11 & 3 \\ 4 & 17 & -5 \\ 5 & 16 & 14 \end{vmatrix} \text{ and } \Delta_z = \begin{vmatrix} 3 & -1 & 11 \\ 4 & 1 & 17 \\ 5 & -4 & 16 \end{vmatrix}$ (M1)Each shown = 0 and this \Rightarrow consistency (A1) (b) Setting x' = x, y' = y, z' = z 2 = -y + 3zM1-12 = 2x + 5y - 4zΑl 30 = 4x + 11y + 3zM1by $(3) - 2 \times (2)$ A1z = 4, y = 10MI AI x = -23MI AI 8 Other methods for solving a 3×3 system will be constructed should they arise 12 Total

Que	stion 6: Jan 2011 – Q8		
8(a)	$Det(\mathbf{M}) = -1$	B1	
	Magnitude = $1 \Rightarrow$ area invariant	B1√	
	- ve sign ⇒ cyclic order of vertices is	"	2
	reversed OR "reflection" involved	B1	3
(b)	Method 1		
()	Char. Eqn.: $\lambda^2 - 1 = 0 \implies \lambda = \pm 1$	MI AI	
	Subst ^g . back: $\lambda = 1 \implies y = \frac{1}{2}x$	M1 A1	
	and $\lambda = -1 \implies y = \frac{1}{4}x$	Al	5
	Method 2		
	$ \begin{array}{ c c c c c c } \hline \begin{bmatrix} -3 & 8 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ mx \end{bmatrix} = \begin{bmatrix} (8m-3)x \\ (3m-1)x \end{bmatrix} $	(M1)	
	Use of $y' = mx'$: $3m - 1 = 8m^2 - 3m$	(M1)	
	Solving a quadratic eqn. in $m = \frac{1}{4}$, $\frac{1}{2}$	(M1A1)	
	$p = \frac{1}{2}$ and $q = \frac{1}{4}$	(A1)	
(a)			
(c)	$(i) p = \frac{1}{2} = \tan \theta$	MI	
	$\Rightarrow \cos 2\theta = \frac{3}{5} \text{ and } \sin 2\theta = \frac{4}{5}$		
	$\mathbf{R} = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$	Al	2
	(ii) Use $\begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$ S = $\begin{bmatrix} -3 & 8 \\ -1 & 3 \end{bmatrix}$	MI	
	S found using inverse matrix	Ml	
	$ = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} -3 & 8 \\ -1 & 3 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -13 & 36 \\ -9 & 23 \end{bmatrix} $	Αl	
	Shear, parallel to $y = \frac{1}{2}x$	B1	
	mapping (e.g.) $(1, 1) \rightarrow (4.6, 2.8)$	B1√	5
	Total		15
0	-tion 7, lun 2011 OC		

mapping (e.g.) $(1, 1) \rightarrow (4.6, 2.8)$	B1√	5	
11 3 (3) () -) (() -)	DI		
Total		15	
Question 7: Jun 2011 – Q6			
$ \begin{array}{c c} 6 \\ \mathbf{(a)(i)} \end{array} \mathbf{r} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix} $	B2,1	2	
(ii) $\mathbf{r} = \begin{bmatrix} 1 & 4 & -3 \\ 2 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1+2\lambda \\ 2+3\lambda \\ 3+6\lambda \end{bmatrix} = \begin{bmatrix} -4\lambda \\ \lambda \\ -\lambda \end{bmatrix}$			
Clear and valid explanation that this is a line through <i>O</i>	E1	4	
(b) (i) $\begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} p \\ \frac{1}{2}p + k \end{bmatrix} = \begin{bmatrix} 3p + 4k \\ \frac{3}{2}p - k \end{bmatrix}$ Answer satisfies $y = \frac{1}{2}x - 3k$ (ii) Equal gradients, hence parallel	B1 M1A1 A1	4	
Distance = $ k - c \cos \theta$ with $\tan \theta = \frac{1}{2}$	M1		
$\dots = \frac{8k}{\sqrt{5}}$	A1	3	
		13	