Integration

Indefinite integrals
Integration is the "opposite" of differentiation.
If $y=f(x)$ is a given function, to integrate f means finding a function $F(x)$

$$
\text { so that } \frac{d F}{d x}=f
$$

F is called an INTEGRAL of f and it is noted $\int f(x) d x$
Note: An integral is not unique. If $F(x)$ is an integral, then $F(x)+c$ is also one.

$$
\int f(x) d x=F(x)+c \quad \text { where } c \text { is a constant }
$$

Integrating x^{n}
The formula tells you how to integrate powers of x.

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c \quad \text { for all } n \neq-1
$$

$\underline{\text { Rules of integrations }}$
$f(x)$ and $g(x)$ are two functions , a is a constant

$$
\begin{aligned}
& \int a \times f(x) d x=a \times \int f(x) d x \\
& \int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x
\end{aligned}
$$

Examples: $\int x^{3} d x=\frac{1}{4} x^{4}+c \quad, \int\left(3 x^{2}-3 x\right) d x=3 \times \frac{1}{3} x^{3}-3 \times \frac{1}{2} x^{2}+c=x^{3}-\frac{3}{2} x^{2}+c$

Integrating to find the equation of a curve
A curve $y=f(x)$ is going through the point $A\left(x_{A}, y_{A}\right)$ and $\frac{d y}{d x}=f^{\prime}(x)$ is given.
To find the equation of the curve,
\bullet integrate $f^{\prime}(x) \quad: \int f^{\prime}(x) d x=F(x)+c$

- find the value of the constant c using the coordinates of A.

Example:The curve $y=f(x)$ goes through $\mathrm{A}(2,9)$ and $\frac{d y}{d x}=3 x^{2}$.
Find the eqaution of the curve.

- $\int 3 x^{2} d x=x^{3}+c \quad$ so $y=x^{3}+c$
- $A(2,9)$ belongs to the curve so $9=(2)^{3}+c \quad c=1$
-the eqaution of the curve is $y=x^{3}+1$

