Algebra

Indices and surds

KEY POINTS

Definition: for n integer and $a \neq 0$, $a^n = a \times a \times a \dots \times a$ (n factors)

$$a^1 = a$$
 and $a^0 = 1$

(a is called the base)

Multiplication : $a^n \times a^p = a^{n+p}$

Division : $a^n \div a^p = \frac{a^n}{a^p} = a^{n-p}$

Negative index : $a^{-n} = \frac{1}{a^n}$ and $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

Power of a power : $(a^n)^p = a^{n \times p}$

Fractional index : $a^{\frac{1}{n}} = \sqrt[n]{a}$ and $a^{\frac{n}{p}} = \sqrt[p]{a^n} = \left(\sqrt[p]{a}\right)^n$

Different bases : $a^n \times b^n = (ab)^n$ and $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$

KEY POINTS

Definition : for $a \ge 0$, \sqrt{a} is the positive number so that $(\sqrt{a})^2 = a$

Multiplication : $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$

in particular $\sqrt{a^2} = \sqrt{a} \times \sqrt{a} = (\sqrt{a})^2 = a \quad (for \ a \ge 0)$

Division : $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ (for $a \ge 0, b > 0$)

Difference of squares: $(x+y)(x-y) = x^2 - y^2$

hence $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$

 $\sqrt{a} \pm \sqrt{b}$ is called the conjugate (expression) to $\sqrt{a} \mp \sqrt{b}$

Rationalise the denominator:

$$\bullet \frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$\bullet \frac{1}{\sqrt{a} \pm \sqrt{b}} = \frac{1}{\sqrt{a} \pm \sqrt{b}} \times \frac{\sqrt{a} \mp \sqrt{b}}{\sqrt{a} \mp \sqrt{b}} = \frac{\sqrt{a} \mp \sqrt{b}}{a - b}$$

(Multiple numerator and denominator by the conjugate expression)