Transformations of graphs

Translations of graphs

A curve C_f has equation y = f(x).

"a"is a positive number.

•The curve with equation y = f(x) - b is the translation of C_f by vector $\begin{pmatrix} 0 \\ -b \end{pmatrix}$

The curve with equation
$$y = f(x+a)$$
 is the translation of C_f by vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$

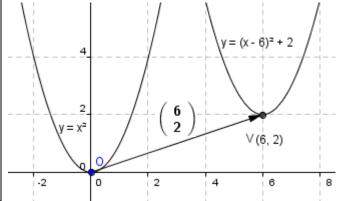
Combined translations

• The curve with equation y + b = f(x + a) is the translation of C_f by vector $\begin{pmatrix} -a \\ -b \end{pmatrix}$

Examples : The curve with equation $y = (x-3)^2 + 2$ is the translation of

the curve $y = x^2 by vector \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

The circle $(x-3)^2 + (y+1)^2 = 9$ is the translation of the circle $x^2 + y^2 = 9$ by the vector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$.


Parabolas

All parabolas of the form $y = x^2 + bx + c$ are the image of the parabola $y = x^2$ To work out the vector of this translation, use the completed square form:

$$y = x^{2} + bx + c = (x + p)^{2} + q$$

The vector of the translation is $\begin{pmatrix} -p \\ q \end{pmatrix}$.

Note : This vector is the vector \overrightarrow{OV} , where V(-p,q) is the vertex of the parabola.

