mathcentre

Forces acting at an angle: Resolving Forces

A force that acts at an angle can be split into two perpendicular components.

Newton's Second Law can be applied in each of the resolved directions.

Worked Example 1.

A computer base unit of mass 6 kg is dragged along a smooth desk. If the tension in each arm of the person dragging it is 20 N and it acts at 25° above the horizontal, what is the acceleration of the base unit and what is its normal reaction?

Solution

Figure 1 shows the forces acting on the base unit. Firstly the acceleration, a, needs to be calculated.
The resultant horizontal force is $40 \cos 25^{\circ}$.
Using Newton's Second Law of Motion:

$$
\begin{aligned}
F & =m a \\
40 \cos 25^{\circ} & =6 \times a \\
\Rightarrow a & =6.0 \mathrm{~m} \mathrm{~s}^{-2}(2 \text { s.f. })
\end{aligned}
$$

Figure 1

In order to calculate the normal reaction force, resolve vertically:

$$
\begin{aligned}
R+40 \sin 25^{\circ}-6 \times 9.81 & =0 \\
\Rightarrow R=58.56-16.90 & =42 \mathrm{~N}(2 \text { s.f. })
\end{aligned}
$$

Worked Example 2.

Two tug boats are towing a large boat, of mass 13750 kg , back to shore. Tug boat 1 is pulling with a force of $T_{1}=7500 \mathrm{~N}$ at an angle of 30° north of the forward motion (see Figure 2) and tug boat 2 is pulling with a force of $T_{2}=8500 \mathrm{~N}$ at an angle θ south of the forward motion. If there is a resistive motion of 1050 N opposing the eastern motion, what is the acceleration of the large boat?

Solution

Firstly, calculate the unknown angle θ.

Resolving perpendicular to the direction of motion gives:

$$
\begin{aligned}
T_{1} \sin 30^{\circ}-T_{2} \sin \theta & =0 \\
\frac{7500\left(\frac{1}{2}\right)}{8500} & =\sin \theta \\
\Rightarrow \theta & =26^{\circ}(2 \text { s.f. })
\end{aligned}
$$

Figure 2 (View from above)

In order to calculate the acceleration, resolve in the direction of motion, which gives the resultant force as $7500 \cos 30^{\circ}+8500 \cos 26^{\circ}-1050$.
Applying Newton's Second Law gives:

$$
\begin{aligned}
7500 \cos 30^{\circ}+8500 \cos 26^{\circ}-1050 & =13750 a \\
\Rightarrow a & =0.95 \mathrm{~m} \mathrm{~s}^{-2}(2 \text { s.f. })
\end{aligned}
$$

Exercises

1. A computer base unit of mass 4.5 kg is dragged along a smooth desk. If the tension in each arm of the person dragging it is 16 N and acts at 22° above the horizontal, then what is the normal reaction force?
2. A computer base unit of mass 7.5 kg is dragged along a smooth desk. If the normal contact force is 23 N and the tension in the arm of the person dragging it acts at 23° to the horizontal, then what is the total tension in the person's arms?
3. Two tug boats are towing a large boat, of mass 22500 kg , back to shore. Tug boat 1 is pulling with a force of 5500 N at an angle of 35° north of the forward motion (similar to Worked Example 2) and tug boat 2 is pulling with a force of 4907.8 N at an angle 40° south of the forward motion. If the large boat is being pulled with constant velocity, and there is a resistive force to the motion, then what size is the resistive force?
4. Two tug boats are towing a large boat, of mass M kg , back to shore. Tug boat 1 is pulling with a force of $T_{1} \mathrm{~N}$ at an angle of 25° north of the forward motion (like in Worked Example 2) and tug boat 2 is pulling with a force of $T_{2} \mathrm{~N}$ at an angle of 25° south of the forward motion. If the large boat is being pulled with constant velocity, and there is a resistive force of 4000 N to the motion, then what are the magnitudes of the two forces T_{1} and T_{2} ?
5. A child on a sledge is being pulled along a horizontal path by its parent. The child and sledge have a combined mass of 20 kg and there is a normal contact force of 124.5 N . Given there is no resistance to motion and the parent pulls with a force of 125 N at an angle θ to the horizontal, then what is the angle θ ?
6. A child on a sledge is being pulled along a horizontal path by its parent. The child and sledge have a combined mass of 18 kg and there is a normal contact force of 135 N . Given there is no resistance to motion and the parent pulls with a force of $F \mathrm{~N}$ at an angle 25° to the horizontal, then what is F ?

Answers (all to 2 s.f.)

1. 32 N
2. 130 N
3. 8300 N
4. $F_{1}=F_{2}=2200 \mathrm{~N}$
5. 35°
6. 98 N
