Calculus

Differentiation

Notation

- The function you get from differentiating y with respect to x is called the DERIVATIVE of y and it's written $\frac{dy}{dx}$.
- $\frac{dy}{dx}$ is the rate of change of y with respect to x.

It is the gradient of the curve/the tangent to the curve.

• The notation f'(x) (f prime of x) is sometimes used instead of $\frac{dy}{dx}$.

Differentiation from first principle.

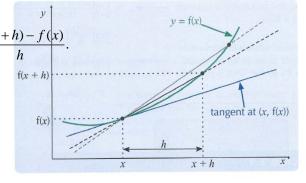
Consider two points on a curve A(x, f(x)) and a point B close to A

$$B(x+h, f(x+h))$$
 where H is "small".

The chord AB has gradient $\frac{f(x+h)-f(x)}{x+h-x} = \frac{f(x+h)-f(x)}{h}$. When B get closer and closer to A, h tends to 0.

If $\frac{f(x+h)-f(x)}{h}$ has a value when h tends to 0,

this value is the gradient of the curve at A: f'(x).



Example:
$$f(x) = x^2$$

Let's work out the gradient of the curve at x = 3.

•
$$A(3,3^2)$$
 and $B(3+h,(3+h)^2)$

the gradient of AB:
$$m = \frac{(3+h)^2 - 3^2}{3+h-3} = \frac{9+6h+h^2-9}{h} = 6+h$$

When htends to 0, m tends to 6:

Conclusion:
$$\frac{dy}{dx}(x=3) = f'(3) = 6$$

Differentiating polynomials

• if
$$y = x^n$$
 then $\frac{dy}{dx} = nx^{n-1}$

• if
$$y = x^n + x^p$$
 then $\frac{dy}{dx} = nx^{n-1} + px^{p-1}$

• if
$$y = k \times x^n$$
 then $\frac{dy}{dx} = k \times nx^{n-1}$ where $k \in \mathbb{R}$.

$$y = 5x^6 \qquad \frac{dy}{dx} = 5 \times 6x^5 = 30x^5$$

$$y = 3x^4 + 5x^3 + x$$
 $\frac{dy}{dx} = 12x^3 + 15x^2 + 1$