Using differentiation

Tangents and normals

- A tangent to a curve is a straight line that touches the curve. The gradient of the tangent is the same as the gradient of the curve at the point of contact.
- A normal to a curve at a point A is a straight line which is perpendicular to the tangent to the curve at A .

Consequence: $m_{\text {tangent }} \times m_{\text {normal }}=-1$ or

$$
m_{\text {normal }}=\frac{-1}{m_{\text {tangent }}}
$$

Second order derivatives

- If you differentiate y with respect to x, you get the derivative $\frac{d y}{d x}$.
- If you differentiate $\frac{d y}{d x}$ with respect to x, you get the second order derivative $\frac{d^{2} y}{d x^{2}}$.
- The second order derivative gives the rate of change of the gradient of the curve with respect to x.
- If $y=f(x)$, we usethe notation $\frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)$.

Stationary points

Stationary points occur when the gradient of the curve is zero: $\frac{d y}{d x}=0$
There are three kinds of stationary points:

To work out the coordinates of a stationary point:

Maximum
When the gradient When the gradie
changes from

2) Solve the equation $f^{\prime}(x)=0$
3) Substitute the x-values found into the

Minimum and maximum points

If the point $A\left(x_{A}, f\left(x_{A}\right)\right)$ is a stationary point of the curve $y=f(x)$,
The nature of the point A is determined by the sign of the second order derivative:
If $\frac{d^{2} y}{d x^{2}}\left(x=x_{A}\right)<0, A$ is a maximum point
If $\frac{d^{2} y}{d x^{2}}\left(x=x_{A}\right)=0, A$ is point of inflection
If $\frac{d^{2} y}{d x^{2}}\left(x=x_{A}\right)>0, A$ is a minimum point

