Calculus

Differentiation

Notation

- The function you get from differentiating y with respect to x is called the DERIVATIVE of y and it's written $\frac{d y}{d x}$.
- $\frac{d y}{d x}$ is the rate of change of y with respect to x.

It is the gradient of the curve/the tangent to the curve.

- The notation $f^{\prime}(x)(f$ prime of $x)$ is sometimes used instead of $\frac{d y}{d x}$.

Differentiation from first principle.
Consider two points on a curve $A(x, f(x))$ and a point B close to A
$B(x+h, f(x+h)) \quad$ where H is"small ".
The chord AB has gradient $\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+h)-f(x)}{h}$.
When B get closer and closer to A, h tends to 0 .
If $\frac{f(x+h)-f(x)}{h}$ has a value when h tends to 0 , this value is the gradient of the curve at $\mathrm{A}: f^{\prime}(x)$.

Example: $f(x)=x^{2}$
Let's work out the gradient of the curve at $x=3$.

- $A\left(3,3^{2}\right)$ and $B\left(3+h,(3+h)^{2}\right)$
the gradient of $\mathrm{AB}: m=\frac{(3+h)^{2}-3^{2}}{3+h-3}=\frac{9+6 h+h^{2}-9}{h}=6+h$
When htends to $0, m$ tends to 6 :
Conclusion: $\frac{d y}{d x}(x=3)=f^{\prime}(3)=6$
Differentiating polynomials
if $y=x^{n}$ then $\frac{d y}{d x}=n x^{n-1}$
- if $y=x^{n}+x^{p}$ then $\frac{d y}{d x}=n x^{n-1}+p x^{p-1}$
- if $y=k \times x^{n}$ then $\frac{d y}{d x}=k \times n x^{n-1} \quad$ where $k \in \mathbb{R}$.

Example: $y=x^{4} \quad \frac{d y}{d x}=4 x^{3}$

$$
\begin{aligned}
& y=5 x^{6} \quad \frac{d y}{d x}=5 \times 6 x^{5}=30 x^{5} \\
& y=3 x^{4}+5 x^{3}+x \quad \frac{d y}{d x}=12 x^{3}+15 x^{2}+1
\end{aligned}
$$

