Calculus

Differentiation

Notation

• The function you get from differentiating y with respect to x

is called the DERIVATIVE of y and it's written $\frac{dy}{dx}$.

• $\frac{dy}{dx}$ is the rate of change of y with respect to x.

It is the gradient of the curve/the tangent to the curve.

• The notation f'(x)(f prime of x) is sometimes used instead of $\frac{dy}{dx}$.

Differentiation from first principle.

Consider two points on a curve A(x, f(x)) and a point B close to A B(x+h, f(x+h)) where H is "small". The chord AB has gradient $\frac{f(x+h) - f(x)}{x+h-x} = \frac{f(x+h) - f(x)}{h}$. When B get closer and closer to A, h tends to 0. If $\frac{f(x+h) - f(x)}{h}$ has a value when h tends to 0, f(x+h)

this value is the gradient of the curve at A: f'(x).

Example: $f(x) = x^2$

Let's work out the gradient of the curve at x = 3.

• $A(3,3^2)$ and $B(3+h,(3+h)^2)$

the gradient of AB:
$$m = \frac{(3+h)^2 - 3^2}{3+h-3} = \frac{9+6h+h^2-9}{h} = 6+h$$

When *h* tends to 0, *m* tends to 6:

Conclusion: $\frac{dy}{dx}(x=3) = f'(3) = 6$

Differentiating polynomials

• if
$$y = x^n$$
 then $\frac{dy}{dx} = nx^{n-1}$
• if $y = x^n + x^p$ then $\frac{dy}{dx} = nx^{n-1} + px^{p-1}$
• if $y = k \times x^n$ then $\frac{dy}{dx} = k \times nx^{n-1}$ where $k \in \mathbb{R}$.
Example : $y = x^4$ $\frac{dy}{dx} = 4x^3$
 $y = 5x^6$ $\frac{dy}{dx} = 5 \times 6x^5 = 30x^5$
 $y = 3x^4 + 5x^3 + x$ $\frac{dy}{dx} = 12x^3 + 15x^2 + 1$