
Second	order	linear	differential	equations	
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Solving second order linear differential equations
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The auxiliary equation is a quadratic equation, three cases are possible:
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0 has equal/repeated root 

The complemen ( )tary function is ,

0 has two conjugate complex solutions
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Finding the  integral:

if ( ) is a polynomial then y is also a polynomial of the same degree
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( ) ( ) ( )  is a differential equation 

where P,Q and R are functions of .

Note: this equation is written in its standard form.
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