Second order linear differential equations

	Definitions $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x) \quad \text { with } a, b, c \in \mathbb{R}$ - The REDUCED equation is $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$. The general solution of the reduced equation is called The COMPLEMENTARY FUNCTION - A PARTICULAR INTEGRAL satisfies the equation $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$ -The general solution of $a \frac{d y}{d x}+b y=f(x)$ is the sum of the complementary function and the particular integral $y_{G}=y_{P}+y_{C}$
	Solving second order linear differential equations $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$ is a differential equation where a, b and c are real numbers The reduced equation is $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$ -The AUXILIARY equation associated with this equation is $a \lambda^{2}+b \lambda+c=0$ The auxiliary equation is a quadratic equation, three cases are possible: Case1: $a \lambda^{2}+b \lambda+c=0$ has two distinct solutions λ_{1} and λ_{2} The complementary function is $y=C_{1} e^{\lambda_{1} x}+C_{2} e^{\lambda_{2} x} \quad C_{1}, C_{2} \in \mathbb{R}$ Case 2: $a \lambda^{2}+b \lambda+c=0$ has equal/repeated root λ_{0} The complementary function is $y=\left(C_{1} x+C_{2}\right) e^{\lambda_{0} x} \quad C_{1}, C_{2} \in \mathbb{R}$ Case 3: $a \lambda^{2}+b \lambda+c=0$ has two conjugate complex solutions $\lambda_{1}=p+i q$ and $\lambda_{2}=p-i q$ The complementary function is $y=e^{p x}\left(C_{1} \operatorname{Cos}(q x)+C_{2} \operatorname{Sin}(q x)\right) \quad C_{1}, C_{2} \in \mathbb{R}$ -Finding the particular integral: \otimes if $f(x)$ is a polynomial then y_{p} is also a polynomial of the same degree \otimes if $f(x)=A \operatorname{Cos}(k x)+B \operatorname{Sin}(k x)$ then $y_{P}=a \operatorname{Cos}(k x)+b \operatorname{Sin}(k x)$ a and b to be worked out. \otimes if $f(x)=A e^{k x}$ then $y_{P}=a e^{k x}$ if $k \neq \lambda$ or $y_{P}=a x e^{k x}$ if $k=\lambda_{1}$ or $\lambda_{2} \quad$ where a is to be worked out or $y_{p}=a x^{2} e^{k x}$ if $k=\lambda_{0}$ (the repeated root.) - The general solution is $y_{G}=y_{P}+y_{C}$
	Substitution $\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=R(x)$ is a differential equation where P, Q and R are functions of x. Note: this equation is written in its standard form. These equations are solved using substitution. The substitution to use will be given in the question.

