
First	order	linear	differential	equation	
 

 
 
 
 
 
 

A first order linear equation can be re-arrange in the form

where ( ) and ( ) are two functions.

This form is called the  form the equat
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  Considering an equation ( ) ( ),

we want to multiple both sides by a function ( ),

so that the left-hand side of the equation becomes the derivative of a product function.
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The substitution to use will be given to you in the question.

Use this substitution to transform the given differential equation into one which 

you can solve using either of the known metho
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ds:

(direct integration, separating variables, integrating factors)
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