Differential equations

Generalities and definitions

	Definitions - A differential equation is an equation involving the derivatives of a function. -The ORDER of a differential equation is the same as the highest order of derivation occuring in the equation. - A differential equation is linear if it is LINEAR in y and the derivative of y. (Any equation containing powers of y and/or its derivative or products of y and/or its derivatives are non-linear)
	Solving differential equations -To solve a differential equation is to find all the functions satisfying the equation. All these solutions constitue a FAMILY of solutions. - Solutions that involve ARBRITRARY constants are called GENERAL SOLUTIONS. - A solution which contains NO arbritrary CONSTANT is called a PARTICULAR SOLUTION. - To work out a particular solution, you need initial/boundary conditions: $y\left(x_{0}\right)=y_{0}$
	Methods to solve first order differential equations - Method 1: Direct integration This method can be used if the differential equation can be written as $\begin{aligned} & \frac{d y}{d x}=f(x) . \quad \text { By integrating both sides, you obtain } \\ & y=\int f(x) d x \end{aligned}$ - Method 2 :Separating variables This method can be used if the differential equation can be written as $\begin{aligned} & g(y) \frac{d y}{d x}=f(x) . \quad \text { By integrating both sides, you obtain } \\ & \int g(y) d y=\int f(x) d x \end{aligned}$ - Method 3: Recognising the derivative of a product function This method can be used if the differential equation can be written as $u \frac{d y}{d x}+\frac{d u}{d x} y=f(x)$, where u is a function of x. Re-write as $\frac{d}{d x}(u \times y)=f(x)$ and integrate both sides: $u \times y=\int f(x) d x \text { so } y=\frac{1}{u} \int f(x) d x$

