Differential equations

Generalities and definitions

	Definitions
	• A differential equation is an equation involving the derivatives of a function.
¥	•The ORDER of a differential equation is the same as the highest order of derivation
Ø	occuring in the equation.
	•A differential equation is linear if it is LINEAR in y and the derivative of y.
	(Any equation containing powers of y and/or its derivative
	or products of y and/or its derivatives are non-linear)
	Solving differential equations
	•To solve a differential equation is to find all the functions satisfying the equation.
	All these solutions constitue a FAMILY of solutions.
A	•Solutions that involve ARBRITRARY constants are called GENERAL SOLUTIONS.
	• A solution which contains NO arbritrary CONSTANT is called a PARTICULAR SOLUTION.
	• To work out a particular solution, you need initial/boundary conditions: $y(x_0) = y_0$
	Methods to solve <i>first order</i> differential equations
	• <i>Method</i> 1:Direct integration
	This method can be used if the differential equation can be written as
	dy = f(x) By integrating both sides, you obtain
	$\frac{dy}{dx} = f(x)$. By integrating both sides, you obtain
	$y = \int f(x)dx$
	• <i>Method</i> 2 :Separating variables
	This method can be used if the differential equation can be written as
	-
	$g(y)\frac{dy}{dx} = f(x)$. By integrating both sides, you obtain
	$\int g(y)dy = \int f(x)dx$
	• <i>Method</i> 3:Recognising the derivative of a product function
	This method can be used if the differential equation can be written as
	-
	$u\frac{dy}{dx} + \frac{du}{dx}y = f(x)$, where u is a function of x.
	Re-write as $\frac{d}{dx}(u \times y) = f(x)$ and integrate both sides:
	$u \times y = \int f(x)dx$ so $y = \frac{1}{u} \int f(x)dx$