Collisions in 2-D - Exam questions

Question 1: June 2006 - Q6

Two smooth billiard balls A and B, of identical size and equal mass, move towards each other on a horizontal surface and collide. Just before the collision, A has velocity $8 \,\mathrm{m\,s^{-1}}$ in a direction inclined at 30° to the line of centres of the balls, and B has velocity $4 \,\mathrm{m\,s^{-1}}$ in a direction inclined at 60° to the line of centres, as shown in the diagram.

The coefficient of restitution between the balls is $\frac{1}{2}$.

- (a) Find the speed of B immediately after the collision. (9 marks)
- (b) Find the angle between the velocity of B and the line of centres of the balls immediately after the collision. (2 marks)

Question 2: June 2007 - Q6

A smooth spherical ball, A, is moving with speed u in a straight line on a smooth horizontal table when it hits an identical ball, B, which is at rest on the table.

Just before the collision, the direction of motion of A makes an angle of 30° with the line of the centres of the two balls, as shown in the diagram.

The coefficient of restitution between A and B is e.

(a) Given that $\cos 30^\circ = \frac{\sqrt{3}}{2}$, show that the speed of B immediately after the collision is

$$\frac{\sqrt{3}}{4}u(1+e) \tag{5 marks}$$

- (b) Find, in terms of u and e, the components of the velocity of A, parallel and perpendicular to the line of centres, immediately after the collision. (3 marks)
- (c) Given that $e = \frac{2}{3}$, find the angle that the velocity of A makes with the line of centres immediately after the collision. Give your answer to the nearest degree. (3 marks)

Question 3: June 2008 - Q6

A small smooth ball of mass m, moving on a smooth horizontal surface, hits a smooth vertical wall and rebounds. The coefficient of restitution between the wall and the ball is $\frac{3}{4}$.

Immediately before the collision, the ball has velocity u and the angle between the ball's direction of motion and the wall is α . The ball's direction of motion immediately after the collision is at right angles to its direction of motion before the collision, as shown in the diagram.

- (a) Show that $\tan \alpha = \frac{2}{\sqrt{3}}$. (5 marks)
- (b) Find, in terms of u, the speed of the ball immediately after the collision. (2 marks)
- (c) The force exerted on the ball by the wall acts for 0.1 seconds.

Given that $m = 0.2 \,\mathrm{kg}$ and $u = 4 \,\mathrm{m\,s^{-1}}$, find the average force exerted by the wall on the ball. (6 marks)

Question 4: June 2009 - Q5

Two smooth spheres, A and B, of equal radii and different masses are moving on a smooth horizontal surface when they collide.

Just before the collision, A is moving with speed $5 \,\mathrm{m\,s^{-1}}$ at an angle of 30° to the line of centres of the spheres, and B is moving with speed $3 \,\mathrm{m\,s^{-1}}$ perpendicular to the line of centres, as shown in the diagram below.

Before collision

Immediately after the collision, A and B move with speeds u and v in directions which make angles of 90° and 40° respectively with the line of centres, as shown in the diagram below.

- (a) Show that $v = 4.67 \,\mathrm{m \, s^{-1}}$, correct to three significant figures.
- (b) Find the coefficient of restitution between the spheres. (3 marks)

(3 marks)

- (c) Given that the mass of A is 0.5 kg, show that the magnitude of the impulse exerted on A during the collision is 2.17 Ns, correct to three significant figures. (3 marks)
- (d) Find the mass of B. (3 marks)

Question 5: June 2010 - Q5

A smooth sphere is moving on a smooth horizontal surface when it strikes a smooth vertical wall and rebounds.

Immediately before the impact, the sphere is moving with speed $4 \,\mathrm{m\,s^{-1}}$ and the angle between the sphere's direction of motion and the wall is α .

Immediately after the impact, the sphere is moving with speed $v \,\mathrm{m\,s^{-1}}$ and the angle between the sphere's direction of motion and the wall is 40°.

The coefficient of restitution between the sphere and the wall is $\frac{2}{3}$.

(a) Show that
$$\tan \alpha = \frac{3}{2} \tan 40^{\circ}$$
. (3 marks)

(b) Find the value of
$$v$$
. (3 marks)

Question 6: June 2010 - Q6

Two smooth spheres, A and B, have equal radii and masses 1 kg and 2 kg respectively.

The sphere A is moving with velocity $(2\mathbf{i} + 3\mathbf{j}) \,\mathrm{m\,s^{-1}}$ and the sphere B is moving with velocity $(-\mathbf{i} - 2\mathbf{j}) \,\mathrm{m\,s^{-1}}$ on the same smooth horizontal surface.

The spheres collide when their line of centres is parallel to the unit vector **i**, as shown in the diagram.

- (a) Briefly state why the components of the velocities of A and B parallel to the unit vector \mathbf{j} are not changed by the collision. (1 mark)
- (b) The coefficient of restitution between the spheres is 0.5.

Find the velocities of A and B immediately after the collision. (6 marks)

Question 7: June 2011 – Q7

Two smooth spheres, A and B, have equal radii and masses 4m and 3m respectively. The sphere A is moving on a smooth horizontal surface and collides with the sphere B, which is stationary on the same surface.

Just before the collision, A is moving with speed u at an angle of 30° to the line of centres, as shown in the diagram below.

Before collision

Immediately after the collision, the direction of motion of A makes an angle α with the line of centres, as shown in the diagram below.

After collision

The coefficient of restitution between the spheres is $\frac{5}{9}$.

- (a) Find the value of α . (10 marks)
- (b) Find, in terms of m and u, the magnitude of the impulse exerted on B during the collision. (3 marks)

Question 8: June 2012 - Q4

The diagram shows part of a horizontal snooker table of width 1.69 m.

A player strikes the ball B directly, and it moves in a straight line. The ball hits the cushion of the table at C before rebounding and moving to the pocket at P at the corner of the table, as shown in the diagram. The point C is 1.20 m from the corner A of the table. The ball has mass 0.15 kg and, immediately before the collision with the cushion, it has velocity u in a direction inclined at 60° to the cushion. The **table** and the **cushion** are modelled as smooth.

- (a) Find the coefficient of restitution between the ball and the cushion. (5 marks)
- (b) Show that the magnitude of the impulse on the cushion at C is approximately 0.236u.
- (c) Find, in terms of u, the time taken between the ball hitting the cushion at C and entering the pocket at P. (3 marks)
- (d) Explain how you have used the assumption that the cushion is smooth in your answers. (1 mark)

Collisions in 2-D – Exam questions - MS

Question 1: June 2006 - Q6

m1

A1F

(b)

direction of $B = \tan^{-1} \frac{4 \sin 60}{5.70} = 31.3^{\circ}$

5.70

	Total		11
	estion 2: June 2007 – Q6		
6(a)	$\uparrow^{u\sin 30^{\circ}}$ \uparrow^{0}		
	Before:		
	$A \xrightarrow{u\cos 30^{\circ}} B \xrightarrow{B} 0$		
	After: $ \bigvee_{A}^{u\sin 30^{\circ}} \bigvee_{V_{A}}^{0} \bigvee_{V_{B}} $		
	$A \qquad V_A \qquad B \qquad V_B$		
	Con. of Mom. along the line of centres: $mu \cos 30^{\circ} = mv_A + mv_B$	M1	
	$v_A + v_B = \frac{\sqrt{3}}{2}u$ (1)	A1	
	Newton's experimental law:		
	$e = \frac{v_B - v_A}{u \cos 30^\circ - 0}$	M1	
	$v_B - v_A = \frac{\sqrt{3}}{2}ue$ (2)	A1	
	Solving (1) and (2):		
	$v_B = \frac{\sqrt{3}}{4}u(1+e)$	A1	5
(b)	$\perp u \sin 30^{\circ} = \frac{1}{2}u$	В1	
	$v_A = \frac{\sqrt{3}}{2}u - \frac{\sqrt{3}}{4}u(1+e)$	M1 A1F	3
	$v_A = \frac{\sqrt{3}}{4}u(1-e)$		
(c)	$\alpha = \tan^{-1} \frac{\frac{1}{2}u}{\frac{\sqrt{3}}{4}u\left(1 - \frac{2}{3}\right)}$	M1 A1F	
	$\alpha = \tan^{-1} \frac{6}{\sqrt{3}}$ $\alpha = 74^{\circ}$		
	<i>α</i> = 74°	A1F	3

Total

Que	estion 3: June 2008 – Q6		
(a)	u de la constant de l		
	Parallel to the wall : velocity is unchanged $u \cos \alpha = v \sin \alpha$ Perpendicular to the wall : Law of Restitution	M1	
	$\frac{v\cos\alpha}{u\sin\alpha} = \frac{3}{4}$	M1	
	$\frac{v\cos\alpha}{v\tan\alpha\sin\alpha} = \frac{3}{4}$	m1	
	$\frac{\cos^2 \alpha}{\sin^2 \alpha} = \frac{3}{4}$	m1	
(b)	$\tan^2 \alpha = \frac{4}{3}$ $\tan \alpha = \frac{2}{\sqrt{3}}$	A1	5
	$v = \frac{u}{\tan \alpha}$	M1	
	$v = \frac{\sqrt{3}}{2}u \text{ or } 0.866u$	A1	2
(c)	Magnitude of Impulse = Change in momentum perpendicular to the wall	M1	
	$= 0.2 \times v \cos \alpha - (-0.2 \times 4 \sin \alpha)$	A1 A1	
	$= 0.2 \times \frac{\sqrt{3}}{2} \times 4 \cos \alpha + 0.2 \times 4 \sin \alpha$	m1	
	= 1.06 Ns	A1F	
	Average Force = $\frac{1.06}{0.1}$ = 10.6 N	A1F	6
_	Total		13

Question 4: June 2009 – Q5

	Total		12
	$m_B = 0.6056 = 0.606 \mathrm{kg} (3\mathrm{sf})$	A1F	3
(d)	$2.165 = m_B (4.667) \cos 40^\circ$	M1A1	
	= 2.17 Ns	A1	3
	$=0.5\times5\cos 30^{\circ}=2.165$	M1A1	
(c)	Impulse on $A =$ change in momentum of A along the line of centres		
	e=0.826	A1F	3
(b)	$e = \frac{4.67\cos 40^{\circ}}{5\cos 30^{\circ}}$	M1A1	
	$v = 4.667 \text{ ms}^{-1} = 4.67 \text{ ms}^{-1} \text{ (3sf)}$	A1	3
	$m_B v \sin 40^\circ = 3m_B$	M1A1	
5(a)	Momentum of B perpendicular to the line of centres is unchanged		

Question 5: June 2010 – Q5

5(a)	Parallel to the wall		
	$4\cos\alpha = v\cos 40^{\circ}$	M1	
	Perpendicular to the wall		
	$v\sin 40^\circ = \frac{2}{3} \times 4\sin\alpha$	M1	
	$\tan \alpha = \frac{3}{2} \tan 40^{\circ}$	A1	3
(b)	$\alpha = 51.5^{\circ}$	M1	
	$\alpha = 51.5^{\circ}$ $v = \frac{4\cos 51.5^{\circ}}{\cos 40^{\circ}}$	M1	
	$v = 3.25 \text{ ms}^{-1}$	A1	3
	Total		6

Question 6: June 2010 – Q6 6(a) | The spheres are smooth, no force acting in | E1 | 1

~()	, ,		
	j direction		
(b)	$v_A = a\mathbf{i} + b\mathbf{j}$		
	$v_B = c\mathbf{i} + d\mathbf{j}$		
	C.L.M. along i: $1(2) + 2(-1) = 1(a) + 2(c)$	M1A1	
	a + 2c = 0		
	Restitution along \mathbf{i} : $c - a = 0.5(2 - (-1))$	M1A1	
	c - a = 1.5		
	c = 0.5		
	a = -1		
	$v_A = -\mathbf{i} + 3\mathbf{j}$ $v_B = 0.5\mathbf{i} - 2\mathbf{j}$	A1F	
	$v_{\mathcal{B}} = 0.5\mathbf{i} - 2\mathbf{j}$	A1F	
	Total		

	Total		7
Qu	estion 7: June 2011 – Q7		,
(a)			
	$4mu\sin 30 = 4mv_A\sin\alpha$	M1	
	$v_A = \frac{u}{2\sin\alpha} \tag{1}$	A1	
	C.L.M.: $4mu\cos 30 = 4mv_{A}\cos \alpha + 3mv_{B}$	M1A1	
	$2\sqrt{3}u = 4v_A \cos\alpha + 3v_B \qquad \dots (2)$	A1F	
	Restitution along the line of centres:		
	$\frac{v_B - v_A \cos \alpha}{u \cos 30} = \frac{5}{9}$	M1A1	
	$v_{\mathcal{B}} = v_{\mathcal{A}} \cos \alpha + \frac{5\sqrt{3}u}{18} \qquad \dots (3)$	B1	
	$2\sqrt{3}u = 4\frac{u}{2\sin\alpha}\cos\alpha + 3\frac{u}{2\sin\alpha}\cos\alpha + \frac{15\sqrt{3}u}{18}$	m1	
	$\frac{7\sqrt{3}}{6} = \frac{7}{2\tan\alpha}$ $\tan\alpha = \sqrt{3}$		
	$\alpha = 60^{\circ}$ or $\frac{\pi}{3}$	A1F	10
b)	Impulse on $B = $ Change in momentum of B along the line of centres		
	$v_B = \frac{u}{2\sin 60}\cos 60 + \frac{5\sqrt{3}u}{18}$		
	$v_B = \frac{u}{2\sqrt{3}} + \frac{5\sqrt{3}u}{18} \qquad (=\frac{4\sqrt{3}}{9})$	M1	
	$I = 3m(\frac{u}{2\sqrt{3}} + \frac{5\sqrt{3}u}{18}) - 3m(0)$	M1	
	$I = \frac{4mu}{\sqrt{3}}$ or 2.31mu	A1F	3
			13

	estion 8: June 2012 – Q4		
(a)	1.2m		
	1.69m		
	•		
	$\theta = \tan^{-1} \frac{1.69}{1.2} = 54.623^{\circ}$	В1	
	$u\cos 60^{\circ} = v\cos 54.623^{\circ}$	M1	
	$eu\sin 60^\circ = v\sin 54.623^\circ$	M1	
	$e = \frac{v \sin 54.623^{\circ}}{1.000}$	m1	
	$e = \frac{v \sin 54.623^{\circ}}{\frac{v \cos 54.623^{\circ}}{\cos 60^{\circ}} \times \sin 60^{\circ}}$		
	e = 0.813 or 0.812	A1	5
(b)	$I = 0.15u\sin 60^{\circ} + 0.15v\sin 54.623^{\circ}$	M1A1	
	$= 0.15u \sin 60^{\circ} + 0.15 \times \frac{u \cos 60^{\circ}}{\cos 54.623^{\circ}} \times \sin 54.623^{\circ}$	m1	
	$\cos 54.623^{\circ}$ = 0.236 <i>u</i>	A1	4
	- 0.250a	Ai	,
(c)	Attempt at considering motion parallel or perpendicular	M1	
	to AC		
	$t = \frac{1.2}{u\cos 60^\circ}$	M1	
	$t = \frac{12}{5u}$ or $\frac{2.4}{u}$	A1	3
	Alternative:		
	$CP = \frac{1.2}{\cos 54.623^{\circ}}$ (= 2.072703844 m)	24)	
		(M1)	
	$t = \frac{1.2}{\cos 54.623^{\circ}}$	240	
	$u\cos 60^{\circ}$	(M1)	
	cos 54.623°	(4.1)	
	$=\frac{12}{5u} \text{or} \frac{2.4}{u}$	(A1)	(3)
(d)	Velocity (momentum) parallel to the cushion is		
(-)	unchanged, or,	E1	1
	Restitution only affects motion perpendicular to the cushion		
	Total	l	13