1D Collisions - exam questions

Question 1: June 2006 - Q2

Three smooth spheres A, B and C of equal radii and masses m, m and 2m respectively lie at rest on a smooth horizontal table. The centres of the spheres lie in a straight line with B between A and C. The coefficient of restitution between any two spheres is e.

The sphere A is projected directly towards B with speed u and collides with B.

- (a) Find, in terms of u and e, the speed of B immediately after the impact between A and B. (5 marks)
- (b) The sphere B subsequently collides with C. The speed of C immediately after this collision is $\frac{3}{8}u$. Find the value of e. (7 marks)

Question 2: June 2007 - Q4

Two small smooth spheres, A and B, of equal radii have masses 0.3 kg and 0.2 kg respectively. They are moving on a smooth horizontal surface directly towards each other with speeds $3 \,\mathrm{m \, s^{-1}}$ and $2 \,\mathrm{m \, s^{-1}}$ respectively when they collide. The coefficient of restitution between A and B is 0.8.

- (a) Find the speeds of A and B immediately after the collision. (6 marks)
- (b) Subsequently, B collides with a fixed smooth vertical wall which is at right angles to the path of the sphere. The coefficient of restitution between B and the wall is 0.7.

Show that B will collide again with A.

(3 marks)

Question 3: June 2009 - Q6

A smooth sphere A of mass m is moving with speed 5u in a straight line on a smooth horizontal table. The sphere A collides directly with a smooth sphere B of mass 7m, having the same radius as A and moving with speed u in the same direction as A. The coefficient of restitution between A and B is e.

Before collision

- (a) Show that the speed of B after the collision is $\frac{u}{2}(e+3)$. (5 marks)
- (b) Given that the direction of motion of A is reversed by the collision, show that $e > \frac{3}{7}$.

 (4 marks)
- (c) Subsequently, *B* hits a wall fixed at right angles to the direction of motion of *A* and *B*. The coefficient of restitution between *B* and the wall is $\frac{1}{2}$. Given that after *B* rebounds from the wall both spheres move in the same direction and collide again, show also that $e < \frac{9}{13}$.

Question 4: June 2010 - Q3

Three smooth spheres, A, B and C, of equal radii have masses 1 kg, 3 kg and x kg respectively. The spheres lie at rest in a straight line on a smooth horizontal surface with B between A and C. The sphere A is projected with speed 3u directly towards B and collides with it.

The coefficient of restitution between each pair of spheres is $\frac{1}{3}$.

- Show that A is brought to rest by the impact and find the speed of B immediately after the collision in terms of u.

 (6 marks)
- (b) Subsequently, B collides with C.

Show that the speed of C immediately after the collision is $\frac{4u}{3+x}$.

Find the speed of B immediately after the collision in terms of u and x. (6 marks)

- (c) Show that B will collide with A again if x > 9. (2 marks)
- (d) Given that x = 5, find the magnitude of the impulse exerted on C by B in terms of u. (2 marks)

Question 5: June 2011 – Q5

A ball is dropped from a height of 2.5 m above a horizontal floor. The ball bounces repeatedly on the floor.

- (a) Find the speed of the ball when it first hits the floor. (2 marks)
- (b) The coefficient of restitution between the ball and the floor is e.
 - (i) Show that the time taken between the first contact of the ball with the floor and the second contact of the ball with the floor is $\frac{10e}{7}$ seconds. (3 marks)
 - (ii) Find, in terms of e, the time taken between the second contact and the third contact of the ball with the floor. (1 mark)
- (c) Find, in terms of e, the total vertical distance travelled by the ball from when it is dropped until its third contact with the floor. (5 marks)
- (d) State a modelling assumption for answering this question, other than the ball being a particle. (1 mark)

1D Collisions – exam questions - MS

Ouestion 1: June 2006 – 02

Question 1. June 2000 Q2			
(a)	conservation of momentum		
	$mu = mv_A + mv_B$	M1	
	$u = v_A + v_B$ restitution	A1	
	restitution		
	$eu = v_B - v_A$	M1A1	
	$v_B = \frac{1}{2}u(1+e)$	A1F	5

(b)
$$mv_B = mw_B + 2m\frac{3u}{8}$$
 M1A1 $ev_B = \frac{3u}{8} - w_B$ M1A1 Elimination of w_B m1 A1F $e = \frac{1}{2}$ A1F 7

Question 2: June 2007 - Q4

estion Ensuite 2007 Q-1		
Conservation of momentum: $0.3(3) - 0.2(2) = 0.3v_A + 0.2v_B$ $3v_A + 2v_B = 5$ (1) Newton's experimental law:	M1A1	
$0.8 = \frac{v_B - v_A}{5}$ $v_B - v_A = 4$ Solving (1) and (2) $v_B = 3.4$ $v_A = -0.6$	M1 A1 m1	6
$0.7 = \frac{v}{3.4}$ $v = 2.38$ Speed of B (2.38) > Speed of A (0.6) $\therefore B \text{ collides again with } A$	M1 A1F E1	3
	$0.3(3) - 0.2(2) = 0.3v_A + 0.2v_B$ $3v_A + 2v_B = 5$ (1) Newton's experimental law: $0.8 = \frac{v_B - v_A}{5}$ $v_B - v_A = 4$ (2) Solving (1) and (2) $v_B = 3.4$ $v_A = -0.6$ $0.7 = \frac{v}{3.4}$ v = 2.38 Speed of B (2.38) > Speed of A (0.6)	Conservation of momentum: $0.3(3) - 0.2(2) = 0.3v_A + 0.2v_B$ M1A1 $3v_A + 2v_B = 5$

Total

Total

13

Question 3: June 2009 - Q6 $5mu + 7mu = mv_A + 7mv_B$

Ųΰ	iestion 3: June 2009 – Qo		
(a)	$5mu + 7mu = mv_A + 7mv_B$	M1A1	
	$12u = v_A + 7v_B$ $e = \frac{-v_A + v_B}{4u}$ $-v_A + v_B = 4eu$ $8v_B = 12u + 4eu$	M1	
	$v_B = \frac{u}{2}(e+3)$	A1	5
(b)	$v_A = \frac{u}{2}(e+3) - 4eu$	M1	
	$v_A = \frac{u}{2}(3 - 7e)$	A1F	
	$\frac{u}{2}(3-7e)<0$	M1	
	$\frac{u}{2}(3-7e) < 0$ $3-7e < 0$ $e > \frac{3}{7}$	A1	4
	$W_B = \frac{u}{4}(e+3)$	M1	
	$\frac{u}{2}(7e-3) < \frac{u}{4}(e+3)$	M1	
	2(7e-3) < e+3	m1	
	9		
	$e < \frac{9}{13}$	A1	4

Question 4: June 2010 – Q3

a)	C.L.M. $(1)3u = (1)v_A + (3)v_B$ Restitution:	M1 A1	
	$\frac{1}{3} \times 3u = v_B - v_A$ $v_B = u$	M1 A1 m1	
	$v_A = 0$	A1	

6

6

2

16

(b) C.L.M.

$$3u = 3w_B + xw_C$$
 M1 A1
Restitution:
 $\frac{1}{3}u = w_C - w_B$ M1 A1
 $w_C = \frac{4u}{3+x}$ m1
 $w_B = \frac{u(9-x)}{3(3+x)}$ OE

For further collision
$$\frac{u(9-x)}{3(3+x)} < 0$$
 M1
$$9u - xu < 0$$

$$x > 9$$
 A1

(d)
$$I = 5(\frac{4u}{3+5})$$
 M1
 $I = \frac{5u}{2}$ Alternative:
 $I = 3u - 3 \times \frac{u(9-5)}{3(3+5)}$ (M1)
 $I = \frac{5u}{2}$ (A1F)

Total

Question 5: June 2011 - Q5

Ques	11011 5. Julie 2011 – Q5		
5(a)	$v^2 = u^2 + 2as$		
	$v^{2} = u^{2} + 2as$ $v^{2} = 0^{2} + 2(9.8)(2.5)$ $v = 7$ $\frac{w}{7} = e$ $w = 7e$ $0 = 7et - \frac{9.8}{2}t^{2} \text{ or } (0 = 7e - 9.8t)$ $t = \frac{10e}{7} \qquad (t = 2 \times \frac{7e}{9.8})$ $w' = 7e^{2}$ $0 = 7e^{2}t' - \frac{9.8}{2}t'^{2}$ $t' = \frac{10e^{2}}{7}$ $0^{2} = (7e)^{2} + 2(-9.8)h_{2}$ $h = 2.5e^{2}$	M1 A1	2
(b)(i)	$\frac{w}{7} = e$	M1	
	w = 7e 0 = $7et - \frac{9.8}{2}t^2$ or $(0 = 7e - 9.8t)$	M1	
	$t = \frac{10e}{7} \qquad (t = 2 \times \frac{7e}{9.8})$	A1	3
(ii)	$w' = 7e^2$		
	$0 = 7e^2t' - \frac{9.8}{2}t'^2$		
	$t' = \frac{10e^2}{7}$	В1	1
(c)	$0^2 = (7e)^2 + 2(-9.8)h_2$	M1	
	$t' = \frac{10e^{x}}{7}$ $0^{2} = (7e)^{2} + 2(-9.8)h_{2}$ $h_{2} = 2.5e^{2}$ $h_{3} = 2.5e^{2}$ $0^{2} = (7e^{2})^{2} + 2(-9.8)h_{4}$ $h_{4} = 2.5e^{4}$ $h_{5} = 2.5e^{4}$ Total distance = 2.5 + 2(2.5e^{2}) + 2(2.5e^{4})	A1	
	$0^2 = (7e^2)^2 + 2(-9.8)h_4$		
	$h_4 = 2.5e^4$	A1	
	$h_5 = 2.5e^4$ Total distance = $2.5 + 2(2.5e^2) + 2(2.5e^4)$	m1	
	$=2.5+5e^2+5e^4$	A 1	5