Circles

Equation of a circle.

Consider a circle C with centre $\Omega(a, b)$ and radius r.
Any point $M(x, y)$ on this circle satisfies $\Omega M=r$.
This is equivalent to $\Omega \mathrm{M}^{2}=r^{2}$

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

In particular if the centre is $(0,0)$, the equation becomes $x^{2}+y^{2}=r^{2}$.

Re-arranging circle equations

In its factorised form, it is easy to read centre and radius from the equation of a circle:

$$
(x-3)^{2}+(y+1)^{2}=9 \text { is the eqaution of the circle centre }(3,-1) \text { radius } 3 .
$$

But an equation can be given in its expanded form: $x^{2}+y^{2}+2 a x+2 b y+c=0$.
To re-arrange this equation, use the complete square form with $x^{2}+2 a x$ and $y^{2}+2 b x$.

$$
\begin{array}{ll}
\text { example: } \quad & x^{2}+y^{2}+6 x+4 y-3=0 \\
& x^{2}+6 x+y^{2}+4 y \quad-3=0 \\
& (x+3)^{2}-9+(y+2)^{2}-4-3=0 \\
& (x+3)^{2}+(y+2)^{2}=16
\end{array}
$$

This is the circle centre $(-3,-2)$ radius $r=4$

Circle properties

a) Any point joined to the extremities of a diameter form a right-angled triangle.
b) The perpendicular bisector of a chord goes through the centre of the circle.
c) A tangent to the circle is perpendicular to the radius at its point of contact.

Work out exercise: Tangent to a circle

The circle C has centre $\mathrm{O}(2,1)$ and radius 25.
The point $\mathrm{A}(6,4)$ belongs to the circle.
Work out the equation of the tangent to the circle at A.
-The tangent at A is PERPENDICULAR to the radius OA.
The gradient of OA is $m_{1}=\frac{4-1}{2-6}=\frac{3}{-4} \quad$ The gradient of the tangent is therefore $-\frac{1}{m_{1}}=\frac{4}{3}$
The equation of the tangent is : $y-4=\frac{4}{3}(x-6)$

$$
\begin{aligned}
& 3 y-12=4 x-24 \\
& 4 x-3 y-12=0
\end{aligned}
$$

