Chapter 9: Differential Calculus

Mr Ian Cantley
February 16, 2006

Contents
1 Differentiation from First Principles 2
2 General formula for $\frac{d y}{d x}$ when $y=a x^{n}$ 3
3 Sum or Difference of Two Functions 4
4 Second Derivative 5
5 Gradient of a Curve 6
6 Equation of a Tangent to a curve 7
7 Equation of a Normal to a Curve 8
8 Stationary Points 10
9 Increasing and Decreasing Functions 14
10 Using Differentiation to Solve Practical Problems 16
11 Rates of Change 18

1 Differentiation from First Principles

Consider a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$, and let $Q(x+\delta x, y+\delta y)$ be a point on the curve which is very close to P :

The gradient of the chord PQ is:

$$
\begin{align*}
\frac{\delta y}{\delta x} & =\frac{(y+\delta y)-y}{(x+\delta x)-x} \tag{1}\\
& =\frac{f(x+\delta x)-f(x)}{(x+\delta x)-x} \tag{2}
\end{align*}
$$

The ratio $\frac{\delta y}{\delta x}$ approaches a definite limit as δx gets smaller and approaches 0 .
This limit is the gradient of the tangent at P , which is the gradient of the curve at P .

It is called the rate of the change of y with respect to x at the point P , and is denoted by $\frac{d y}{d x}$.

$$
\begin{align*}
\frac{d y}{d x} & =\lim _{\delta x \rightarrow 0}\left(\frac{\delta y}{\delta x}\right) \tag{3}\\
& =\lim _{\delta x \rightarrow 0}\left[\frac{f(x+\delta x)-f(x)}{(x+\delta x)-x}\right] \tag{4}\\
& =\lim _{\delta x \rightarrow 0}\left[\frac{f(x+\delta x)-f(x)}{(\delta x)}\right] \tag{5}
\end{align*}
$$

$\frac{d y}{d x}$ is called the differential coefficient or the first derivative of y with respect to x.
If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, you can use the notation $\frac{d y}{d x}=f^{\prime}(x)$.
In this case f^{\prime} is often called the derived function of f or the gradient function (since it gives an expression for the gradient of the curve at any point). The procedure used to find $\frac{d y}{d x}$ from y is called differentiating y with respect to x .

Example

Find $\frac{d y}{d x}$ from first principles if $y=x^{2}$

Solution

$$
\text { Let } \begin{align*}
f(x) & =x^{2} \tag{6}\\
\frac{d y}{d x} & =\lim _{\delta x \rightarrow 0}\left[\frac{f(x+\delta x)-f(x)}{\delta x}\right] \\
& =\lim _{\delta x \rightarrow 0}\left[\frac{(x+\delta x)^{2}-x^{2}}{\delta x}\right] \\
& =\lim _{\delta x \rightarrow 0}\left[\frac{x^{2}+2 x \delta x+(\delta x)^{2}-x^{2}}{\delta x}\right] \\
& =\lim _{\delta x \rightarrow 0}\left[\frac{2 x \delta x+(\delta x)^{2}}{\delta x}\right] \\
& =\lim _{\delta x \rightarrow 0}[2 x+\delta x] \\
\therefore \frac{d y}{d x} & =2 x \tag{7}
\end{align*}
$$

2 General formula for $\frac{d y}{d x}$ when $y=a x^{n}$

1. If $y=a x^{n}$ (where a and n are constants), then $\frac{d y}{d x}=a n x^{n-1}$
i.e,multiply by the power and then subtract one from the power.
2. If $\mathrm{y}=\mathrm{ax}$ (where a is a constant), then $\frac{d y}{d x}=a$
3. If $\mathrm{y}=\mathrm{a}$ (where a is a constant), then $\frac{d y}{d x}=0$

Example

Find $\frac{d y}{d x}$ for each of the following:

$$
\begin{align*}
\text { (i) } & y=6 x^{3} \tag{8}\\
\text { (ii) } & y=\frac{3}{8 x^{2}} \tag{9}\\
\text { (iii) } & y=x^{\frac{1}{4}} \tag{10}\\
\text { (iv) } & y=\frac{1}{\sqrt[3]{x}} \tag{11}
\end{align*}
$$

Solution

$$
\begin{align*}
& \text { (i) } y=6 x^{3} \tag{12}\\
& \frac{d y}{d x}=6\left(3 x^{3-1}\right)=18 x^{2} \tag{13}\\
& \text { (ii) } y=\frac{3}{8 x^{2}}=\frac{3}{8} x^{-2} \tag{14}\\
& \frac{d y}{d x}=\frac{3}{8}\left(-2 x^{-2-1}\right)=-\frac{3}{4} x^{-3}=-\frac{3}{4 x^{3}} \tag{15}\\
& \text { (iii) } y=x^{\frac{1}{4}} \tag{16}\\
& \frac{d y}{d x}=\frac{1}{4} x^{\frac{1}{4}-1}=\frac{1}{4} x^{-\frac{3}{4}}=\frac{1}{4 x^{\frac{3}{4}}} \tag{17}\\
& \text { (iv) } \quad y=\frac{1}{\sqrt[3]{x}}=x^{-\frac{1}{3}} \tag{18}\\
& \frac{d y}{d x}=-\frac{1}{3} x^{-\frac{1}{3}-1}=-\frac{1}{3} x^{-\frac{4}{3}} \\
& =-\frac{1}{3 x^{\frac{4}{3}}} \\
& =-\frac{1}{3(\sqrt[3]{3})^{4}} \tag{19}
\end{align*}
$$

3 Sum or Difference of Two Functions

$$
\begin{align*}
\text { If } y & =f(x) \pm g(x), \text { then } \tag{20}\\
\frac{d y}{d x} & =f^{\prime}(x) \pm g^{\prime}(x) \tag{21}
\end{align*}
$$

Example 1

Find $f^{\prime}(x)$ of for each of the following:

$$
\begin{align*}
& \text { (i) } f(x)=3 x^{4}+\sqrt{x}+2 x \tag{22}\\
& \text { (ii) } f(x)=\frac{6}{\sqrt{x}}-\frac{4}{x^{3}}+10 \tag{23}
\end{align*}
$$

Solution 1

$$
\text { (i) } \begin{align*}
f(x) & =3 x^{4}+\sqrt{x}+2 x=3 x^{4}+x^{\frac{1}{2}}+2 x \tag{24}\\
f^{\prime}(x) & =12 x^{3}+\frac{1}{2} x^{-\frac{1}{2}}+2 \\
& =12 x^{3}+\frac{1}{2 x^{\frac{1}{2}}}+2 \\
& =12 x^{3}+\frac{1}{2 \sqrt{x}}+2 \tag{25}\\
\text { (ii) } \quad f(x) & =\frac{6}{\sqrt{x}}-\frac{4}{x^{3}}+10=\frac{6}{x^{\frac{1}{2}}}-\frac{4}{x^{3}}+10 \tag{26}\\
& =6 x^{-\frac{1}{2}}-4 x^{-3}+10 \\
\therefore f^{\prime}(x) & =-3 x^{-\frac{3}{2}}+12 x^{-4} \\
& =-\frac{3}{x^{\frac{3}{2}}}+\frac{12}{x^{4}} \\
f^{\prime}(x) & =-\frac{3}{(\sqrt{x})^{3}}+\frac{12}{x^{4}} \tag{27}
\end{align*}
$$

Example 2

Find $\frac{d y}{d x}$ for each of the following:

$$
\begin{align*}
(i) & y & =(\sqrt{x}+3)^{2} \tag{29}\\
\text { (ii) } & y & =\frac{3 x^{2}+2}{x} \tag{30}
\end{align*}
$$

Solution 2

(i) Expand brackets

$$
\begin{equation*}
y=(\sqrt{x}+3)^{2}=x+6 \sqrt{x}+9=x+6 x^{\frac{1}{2}}+9 \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \frac{d y}{d x}=1+3 x^{-\frac{1}{2}}=1+\frac{3}{x^{\frac{1}{2}}}=1+\frac{3}{\sqrt{x}} \tag{32}
\end{equation*}
$$

(ii) $y=\frac{3 x^{2}+2}{x}=\frac{3 x^{2}}{x}+\frac{2}{x}=3 x+2 x^{-1}$

$$
\begin{equation*}
\therefore \frac{d y}{d x}=3-2 x^{-2}=3-\frac{2}{x^{2}}=\frac{3 x^{2}-2}{x^{2}} \tag{33}
\end{equation*}
$$

4 Second Derivative

We can repeat the differentiation process to find the differential coefficient of $\frac{d y}{d x}$ with respect to x , i.e.,

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{d y}{d x}\right) \tag{35}
\end{equation*}
$$

This is called the second derivative of y with respect to x and is written as:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}} \tag{36}
\end{equation*}
$$

If $y=f(x), \frac{d^{2} y}{d x^{2}}$ is written as $f^{\prime \prime}(x)$.

Example

If $y=2 x+\frac{3}{x}$, find $\frac{d^{2} y}{d x^{2}}$

Solution

$$
\begin{align*}
y & =2 x+\frac{3}{x}=2 x+3 x^{-1} \tag{37}\\
\frac{d y}{d x} & =2-3 x^{-2} \tag{38}\\
\frac{d^{2} y}{d x^{2}} & =6 x^{-3}=\frac{6}{x^{3}} \tag{39}
\end{align*}
$$

5 Gradient of a Curve

The gradient of a curve at point P is equal to the gradient of the tangent at P , which is given by the value of $\frac{d y}{d x}$ at P .

Example 1

Find the gradient of the curve $y=3 x^{2}+x+1$ at the point $(1,5)$.

Solution 1

$$
\begin{align*}
& y=3 x^{2}+x+1 \tag{40}\\
& \frac{d y}{d x}=6 x+1 \tag{41}\\
& \text { when } x=1, \frac{d y}{d x}=6 \times 1+1=7 \tag{42}\\
& \therefore \text { ANS }=7 \tag{43}
\end{align*}
$$

Example 2

Find the coordinates of the point on the curve $y=2 x^{2}+3 x+1$ where the gradient is -1 .

Solution 2

$$
\begin{align*}
& y=2 x^{2}+3 x+1 \tag{44}\\
& \frac{d y}{d x}=4 x+3 \\
& \frac{d y}{d x}=-1 \Rightarrow 4 x+3=-1 \\
& \therefore 4 x=-4 \\
& \therefore x=-1 \\
& \text { when } x=-1, \quad y=2(-1)^{2}+3(-1)+1=0 \\
& \therefore \text { ANS }=(-1,0) \tag{45}
\end{align*}
$$

6 Equation of a Tangent to a curve

The equation of the line passing through the point $\left(x_{1}, y_{1}\right)$ of gradient m is given by:
$y-y_{1}=m\left(x-x_{1}\right)$.
Therefore, to find the equation of the tangent to a curve:

1. Differentiate to find the gradient, m
2. Use $y-y_{1}=m\left(x-x_{1}\right)$.

Example

Find the equation of the tangent to the curve $y=4 x^{3}-2 x^{2}-5 x$ at the point where $\mathrm{x}=1$.

Solution

$$
\begin{align*}
& y=4 x^{3}-2 x^{2}-5 x \tag{46}\\
& \frac{d y}{d x}=12 x^{2}-4 x-5 \\
& \text { When } x=1, \frac{d y}{d x}=12(1)^{2}-4(1)-5=3 \\
& \text { When } x=1, y=4 x^{3}-2 x^{2}-5 x \\
& =4(1)^{3}-2(1)^{2}-5(1)=-3 \\
& \therefore m=3, \quad x_{1}=1 \quad y_{1}=-3 \\
& \text { Using } y-y_{1}=m\left(x-x_{1}\right) \text { gives } \\
& y-(-3)=3(x-1) \\
& \therefore y+3=3 x-3 \\
& \therefore y=3 x-3-3 \\
& \therefore y=3 x-6 \tag{47}
\end{align*}
$$

7 Equation of a Normal to a Curve

A normal is a line perpendicular to the tangent at the point of contact.

If the gradient of the tangent is m, then the gradient of the normal is $\frac{-1}{m}$, i.e. to find the gradient of the normal turn the gradient of the tangent upside down and change the sign.

Example

Find the equation of the normal to the curve $y=x^{2}+3 x-2$ at the point where $x=4$.

Solution

$$
\begin{align*}
& y=x^{2}+3 x-2 \tag{48}\\
& \frac{d y}{d x}=2 x+3
\end{align*}
$$

When $x=4, \quad \frac{d y}{d x}=2(4)+3=11$
$\therefore m_{\text {tangent }}=11$
$\therefore m_{\text {normal }}=-\frac{1}{11}$
When $x=4, \quad y=x^{2}+3 x-2$
$=4^{2}+3(4)-2=26$
$\therefore m=-\frac{1}{11}, \quad x_{1}=4, \quad y_{1}=26$
Using $y-y_{1}=m\left(x-x_{1}\right)$ gives
$y-26=-\frac{1}{11}(x-4)$
$y-26=-\frac{1}{11} x+\frac{4}{11}$
$y=-\frac{1}{11} x+26 \frac{4}{11}$

8 Stationary Points

A stationary point is one where $\frac{d y}{d x}=0$.
There are three main types of stationary point:

1. A (local) maximum turning point.
2. A (local) minimum turning point.
3. A point of inflexion or a saddle point.

To find and distinguish between the stationary points of a curve:

1. Differentiate y twice to find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
2. Put $\frac{d y}{d x}=0$ and solve for x . Then find the corresponding values for y from the original equation.
At this stage you have found the stationary points
3. To determine the nature of stationary point P substitute the coordinates into $\frac{d^{2} y}{d x^{2}}$

- If $\frac{d^{2} y}{d x^{2}}<0$, the point is a maximum turning point
- If $\frac{d^{2} y}{d x^{2}}>0$, the point is a minimum turning point
- If $\frac{d^{2} y}{d x^{2}}=0$, and $\frac{d y}{d x}$ has the same sign on either side of P , the point is a point of inflexion.
- Note: A point of inflexion is a point where the tangent of the curve actually crosses the curve at that point. Therefore, it is possible to have points of inflexion that are not stationary.

Example 1

Find the coordinates and nature of the stationary points on the curve with equation $y=(x+2)(x-1)^{2}$. Hence sketch the curve.

Solution 1

$$
\begin{align*}
y & =(x+2)(x-1)^{2} \tag{50}\\
& =(x+2)\left(x^{2}-2 x+1\right) \\
& =x^{3}-2 x^{2}+x+2 x^{2}-4 x+2 \\
y & =x^{3}-3 x+2 \\
\frac{d y}{d x} & =3 x^{2}-3 \tag{51}
\end{align*}
$$

Stationary points occur when $\frac{d y}{d x}=0$

$$
\begin{array}{ll}
\quad \frac{d y}{d x}= & 0 \Rightarrow 3 x^{2}-3=0 \\
\therefore & 3(x+1)(x-1)=0 \\
\therefore & x=-1 \text { or } x=1 \\
& y=(x+2)(x-1)^{2} \\
\text { When } x=-1, & =(1)(-2)^{2}=4 \\
\text { When } x=1, \quad & y=(x+2)(x-1)^{2} \\
& (3)(0)^{2}=0
\end{array}
$$

\therefore The stationary points are $(-1,4)$ and $(1,0)$.
$\frac{d^{2} y}{d x^{2}}=6 x$
when $x=-1, \quad \frac{d^{2} y}{d x^{2}}=6 \times(-1)=-6<0$
$\therefore \quad x=-1$ corresponds to a maximum turning point.
When $x=1, \quad \frac{d^{2} y}{d x^{2}}=6 \times 1=6>0$
$\therefore \quad x=1$ corresponds to a minimum turning point.
\therefore The stationary points are:
$(-1,4)$ Maximum turning point
$(1,0)$ Minimum turning point
Curve meets y-axis when $x=0$
$\therefore \quad y=(2)(-1)^{2}=2$
\therefore Curve meets y-axis at $(0,2)$
Curve meets x -axis when $y=0$
$\therefore \quad(x+2)(x-1)^{2}=0$
$\therefore \quad x=-2$ or $x=1$
\therefore Curve meets x-axis at $(-2,0)$ and $(1,0)$.

Example 2

Find the coordinates of any stationary points on the curve $y=5 x^{6}-12 x^{5}$ and distinguish between them.

Hence sketch the curve.

Solution 2

$$
\begin{align*}
y & =5 x^{6}-12 x^{5} \tag{56}\\
\frac{d y}{d x} & =30 x^{5}-60 x^{4} \tag{57}
\end{align*}
$$

Stationary points occur when $\frac{d y}{d x}=0$

$$
\begin{align*}
& \frac{d y}{d x}=0 \quad \Rightarrow \quad 30 x^{5}-60 x^{4}=0 \tag{58}\\
& \therefore \quad 30 x^{4}(x-2)=0 \\
& \therefore \quad x=0 \text { or } x=2 \\
& \text { When } x=0, \quad y=5 x^{6}-12 x^{5} \\
& =0-0=0 \\
& \text { When } x=2, \quad y=5 x^{6}-12 x^{5} \\
& =5\left(2^{6}\right)-12\left(2^{5}\right)=-64 \tag{59}
\end{align*}
$$

$\therefore \quad$ The stationary points are $(0,0)$ and $(2,-64)$.
$\frac{d^{2} y}{d x^{2}}=150 x^{4}-240 x^{3}$
When $x=2, \quad \frac{d^{2} y}{d x^{2}}=150\left(2^{4}\right)-240\left(2^{3}\right)=480>0$
$\therefore \quad x=2$ corresponds to a minimum turning point.
When $x=0, \quad \frac{d^{2} y}{d x^{2}}=0-0=0$
$\therefore \quad x=0$ may correspond to a point of inflexion.
When $x=-0.1, \quad \frac{d y}{d x}=30(-0.1)^{5}-60(-0.1)^{4}$
$=-0.0063$
When $x=0.1, \quad \frac{d y}{d x}=30(0.1)^{5}-60(0.1)^{4}$
$=-0.0057$
$\therefore \quad x=0$ does correspond to a point of inflexion.
\therefore Stationary points are:
$(0,0)$ Point of inflexion
$(2,-64)$ Minimum turning point

Curve meets y-axis when $x=0$
$\therefore \quad y=0-0=0$
$\therefore \quad$ Curve meets y-axis at $(0,0)$
Curve meets x -axis when $\mathrm{y}=0$

$$
\begin{align*}
& \therefore 5 x^{6}-12 x^{5}=0 \\
& \therefore x^{5}(5 x-12)=0 \\
& \therefore x=0 \text { or } x=2 \frac{2}{5} \tag{61}
\end{align*}
$$

\therefore Curve meets x-axis at $(0,0)$ and $\left(2 \frac{2}{5}, 0\right)$.

9 Increasing and Decreasing Functions

A function f which increases as x increases in the interval from $x=a$ to $x=b$ is called an increasing function in the interval (a, b).

For such a function, $f^{\prime}(x)>0$ throughout the interval.
A function f which decreases as x increases in the interval from $\mathrm{x}=\mathrm{c}$ to $\mathrm{x}=\mathrm{d}$ is called an decreasing function in the interval (c, d).

For such a function, $f^{\prime}(x)<0$ throughout the interval.

Example

Determine if the following functions are increasing or decreasing:
(i) $f(x)=x^{3}$
(ii) $f(x)=-(x-1)^{2}$

Solution

$$
\begin{equation*}
\text { (i) } \quad f(x)=x^{3} \tag{62}
\end{equation*}
$$

$$
\begin{align*}
& y=x^{3} \tag{63}\\
& \frac{d y}{d x}=3 x^{2}>0 \text { for all real values except } \mathrm{x}=0 \tag{64}\\
\therefore \quad & f(x)=x^{3} \text { is increasing for all real values of } \mathrm{x} \text { except } \mathrm{x}=0 \tag{65}
\end{align*}
$$

(ii) $\quad f(x)=-(x-1)^{2}$

$$
\begin{align*}
& y=-(x-1)^{2}=-\left(x^{2}-2 x+1\right) \tag{68}\\
& =-x^{2}+2 x-1 \\
\therefore \quad & \frac{d y}{d x}=-2 x+2
\end{align*}
$$

$\mathrm{f}(\mathrm{x})$ is increasing when $\frac{d y}{d x}>0$
$\frac{d y}{d x}>0 \Rightarrow-2 x+2>0$

$$
\Rightarrow x<1
$$

$\mathrm{f}(\mathrm{x})$ is decreasing when $\frac{d y}{d x}<0$
$\frac{d y}{d x}<0 \Rightarrow-2 x+2<0$
$\Rightarrow x>1$
\therefore The function $f(x)=-(x-1)^{2}$ is increasing in the interval $x<1$ and is decreasing in the interval $x>1$

10 Using Differentiation to Solve Practical Problems

Example

A cylindrical tin, closed at both ends, is made of thin sheet metal. Find the dimensions of a tin like this that holds $1000 \mathrm{~cm}^{3}$ and has a minimum total surface area.

Solution

Let radius $=\mathrm{xcm}$
and height $=\mathrm{h} \mathrm{cm}$
Volume $=\pi x^{2} h=1000$
$\therefore h=\frac{1000}{\pi x^{2}}$
Curved surface area $=2 \pi x h$
Area of 2 circular ends $=2 \pi x^{2}$
\therefore Total surface area is:

$$
\begin{equation*}
A=2 \pi x h+2 \pi x^{2} \tag{2}
\end{equation*}
$$

Substituting (1) into (2) gives
$A=2 \pi x\left(\frac{1000}{\pi x^{2}}\right)+2 \pi x^{2}$
$\therefore A=\frac{2000}{x}+2 \pi x^{2}$
$\therefore \quad A=2000 x^{-1}+2 \pi x^{2}$
$\frac{d A}{d x}=-2000 x^{-2}+4 \pi x=-\frac{2000}{x^{2}}+4 \pi x$
For stationary value, $\frac{d A}{d x}=0$
$\therefore \quad-\frac{2000}{x^{2}}+4 \pi x=0$
$\therefore \quad \frac{2000}{x^{2}}=4 \pi x$
$\therefore \quad x^{3}=\frac{2000}{4 \pi}=\frac{500}{\pi}$
$\therefore x=\sqrt[3]{\frac{500}{\pi}}=5.42 \mathrm{~cm}$
Substituting $x=5.42$ into (1) gives

$$
\begin{aligned}
& h=\frac{1000}{\pi(5.42)^{2}}=10.8 \mathrm{~cm} \\
& \frac{d^{2} y}{d x^{2}}=4000 x^{-3}+4 \pi=\frac{4000}{x^{3}}+4 \pi
\end{aligned}
$$

Clearly $\frac{d^{2} A}{d x^{2}}>0$ when $x=5.42 \mathrm{~cm}$
$\therefore \quad \mathrm{x}=5.42$ corresponds to the minimum value of A

$$
\begin{align*}
& \text { ANS: Radius }=5.42 \mathrm{~cm} \\
& \text { Height }=10.8 \mathrm{~cm} \tag{72}
\end{align*}
$$

11 Rates of Change

Example

At time t seconds the length of edge x cm of an expanding cube is given by $\mathrm{x}=2 \mathrm{t}$. Express the volume, $V c m^{3}$, and the surface area, $A c m^{2}$, in terms of t . Hence find the rate of change of V and the rate of change of A with respect to t at the instant when $\mathrm{t}=3$.

Solution

$$
\begin{align*}
x & =2 t \tag{73}\\
V & =x^{3} \\
\therefore \quad V & =(2 t)^{3}=8 t^{3} \\
A & =6 x^{2} \\
\therefore \quad A & =6(2 t)^{2}=24 t^{2} \\
\frac{d V}{d t} & =24 t^{2} \\
\frac{d A}{d t} & =48 t \tag{74}
\end{align*}
$$

$$
\text { When } t=3 s, \quad \begin{align*}
\frac{d V}{d t} & =24 \times 3^{2}=216 \mathrm{~cm}^{3} / \mathrm{s} \tag{75}\\
\frac{d A}{d t} & =48 \times 3=144 \mathrm{~cm}^{2} / \mathrm{s} \tag{76}
\end{align*}
$$

Index

Decreasing Functions, 14
Differential Calculus, 2
differential coefficient, 2
differentiating y with respect to x , 2

Differentiation from First Principles, 2

Equation of a Normal to a Curve, 8 Equation of a Tangent, 7
gradient function, 2
Gradient of a Curve, 6
Increasing Functions, 14
maximum turning point, 10
minimum turning point, 10
normal, 8
point of inflexion, 10
rate of the change, 2
saddle point, 10
Second Derivative, 5
Stationary Points, 10
tangent, 2

