Integration and area

Definite integrals

Definite integrals have numbers, a and b, next to the integral sign.
They indicate the range of x -values to integrate the function between.
a is the lower limit, b is the upper limit $\quad a<b$
$\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a) \quad$ where F is an integral of f.

Example:

$\int_{1}^{2} x^{2} d x=\left[\frac{1}{3} x^{3}\right]_{1}^{2}=\left(\frac{1}{3} \times 2^{3}\right)-\left(\frac{1}{3} \times 1^{3}\right)=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$

Area under a curve

The value of a definite integral represents the area between
the curve of the function, the x -axis and the line $x=a$ and $x=b$.

Be careful:if the curve is below the x-axis, i.e if $f(x)<0$, the integral will give a negative value.
In this case, Area $=-\int_{a}^{b} f(x) d x$

Area between two curves

$f(x)$ and $g(x)$ are two functions and a and b are two numbers.
when $a<x<b, f(x)>g(x)$.
The area between the two curves and the lines $x=a$ and $x=b$ is

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \text { or } \int_{a}^{b}(f(x)-g(x)) d x
$$

Area $=\int_{1}^{2}-x^{2}+3 x-\left((x-1)^{2}+1\right) d x=\int_{1}^{2}-2 x^{2}+5 x-2 d x$
$=\left[-\frac{2}{3} x^{3}+\frac{5}{2} x^{2}-2 x\right]_{1}^{2}$
Area $=\left(-\frac{16}{3}+10-4\right)-\left(-\frac{2}{3}+\frac{5}{2}-2\right)=\frac{5}{6}$

