Quotient Rule
L.O.  To be able to differentiate functions of the form 
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 and to solve problems involving gradient and finding turning points.

Recap of previous work:

From previous lessons on differentiation (with me or Mrs Lim), you should be familiar with the following results:
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We have met the CHAIN RULE and last lesson we covered the PRODUCT RULE, which was:
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Let’s start with a few questions on these.  Differentiate the following:

1)  
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Use the chain rule:
u = 


so  y = 
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Therefore 
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6)  
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Use the product rule:
u =


v = 
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Therefore 
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Quotient Rule
We also need to be able to differentiate functions like 
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, i.e. those that are fractions (or quotients).

Introduction:

We can differentiate quotients using the product rule.

Example:  Differentiate 
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Solution:  This can be rewritten as a product:  
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Therefore we can use the product rule:
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So
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Therefore, if we substitute into the product rule formula 
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, we get:
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The answer looks quite complicated and could do with some simplifying.

Simpler answers can be obtained if we use the Quotient Rule.  

The formula is:  
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I think this formula is in the formula books.  Can you check?

Example (continued):  Differentiate 
[image: image32.wmf]2

(21)

x

e

y

x

=

-


Solution:  If we use the quotient rule, we let  
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   (i.e. the top)  
and  
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  (the bottom).

We then differentiate the top and bottom:
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and


[image: image36.wmf]2

dv

dx

=

.

Substituting these into the formula for the quotient rule gives:




[image: image37.wmf]22

2

2(21)(2)

(21)

xx

dyexe

dx

x

--

=

-

.

We can simplify the top by expanding out the brackets:  
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Finding turning points

We might be asked to find the turning points on our curve 
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Recall that turning points arise where 
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.  So in this case, it would be where 
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 (using our expression for 
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If a fraction is 0, then the top of the fraction must be 0.  Therefore, turning points occur when:
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We solve this by factorising:
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Remember from last lesson that the exponential function is never 0, therefore we must have

4x - 4 = 0      i.e.  x = 1.

To complete the question, we need to find the y-coordinate and the nature of the turning point:


When x = 1,  
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To decide whether it is a maximum or minimum, we need to consider the gradient either side of the value x = 1:


When x = 0.9,  
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(note that we can’t put x = 0.5 into the formula)

When x = 1.1,  
[image: image47.wmf]2.22.2

2

4(1.1)4

0

(1.81)

dyee

dx

-

=>

-


Therefore (1, e2) is a minimum.

Example 2:  Find the equation of the normal to the curve 
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 when x = 1.  (Complete the missing blank parts)
Solution:  To find the equation of a normal, the first step must be to differentiate.

Let    

u = ln(2x – 1)

and  
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Substituting these into the Quotient Rule formula gives
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This answer involves a fraction within a fraction which is a little messy, but we don’t mind as we just need to use the formula for 
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 to find the gradient at x = 1.

When x = 1,  
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Therefore the gradient of the normal is                  (remember that the gradient of the normal is 
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When x = 1,  y = 


(substitute into 
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Therefore the equation of the normal is:
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Therefore a simplified answer for the equation of the normal is: 

Example 3:  If 
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Solution:  To differentiate 
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, we can use the quotient rule:

u = 




v = 
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Substituting into the quotient rule formula gives:
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Now in order to get this into the correct form, you will need to simplify.  Notice that (2x + 1) is a factor of the top, so take this out as a factor of the numerator:
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You should now be able to get the required answer:

Try these questions:

Differentiate:

1)  
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[image: image67.wmf]2

21

(2)

x

y

x

+

=

+


3)  
[image: image68.wmf]21

43

x

e

y

x

+

=

-



4)  
[image: image69.wmf]2

ln

x

y

x

=


5)  If 
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6)  Find the coordinates of any stationary points on the curve 
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7)  A curve has equation 
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a) Find the equation of the normal to the curve at the origin.  

b) The normal at the origin cuts the curve again at P.  Find the coordinates of P.
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