Numerical measures - exam questions

Question 1: Jan 2006 - Q3

3 When an alarm is raised at a market town's fire station, the fire engine cannot leave until at least five fire-fighters arrive at the station. The call-out time, X minutes, is the time between an alarm being raised and the fire engine leaving the station.

The value of X was recorded on a random sample of 50 occasions. The results are summarised below, where \bar{x} denotes the sample mean.

$$\sum x = 286.5 \qquad \sum (x - \overline{x})^2 = 45.16$$

(a) Find values for the mean and standard deviation of this sample of 50 call-out times.

(2 marks)

Question 2: Jan 2006 - Q4

The time, x seconds, spent by each of a random sample of 100 customers at an automatic teller machine (ATM) is recorded. The times are summarised in the table.

Time (seconds)	Number of customers
$20 < x \leqslant 30$	2
$30 < x \leqslant 40$	7
$40 < x \leqslant 60$	18
$60 < x \leqslant 80$	27
$80 < x \leqslant 100$	23
$100 < x \leqslant 120$	13
$120 < x \leqslant 150$	7
$150 < x \leqslant 180$	3
Total	100

(a) Calculate estimates for the mean and standard deviation of the time spent at the ATM by a customer. (4 marks)

Question 3: Jun 2010 - Q2

2 Before leaving for a tour of the UK during the summer of 2008, Eduardo was told that the UK price of a 1.5-litre bottle of spring water was about 50p.

Whilst on his tour, Eduardo noted the prices, x pence, which he paid for 1.5-litre bottles of spring water from 12 retail outlets.

He then subtracted 50p from each price and his resulting differences, in pence, were

$$-18$$
 -11 1 15 7 -1 17 -16 18 -3 0 9

- (a) (i) Calculate the mean and the standard deviation of these differences. (2 marks)
 - (ii) Hence calculate the mean and the standard deviation of the prices, x pence, paid by Eduardo. (2 marks)
- (b) Based on an exchange rate of €1.22 to £1, calculate, in euros, the mean and the standard deviation of the prices paid by Eduardo. (3 marks)

Question 4: Jan 2010 - Q2

Lizzie, the receptionist at a dental practice, was asked to keep a weekly record of the number of patients who failed to turn up for an appointment. Her records for the first 15 weeks were as follows.

20 26 32 *a* 37 14 27 34 15 18 *b* 25 37 29 25

Unfortunately, Lizzie forgot to record the actual values for two of the 15 weeks, so she recorded them as a and b. However, she did remember that a < 10 and that b > 40.

- (a) Calculate the median and the interquartile range of these 15 values. (4 marks)
- (b) Give a reason why, for these data:
 - (i) the mode is **not** an appropriate measure of average;
 - (ii) the standard deviation **cannot** be used as a measure of spread. (2 marks)
- (c) Subsequent investigations revealed that the missing values were 8 and 43.

Calculate the mean and the standard deviation of the 15 values. (2 marks)

Question 5: Jun 2007 - Q4

A library allows each member to have up to 15 books on loan at any one time.

The table shows the numbers of books currently on loan to a random sample of 95 members of the library.

Number of books on loan	0	1	2	3	4	5–9	10–14	15
Number of members	4	13	24	17	15	11	5	6

- (a) For these data:
 - (i) state values for the mode and range; (2 marks)
 - (ii) determine values for the median and interquartile range; (4 marks)
 - (iii) calculate estimates of the mean and standard deviation. (4 marks)
- (b) Making reference to your answers to part (a), give a reason for preferring:
 - (i) the median and interquartile range to the mean and standard deviation for summarising the given data; (1 mark)
 - (ii) the mean and standard deviation to the mode and range for summarising the given data. (1 mark)

Question 6: Jun 2008 - Q4

The runs scored by a cricketer in 11 innings during the 2006 season were as follows.

47 63 0 28 40 51 a 77 0 13 35

The exact value of a was unknown but it was greater than 100.

- (a) Calculate the median and the interquartile range of these 11 values. (4 marks)
- (b) Give a reason why, for these 11 values:
 - (i) the mode is **not** an appropriate measure of average;
 - (ii) the range is **not** an appropriate measure of spread. (2 marks)

Numerical measures - exam questions Question 5: Jun 2007 - Q4

Question 1: Jan 2006 – Q3

(a)	$Mean = \frac{286.5}{50} = 5.73$	В1	
	Standard deviation = $\sqrt{\frac{45.16}{49 \text{ or } 50}}$ =		
	0.95 to 0.961	В1	2

Question 2: Jan 2006 - Q4

-			
(a)	$\sum_{x} fx = 8025$ $\sum_{x} fx^2 = 739975$		
	Mean $(\overline{x}) = 80.2$ to 80.3	B2	
	Standard Deviation $(s_n, s_{n-1}) = 30.9$ to 31.2 MPs (x) : 25, 35, 50, 70, 90, 110, 135, 165	B2 (B1)	
	$Mean (\overline{x}) = \frac{\Sigma f x}{100}$	(M1)	

	stion 3: Jun 2010 – Q2 -18 -11 1 15 7 -1 17 -16 18 -3 0 9		
(a)(i)	Mean, $\overline{d} = 1.5$	B1	
	Standard deviation, σ_d or s_d = 11.7 to 12.3	B1	2
(ii)	Mean, $\overline{x} = 50 + \overline{d} = 51.5$	B1F	
	x: 32 39 51 65 57 49 67 4 68 47 50 59		
	Standard deviation, σ_x or s_x = 11.7 to 12.3	B1F	2
(b)	[Values, mean or sd in (a)(i) or (a)(ii)] $\times \frac{1.22}{100} \text{ or } 1.22$	M1	
	Mean = 0.628 to 0.63	A1	
	Standard deviation = 0.14 to 0.151	A1	3

Question 4: Jan 2010 – Q2

		Total	8
	Special Case: Evidence of $\frac{\sum x}{15}$	(M1)	
	SD $(\sum x^2 = 11472) = 9.4$ to 9.8	B1	2
	If not identified, assume order is \overline{x} then s		
(c)	Mean = $\frac{\sum x}{n} = \frac{390}{15} = 26$	В1	
(ii)	a and b (two values) unknown Impossible to calculate Cannot be calculated	B1	2
(b)(i)	Two values (25 and 37) of mode No unique value Sparse data Many different values	B1	
	Special Case: Identification that LQ = 18 and UQ = 34	(A1)	4
	IQR = 34 - 18 = 16	A 2	
	Median = 26	A1	
	(a) 14 15 18 20 25 25 26 27 29 32 34 37 37 (b)	M1	
2(a)	Ordering values gives:		
2(-)	i '	ı	I

	Total		12
(ii)	Use all available data or Enable further analyses	B1	1
(b)(i)	Unknown values (16) have no effect on median and IQR or median and IQR are exact values but \overline{x} and s are estimates	B1	1
	and use of mean $(\overline{x}) = \frac{\sum fx}{95}$	(M1)	4
	If neither correct but mid-points of 7 and 12 seen	(B1)	
	Standard Deviation (s_n, s_{n-1}) = 3.88 to 3.91	B2	
(iii)	$Mean (\overline{x}) = 4.2$	B2	
	If neither correct but CF attempted and matched correctly with ≥ 5 x-values	(M1) (A1)	4
	Interquartile Range $(72^{\text{nd}} - 24^{\text{th}})$ = $4 - 2 = 2$	B2	
	$Median (48^{th}) = 3$	B 2	
(ii)	CF: 4 17 41 58 73 84 89 95 x: 0 1 2 3 4 9 14 15		
	Range = 15	B1	2
	tion 5: Jun 2007 – Q4 Mode = 2	B1	

Question 6: Jun 2008 – Q4

4(a)	Ordering:		
	0 0 13 28 35 40 47 51 63 77 a	M1	
	$Median (6^{th}) = 40$	B1	
	$IQR = Q_3(9^{th}) - Q_1(3^{rd})$		
	= 63 - 13 = 50	(B1) B2	4
(b)(i)	Mode: Zero is not representative / sensible reason Wide range of (known) values Small number of values mostly different	B1	
(ii)	Range: Largest value, a, is unknown Cannot be calculated	B1	2
	Total		6