Matrix transformation

From the specifications

Transformations of points in the x-y plane represented by 2×2 matrices. Transformations will be restricted to <u>rotations</u> about the origin, <u>reflections</u> in a line through the origin, <u>stretches</u> parallel to the x-and y-axes, and <u>enlargements</u> with centre the origin.

Use of the standard transformation matrices given in the formulae booklet.

Combinations of these transformations

e.g.
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

From the formulae booklet:

Matrix transformations

Anticlockwise rotation through θ about O: $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$

The principle of the transformation

A matrix 2x1 can be seen as a position vector (position of a point)

$$A = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow A(x, y)$$

Consider a matrix
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

 $\underline{A' = M \times A}$ is the image of A through the matrix transformation

Example:

Consider the triangle ABC with A(1, 2), B(6,4) and C(2,6)

- i) Work out the image of ABC through the matrix transformation $M = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{-1}{2} & 0 \end{bmatrix}$
- ii) Work out the image of ABC through the matrix transformation $T = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$

1.		the object as a sing		_			he fo	llow	ing o	n the	same	e dia	gram	and	descr	ribe							
_			Obj						atrix							-							
_	8	a) P(4,2) Q(4	,4) R(0,4)			-0.5 0	-0	(.5)						-							
_	1	b) P(-6,	8) Q(-:	2,8) R(-2,6)			0	-1							-							
_											1),	mda	r the			-							
۷.	1 IIIu	the im	ages o	$\begin{pmatrix} 1 & 0 \end{pmatrix}$, 1 <i>)</i> , 1	D (3,	3),	C(0,	<i>5)</i> ,	D(0	, 1) (.1	- 41		1	- :							
-		sformat	ion (-	-2 1	. Dr	aw a	diag	gram	to si	now	ine s	snap	e Ar	3CD	ana	us _							
_	imag			,.		0 0)	/1	1\	(0	2)	(1	1\				-							
-3.		quare !											(4	3)							
	Fin	d the i	mage	of the	e squ	are	und	er th	e tra	ansf	orm	atio	n	_3	-2	J							
														1									

Transforming the unit square

The unit square OACB is such that O(0,0), A(1,0), B(0,1), C(1,1)

Consider a matrix
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The image of O is O

The image of A is
$$A' = \begin{pmatrix} a \\ c \end{pmatrix}$$

The image of B is
$$B' = \begin{pmatrix} b \\ d \end{pmatrix}$$

The image of B is
$$B' = \begin{pmatrix} b \\ d \end{pmatrix}$$

The image of C is $C' = \begin{pmatrix} a+b \\ c+d \end{pmatrix}$

We often use the unit square to work out what kind of transformation is a given matrix

Transform the unit square to describe the matrix transformation

Transformation you should recognise:

$$\boldsymbol{M} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{k} \end{bmatrix}$$

$$\boldsymbol{M} = \begin{bmatrix} \boldsymbol{k} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{k} \end{bmatrix}$$

Rotations

Consider a rotation of the unit square by an angle θ^o anticlockwise about O

To work out the element of the transformation matrix, we need to work out the coordinates of A' and B'

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined

Anticlockwise rotation through θ about O:

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Reflections (through a line $y = tan(\theta)x$)

Describe the tranformation which map the blue triangle into the pink one.

Give the corresponding matrix

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Reflection in the line
$$y = x$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Reflection in the line
$$y = -x$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Stretch with scale factor 2, in the direction of the *y*-axis

Reflection in x-axis

Stretch with scale factor 2, in the direction of the *x*-axis

Rotation by 180°

Reflection in y-axis

Page 0

Composing transformations

Consider two matrices A and B.

The product BA represent the transformation equivalent to applying A THEN B

EXERCISE 6C

- 1 The composite transformation **T** is formed by applying a rotation of 30° anticlockwise about the origin followed by a stretch in the *x*-direction of factor 2. Find the matrix that represents **T**.
- **2** The composite transformation \mathbb{C} is formed by first reflecting in the line y = x followed by an enlargement with centre the origin and scale factor 5. Find the matrix that represents \mathbb{C} .
- **3** The composite transformation **M** is formed by applying a rotation of 90° anticlockwise about the origin followed by a reflection in the line y = -x.
 - (a) Find the matrix that represents M.
 - (b) Give a full description of transformation M.
- **4** The matrix **A** represents a rotation of 60° anticlockwise about the origin.
 - (a) Find matrix A.
 - **(b)** Give a full geometric description of the transformation represented by the matrix A^2 .
- **5** The transformation **A** is a reflection in the line y = x and the transformation **B** is a reflection in the line y = -x. The composite transformation **T** is formed by applying **B** followed by **A**. Give a complete description of **T**.

- **6** Prove that a composite transformation formed by two successive reflections in any two straight lines through the origin that are perpendicular is equivalent to performing a half-turn about the origin.
- 7 The composite transformation **M** is defined by **M** = **ABC** where **A**, **B** and **C** are the transformations:
 - **A** a reflection in the line through the origin at 30° to the positive *x*-axis;
 - **B** a stretch in the *y*-direction of factor 2;
 - **C** a rotation of 45° anticlockwise about the origin. Find the matrix that represents **M**.
- **8 A**, **B** and **C** are the transformations:
 - **A** a rotation of 30° anticlockwise about the origin;
 - **B** a reflection in the line $y = \sqrt{3}x$;
 - **C** a rotation of 150° anticlockwise about the origin. Transformation **T** is formed by applying **C** then **B** then **A**. Describe fully the composite transformation **T**.
- **9** Give a full geometrical description of the transformation represented by the matrix $\begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$.

Answers

1)
$$\begin{bmatrix} \sqrt{3} & -1 \\ \frac{1}{5} & \frac{\sqrt{5}}{2} \end{bmatrix}$$
 2) $\begin{bmatrix} 0 & 5 \\ 5 & 0 \end{bmatrix}$ 3) a) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ b) Stretch in the x-direction SF -1 (or reflection in y-axis)

4)a)
$$\begin{bmatrix} \frac{1}{2} & \frac{-\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & \frac{1}{2} \end{bmatrix}$$
 b) rotation 120° anticlockwise about 0 5) Enlargement centre O, SF -1

7)
$$\begin{vmatrix} \frac{1+2\sqrt{3}}{2\sqrt{5}} & \frac{2\sqrt{3}-1}{2\sqrt{5}} \\ \frac{\sqrt{3}-2}{2\sqrt{5}} & \frac{-\sqrt{3}-2}{2\sqrt{5}} \end{vmatrix}$$
 8) Stretch in the y-direction of scale factor -1

9) Anticlockwise rotation of 53.1° about O followed by an enlargement, centre O, SF 5.