Linear laws

Specifications

Numerical Methods

Reducing a relation to a linear law.

E.g.
$$\frac{1}{x} + \frac{1}{y} = k$$
; $y^2 = ax^3 + b$; $y = ax^n$; $y = ab^x$

Use of logarithms to base 10 where appropriate.

Given numerical values of (x, y), drawing a linear graph and using it to estimate the values of the unknown constants.

"y = mx+c" - Revision

y = mx + c is the equation of a straight line with gradient m and y-intercept c.

You can find the value of m by taking any two points (x_1, y_1)

and
$$(x_2, y_2)$$
 on the line and using $m = \frac{y_2 - y_1}{x_2 - x_1}$.

You can usually find the value of *c* by reading the *y*-coordinate of the point where the line intersects the *y*-axis.

A common error is to use coordinates of points from a table which may not always lie on the line.

An example:

Two quantities *x* and *y* are measured experimentally and the following values obtained:

X	150	160	170	180	190
у	9.0	6.9	5.0	3.1	1.0

It is thought that they are connected by a law of the form y = ax + b. Test if this is so and, by drawing a suitable straight line graph, estimate the values of a and b.

The law connecting *y* and *x* is y = -0.2x + 39.

Exercises:

1 The scatter diagram shows the results of a scientific experiment between two variables *y* and *x*. A line of best fit has been drawn.

- (a) Find the equation of the line of best fit.
- **(b)** Use your equation to estimate the value of *x* when y = 40.
- **2** The scatter diagram shows the results of a scientific experiment between two variables *S* and *t*. A line of best fit has been drawn.

- (a) Find the equation of the line of best fit.
- **(b)** Use your equation to estimate the value of t when S = 0.
- **3** The scatter diagram shows the results of a scientific experiment between two variables R and L. A line of best fit has been drawn.

- (a) Find the equation of the line of best fit.
- **(b)** Use your equation to estimate the value of R when L = 84.

a)
$$y = \frac{1}{2}x + \frac{1}{2}$$

a) $S = 9 - 0$

Reducing a relation to a linear law

Equations of the form $y = ax^2 + b$

Consider the equation $y = ax^2 + b$

Numerical example

$$y = x^2 + 1$$

X	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
У	5	3.3	2	1.3	1	1.3	2	3.3	5
X=x2									j.
Y=y									

Complete the table and plot the point (X,Y)

Your turn...

The table shows some experimental values of the variables L and T.

T	5	10	12	15	20	
L	11	29	41	61	105	

A scientist believes that the variables T and L satisfy a relation of the form $L = aT^2 + b$.

(a)	By drawing an appropriate graph, explain why the
	scientist is correct.

T²			
L			

- **(b)** Use your graph to estimate the values of the constants *a* and *b*.
- (c) Given that T > 0, use the relation to find the value of T when L = 149.

$$L = \frac{1}{4}T^2 + 5$$

If $L = 149.T = 24$

Equations of the form $\frac{1}{y} + \frac{1}{x} = a$

0.4

0.1 0.2 0.3 -0.1 -0.2 -0.4

Consider the equation $\frac{1}{y} + \frac{1}{x} = a$

Summary

To test a belief that the relation between x and y is of the form $\frac{1}{x} + \frac{1}{y} = a$, you need to plot $\frac{1}{y}$ against $\frac{1}{x}$. If the points are roughly in a straight line with gradient -1, you can deduce that the relation between x and y is of the form $\frac{1}{x} + \frac{1}{y} = a$. The intercept on the vertical axis (X = 0) gives an estimate for a.

$$if \ \frac{1}{y} + \frac{1}{x} = a,$$

Let
$$\frac{1}{y}$$
 be Y and $\frac{1}{x}$ be X

then you have Y = -X + a

Exercise:

The table shows some experimental values of the variables x and y.

x	10	15	25	40	50
y	11.1	8.1	6.7	6.1	5.9

- (a) By plotting $\frac{1}{y}$ against $\frac{1}{x}$ show that these values are consistent with the relation $\frac{1}{x} + \frac{1}{y} = a$, where a is a constant.
- **(b)** Estimate the value of *a*, giving your answer to two decimal places.
- (c) Hence estimate the value of y when x = 0.5, giving your answer to two decimal places.

Equations of the form $y=ax^2+bx$

Consider the equation $y = ax^2 + bx$

Numerical example: $y = 2x^2 - x$

X	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
У	21	15	10	6	3	1	0	0	1	3	6	10	15
X	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
y/x													

Summary

To test a belief that the relation between x and y is of the form $y = ax^2 + bx$, you can plot $\frac{y}{x}$ against x. If the points are roughly in a straight line, you can deduce that the relation between x and y is of the form $y = ax^2 + bx$. The gradient of the line gives an estimate for a and the intercept on the vertical axis (X = 0) gives an estimate for b.

if
$$y = ax^2 + bx$$
,
Let $\frac{y}{x}$ be Y and x be X
then you have $Y = aX + b$

Exercise:

The table shows some experimental values of the variables *x* and the corresponding values of *y*.

x	2	4	5	6	8
v	14	32	42	54	80

- (a) By plotting $\frac{y}{x}$ against x show that these values are consistent with the relation $y = ax^2 + bx$, where a and b are constants.
- **(b)** Draw a suitable straight line to illustrate the relation and use your line to estimate the value of y when x = 7.
- **(c)** Estimate the values of *a* and *b*, giving your answers to one decimal place.

a)	X	2	4	5	6	8
	y/x					

Other equations

a)
$$ay^2 = x - b$$

b)
$$y^3 = ax^2 + bx$$

For each of the following relations between the variables *x* and *y*, find possible variables which can be plotted to obtain a straight line graph and explain how the graph can be used to estimate the value of the constant *a* and the value of the constant *b*:

(a)
$$y = ax^3 + b$$

(a)
$$y = ax^3 + b$$
 (b) $y = a + b\sqrt{x}$ (c) $y^2 = ax + b$

(c)
$$y^2 = ax + b$$

(d)
$$\frac{1}{y} = a + \frac{b}{\sqrt{x}}$$
 (e) $y = ax^3 + bx$ (f) $y = ax + by^2$
(g) $y = \frac{a}{x} + bx$ (h) $xy = ax^2 + b$ (i) $y^2 - ay + bx^2 = 0$

$$(e) y = ax^3 + bx$$

$$(\mathbf{f}) \ \ y = ax + by^2$$

$$(\mathbf{g}) \ y = \frac{a}{x} + bx$$

$$(h) xy = ax^2 + b$$

(i)
$$y^2 - ay + bx^2 = 0$$

Exercises

The diagram shows a straight line graph of $\frac{y}{x}$ against x passing through the points (0, 2) and (2, 5).

- (a) Express y in the form $ax^2 + bx$, where a and b are constants to be found.
- **(b)** Hence verify that y = 47.5 when x = 5.
- **3** It is assumed that x and y are related by a law of the form $y = a + bx^2$, where a and b are constants. Experimental measurements of x and y are taken to give the following pairs of values:

x	8	10	12	14	16
у	40	60	82	108	138

- (a) By means of a straight line graph verify that the law is valid.
- **(b)** Use your graph to estimate approximate values for *a* and *b*.
- **4** The table shows corresponding values of the variables *x* and *y* obtained in an experiment.

x	2.5	3	3.5	4	4.5
v	1.020	0.955	0.914	0.885	0.864

- (a) Draw a straight line graph to verify that x and y are approximately connected by a relation of the form $\frac{1}{x} + \frac{1}{y} = a$, where a is a constant.
- **(b)** Use your graph to estimate the value, to two decimal places, of
 - (i) x when y = 0.9,
- (ii) a.

5 The diagram shows a straight line graph of *xy* against *x* passing through the points (1, 3) and (5, 1).

- (a) Express *y* in the form $\frac{a}{x} + b$, where *a* and *b* are constants to be found.
- **(b)** Hence verify that y = -0.43 when x = 50.
- **6** The variables x and y are known to satisfy an equation of the form $y = a + b\sqrt{x}$, where a and b are constants. Corresponding approximate values of x and y (each rounded to one decimal place) were obtained experimentally and are given in the following table.

x	3.2	6.8	16.0	25.2	33.6	40.4
v	4.0	5.0	6.6	8.2	9.0	9.8

By drawing a suitable linear graph, estimate the values of *a* and *b*, giving both answers to one decimal place. [A]

Answers of page 10 exercise

(Note that there are alternative correct answers.)

- (a) Plot y against x^3 , gradient of line gives a, intercept on y-axis gives b;
- **(b)** Plot *y* against \sqrt{x} , gradient of line gives *b*, intercept on *y*-axis gives *a*;
- (c) Plot y^2 against x, gradient of line gives a, intercept on y^2 -axis gives b;
- (d) Plot $\frac{1}{y}$ against $\frac{1}{\sqrt{x}}$, gradient of line gives b, intercept on $\frac{1}{y}$ -axis gives a;
- (e) Plot $\frac{y}{x}$ against x^2 , gradient of line gives a, intercept on $\frac{y}{x}$ -axis gives b;
- (f) Plot $\frac{y}{x}$ against $\frac{y^2}{x}$, gradient of line gives *b*, intercept on $\frac{y}{x}$ -axis gives *a*;
- (g) Plot $\frac{y}{x}$ against $\frac{1}{x^2}$, gradient of line gives a, intercept on $\frac{y}{x}$ -axis gives b;
- (h) Plot xy against x^2 , gradient of line gives a, intercept on xy-axis gives b;
- (i) Plot *y* against $\frac{x^2}{y}$ gradient of line gives -b, intercept on *y*-axis gives *a*.

2)
$$y = \frac{3}{2}x^2 + 2x$$

4) b) t) ≈ 3.72 i) ≈ 1.38
6) $a \approx 1.7$, $b \approx 1.3$

Using the LOG function

Property of the log function

- $\log(x)$ exists for x > 0.
- for a > 0 and b > 0,

$$\log(a \times b) = \log(a) + \log(b)$$

$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

$$\log(a^b) = b \times \log(a)$$

In this chapter, we usually use the \log_{10} (log of base 10) to change the variables.

log is a function on the calculator

Equations of the form y=ab^x

Consider the equation $y = ab^x$ Now take the log of both sides :

$$y = ab^{x}$$

Composing by log
 $\log y = \log(ab^{x})$
 $\log y = x \log(b) + \log(a)$
 $Y = m x + c$ with $m = \log(b)$ and $c = \log(a)$

Numerical example: $y = 3 \times 2^x$

Х	-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1
у	0.047	0.066	0.094	0.133	0.188	0.27	0.38	0.53	0.75	1.06	1.5	2.12	3	4.24	6
X	-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1
log(y)															

Summary

Taking logarithms of both sides of $y = ab^x \implies \log y = \log a + x \log b$.

To represent the relation $y = ab^x$ in a linear form you need to plot $\log y$ against x. If a straight line is obtained from the given data the relation is true. The gradient of the line is the value of $\log b$ and the intercept on the vertical axis (X = 0) gives the value of $\log a$. Knowing these two values, estimates for a and b can be found.

Exercise:

The data for x and y as given in the table below are related approximately by a law of the form $ky = h^x$, where h and k are constants.

X	1	2	3	4	5	6
y	17	49	110	330	810	2200

By drawing a suitable graph find estimates, to two significant figures, for h and k.

x	1	2	3	4	5	6
log ₁₀ y						

Exercises:

1 The diagram shows a straight line graph of $log_{10}y$ against x passing through the points (0, 0.5) and (5, 3).

Express y in the form ab^x , where a and b are constants to be found.

2 The diagram shows a straight line graph of $\log_{10}P$ against T passing through the points (0, 1) and (5, 0.25).

Express P in the form ab^T , where a and b are constants to be found.

- **3** *T* is thought to relate *L* by a law of the form $T = ka^L$, where *k* and *a* are constants.
 - (a) Express $\log_{10}T$ in terms of L, $\log_{10}k$ and $\log_{10}a$. The pairs of values of L and T are:

 P		OI L		arc.		
L	1	2	3	4	5	
T	13.95	43.24	134.06	415 58	1288 31	

- **(b)** Plot $\log_{10}T$ against L on graph paper and hence draw a suitable straight line to illustrate the relation between the data.
- (c) Use your line to estimate, to two significant figures:
 - (i) the value of *T* when L = 2.5.
 - (ii) the values of *k* and *a*.

4 The data for x and y, as given in the table below, are related approximately by a law of the form $y = ab^x$, where a and b are constants.

X	0.5	. 1	1.5	2	2.5	
y	10.6	15.0	21.2	30.0	42.4	

By drawing a suitable graph find estimates, to two significant figures, for *a* and *b*.

5 The data for x and y, as given in the table below, are related approximately by a law of the form $ky = h^x$, where h and k are constants.

x	1	2	3	4	5	6	
y	0.96	2.30	5.53	13.27	31.85	76.44	

By drawing a suitable graph find estimates, to two significant figures, for h and k.

6 The data for x and y, as given in the table below, are related approximately by a law of the form $y = pq^{-x}$, where p and q are constants.

X	1	2	3	4	5	
y	15.0	9.38	5.86	3.66	2.29	

By drawing a suitable graph find estimates, to two significant figures, for p and q.

Equations of the form y=axⁿ

Consider the equation $y = ax^n$ Now take the log of both sides :

$$y = ax^n$$

Composing by log
 $\log y = \log(ax^n)$
 $\log y = n\log(x) + \log(a)$
 $Y = nX + c$ with $c = \log(a)$

Taking logarithms of both sides of $y = ax^n \implies \log y = \log a + n \log x$.

To test a belief that the relation between x and y is of the form $y = ax^n$, you need to plot $\log y$ against $\log x$. If the points are roughly in a straight line, you can deduce that the relation between x and y is of the form $y = ax^n$. The gradient of the line gives an estimate for n and the intercept on the vertical axis (X = 0) gives the value of $\log a$ from which the estimate for a can be found.

Example:

The corresponding values of two variables *x* and *t* found by experiment are:

t	2	4	6	8	10
x	3.16	17.9	49.3	101.2	176.8

By drawing a suitable linear graph, verify that the values of t and x, approximately satisfy a relation of the form $x = at^n$. Use your graph to estimate values of the constants a and n giving your answers to two significant figures.

log(t)			
log(x)			

Exercises:

1 The diagram shows a straight line graph of $\log_{10} y$ against $\log_{10} x$ passing through the points (0, 0.5) and (4, 3.5).

Express y in the form ax^b , where a and b are constants to be found.

2 The diagram shows a straight line graph of $\log_{10} y$ against $\log_{10} x$ passing through the points (2, 2) and (5, 8).

Express y in the form ax^b , where a and b are constants to be found.

3 The corresponding pairs of values of two variables y and xfound by experiment are:

57	X	2	3	4	5	6	
	у	9.2	14.9	21.1	27.6	34.4	

By drawing a suitable linear graph, verify that the values of x and y, approximately satisfy a relation of the form $y = ax^b$. Use your graph to estimate values of the constants a and b giving your answers to two significant figures.

- **4** *V* is thought to relate *T* by a law of the form $V = aT^{-n}$, where *a* and n are constants.
 - (a) Express $\log_{10}V$ in terms of n, $\log_{10}T$ and $\log_{10}a$.

Pairs of values of *T* and *V* are:

T	10	12	14	16	18
V	0.980	0.895	0.829	0.775	0.731

- **(b)** Plot $\log_{10}V$ against $\log_{10}T$ and hence draw a suitable straight line to illustrate the relation between the data.
- (c) Use your line to estimate, to two significant figures:
 - (i) the value of V when T = 12.6,
 - (ii) the values of a and n.
- **5** The variables *Q* and *x* satisfy a relation of the form $Q = ax^b$, where a and b are constants.

Measurements of O for given values of x gave the following results:

x	0.4	0.5	0.6	0.7	0.8
Q	1.72	3.02	4.74	6.98	9.73

- (a) Express $\log_{10}Q$ in terms of $\log_{10}a$, b and $\log_{10}x$.
- **(b) (i)** Plot $\log_{10}Q$ against $\log_{10}x$.
 - (ii) Draw a suitable straight line to illustrate the relation between the data.
- (c) Use your line to estimate:
 - (i) the value of Q when x = 0.54, giving your answer to two significant figures,
 - (ii) the values of a and b, giving your answer to two significant figures. [A adapted]

16 (or 17), b

Key point summary

- I Since experimental data is not exact, due to measuring errors, points plotted are unlikely to all lie exactly in line so a line of best fit is drawn.
- 2 y = mx + c is the equation of a straight line with gradient m and y-intercept c.
- **3** If the variables used are not *x* and *y*, the method to find the equation of the line of best fit is exactly the same. In the general equation y = mx + c you just replace *y* by the variable on the vertical axis and replace *x* by the variable on the horizontal axis.
- **4** If the graph does not show the *y*-intercept, you can find the value of the gradient *m* as usual and then find the value of *c* by substituting the coordinates of a point on the line into the equation y = mx + c. Alternatively, you can use the coordinates of two points on the line to form and solve a pair of simultaneous equations in *m* and *c*.
- **5** To test a belief that the relation between x and y is of the form $y = ax^2 + b$, you need to plot y against x^2 . If the points are roughly in a straight line, you can deduce that the relation between x and y is of the form $y = ax^2 + b$. The gradient of the line gives an estimate for a and the intercept on the vertical axis (X = 0) gives an estimate for b.
- **6** To test a belief that the relation between x and y is of the form $\frac{1}{x} + \frac{1}{y} = a$, you need to plot $\frac{1}{y}$ against $\frac{1}{x}$. If the points are roughly in a straight line with gradient -1, you can deduce that the relation between x and y is of the form $\frac{1}{x} + \frac{1}{y} = a$. The intercept on the vertical axis (X = 0) gives an estimate for a.

- 7 To test a belief that the relation between x and y is of the form $y = ax^2 + bx$, you can plot $\frac{y}{x}$ against x. If the points are roughly in a straight line, you can deduce that the relation between x and y is of the form $y = ax^2 + bx$. The gradient of the line gives an estimate for a and the intercept on the vertical axis (X = 0) gives an estimate for b.
- **8** Taking logarithms of both sides of $y = ax^n \implies \log y = \log a + n \log x$.
- 9 To test a belief that the relation between x and y is of the form y = axⁿ, you need to plot log y against log x. If the points are roughly in a straight line, you can deduce that the relation between x and y is of the form y = axⁿ. The gradient of the line gives an estimate for n and the intercept on the vertical axis (X = 0) gives the value of log a from which the estimate for a can be found.
- **10** Taking logarithms of both sides of $y = ab^x \implies \log y = \log a + x \log b$.
- To represent the relation $y = ab^x$ in a linear form you need to plot $\log y$ against x. If a straight line is obtained from the given data the relation is true. The gradient of the line is the value of $\log b$ and the intercept on the vertical axis (X = 0) gives the value of $\log a$. Knowing these two values, estimates for a and b can be found.