Homework Questions 8 – Equation of Tangents & Normals

1. Find the equation of the tangent to the curve $y = 3x^2 + 5x + 2$ at the point (3,44)

$$y = 23x - 25$$

2. For the curve given below, find the gradient of the tangent at the point (4,123) $y = 7x^2 + 4x - 5$

3. Find the equation of the tangent to the function below at the point (1,11) $f(x) = 8x^2 + 3x$

4. If a tangent cuts a curve at (2,7) and has a gradient of -2, What is the equation of the tangent?

5. Find the gradient of the function at the point (2,36)
If the equation of the curve is
$$f(x) = 4x^2 + 9x + 2$$

6. What are the coordinates of the point on the curve $y = 4 - x^2$ where the gradient of $\frac{1}{4}$ the normal is $\frac{1}{4}$

(2.0)		
(2,0)		

y = -2x + 11

25

60

$$y = 19x - 8$$

7. Find the equation of the normals to the curve $y = x^2 - 5$ at the point (2,-1)

$$4y = -x - 2$$

y = 15x - 48

8. What is the equation of the tangent to the curve $y = 3x^2 - 9x$ at the point where x=4

9. What is the equation of the normal to the curve $y = x - x^2 + 2x^3$ at the point where x=-1

$$9y = -x - 37$$

10. Find the equation of the normal to the curve $y = x^2 + 5x + 1$ at the point where the tangent gradient at this point is 2

$$2y = -x - 10$$