Homework Questions 4 – Using Standard Results to Differentiate

1. Use standard results to differentiate the following a) $y = x^3 + 2x^2$

b)
$$y = \frac{x^{-3}}{2}$$

c)
$$y = 3x^{-\frac{1}{2}}$$

d)
$$y = x^{-\frac{1}{2}} + 2x^2$$

e)
$$y = 5x^2 + 3x^{-\frac{1}{3}} + 2$$

f)
$$y = 3x^2 - 2x^{-1} + 5$$

g)
$$y = 6x^2 + \frac{x}{2} - 2$$

h)
$$y = 8x^2 + 4x - 3$$

i)
$$y = 2x^2 + 3x - 1$$

$$\frac{dy}{dx} = 3x^2 + 4x$$

$$\frac{dy}{dx} = -\frac{3}{2}x^{-4}$$

$$\frac{dy}{dx} = -\frac{3}{2}x^{-\frac{3}{2}}$$

$$\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{3}{2}} + 4x$$

Г

$$\frac{dy}{dx} = 10x - x^{-\frac{4}{3}}$$

$$\frac{dy}{dx} = 6x^2 + 2x^{-2}$$

$$\frac{dy}{dx} = 12x + 0.5$$

$$\frac{dy}{dx} = 16x + 4$$

$$\frac{dy}{dx} = 4x + 3$$

J)
$$y = 6x^2 + 2x + 4$$

$$\frac{dy}{dx} = 12x + 2$$

2. Find the gradient of the following curves at the given points

a) $f(x) = \frac{1}{x^2}$ at the point (2, 0.25)

b)

_ 1	
4	

$$f(x) = \frac{5}{\sqrt{x}}$$
 at the point where x=9

3. Find the coordinate of the point on the curve

a) $y = x^2 - 3x + 1$ where the gradient is 7

b)
$$f(x) = 4x^2 - 7x + 3$$
 where the gradient is -3

c)
$$f(x) = x^2 + 5x + 3$$
 where the gradient is 1

d)
$$y = 7x - 3x^2$$
 where the gradient is -5

4. Find the coordinate of both points on the curve

 $y = x - \frac{x^3}{3}$ where the gradient is 0

5. Find the coordinate of both points on the curve $y = x^3 - 9x^2 + 10x - 5$ where the gradient is -14

(4, -45) (2, -13)

(5, 11)

(0.5, 0.5)

<u>5</u> 54

(-2, -3)

(2, 2)