Hypothesis tests for two samples

Test	Null hypothesis	Test statistic	Distribution
F test on ratio of two variances	The ratio of the variances of the two populations is $\frac{\sigma_1^2}{\sigma_2^2}$.	$F = \frac{s_1^2 / \sigma_1^2}{s_2^2 / \sigma_2^2} \left(s_1^2 > s_2^2\right)$	$F_{n_1 - 1, n_2 - 1}$
Kolmogorov- Smirnov 2-sample test	The two samples are drawn from the same underlying population.	$D^* = n_1 n_2 D$ where D = largest difference between cumulative probabilities based on the two samples and n_1 , n_2 are the sample sizes.	As in statistical tables
Mann Whitney U test	The two samples are drawn from the same underlying population. [H ₁ : the two samples come from populations with different medians]	Rank all the data values from both samples together; for sample sizes $m, n: m \le n$, calculate $T_1 = \sum R - \frac{1}{2}m(m+1)$ and $T_2 = \sum S - \frac{1}{2}n(n+1)$ where $\sum R$ is the sum of ranks of sample size m , $\sum S$ is the sum of ranks of sample size n . The test statistic is the smaller of T_1, T_2 . The test statistic can also be found by counting the number of values in sample 2 which exceed each of the values in sample 1, repeat for all the values in sample 2. There are online calculators such as: <u>http://socr.stat.ucla.edu/Applets.dir /U_Test.html</u>	As in statistical tables. Approx Normal for large samples with Mean $\frac{1}{2}mn$, Variance $\frac{1}{12}mn(m+n+1)$
Normal test for paired samples with known variance	The difference in the population means has value <i>k</i> .	$z = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - k}{\sigma / \sqrt{n}} = \frac{\overline{d} - k}{\sigma / \sqrt{n}}$	N(0, 1)
Normal test for paired samples with unknown variance	The difference in the population means has value <i>k</i> .	$z = \frac{\left(\overline{x_1} - \overline{x_2}\right) - k}{\sqrt[s]{\sqrt{n}}} = \frac{\overline{d} - k}{\sqrt[s]{\sqrt{n}}}$	N(0, 1) for large samples
Normal test for unpaired samples with common known variance	The difference in the means of the two populations is $\mu_1 - \mu_2$.	$z = \frac{\left(\overline{x} - \overline{y}\right) - \left(\mu_1 - \mu_2\right)}{\sigma_{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$	N(0, 1)

			<u> </u> 1
Normal test for unpaired samples with common unknown variance	The difference in the means of the two populations is $\mu_1 - \mu_2$.	$z = \frac{(\overline{x} - \overline{y}) - (\mu_1 - \mu_2)}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ where}$ $s = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	N(0, 1) for large samples
Normal test for unpaired samples with different known variances	The difference in the means of the two populations is $\mu_1 - \mu_2$.	$z = \frac{(\bar{x} - \bar{y}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$	N(0, 1)
Normal test for unpaired samples with different unknown variances	The difference in the means of the two populations is $\mu_1 - \mu_2$.	$z = \frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	N(0, 1) for large samples
Sign test	Population of differences has median $= 0$.	r = number of values of $d_i > 0$ where $d_i = x_i - y_i$	B $(n, \frac{1}{2})$ where n = number of values $\neq 0$
<i>t</i> test for paired samples	The difference in the population means has value <i>k</i> .	$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - k}{\sqrt[s]{\sqrt{n}}} = \frac{\overline{d} - k}{\sqrt[s]{\sqrt{n}}}$	<i>t</i> _{<i>n</i>-1}
<i>t</i> test for unpaired samples with common unknown variance	The difference in the means of the two populations is $\mu_1 - \mu_2$.	$t = \frac{(\overline{x} - \overline{y}) - (\mu_1 - \mu_2)}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ where}$ $s = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$t_{n_1+n_2-2}$
Wilcoxon paired sample test	Population of differences has median = M .	Test statistic: $T = \min [P, Q]$ <i>P</i> , <i>Q</i> are the sums of the ranks corresponding to positive and negative deviations $(d_i - M)$ where $d_i = x_i - y_i$	As in statistical tables
Wilcoxon rank sum 2-sample test	The two samples are drawn from the same underlying population. [H ₁ : the two samples come from populations with different medians]	Rank all the data values from both samples together; W = sum of ranks of sample size m. where sample sizes are $m,n:m \le n$.	Statistical tables give critical values for the lower tail; critical value for the upper tail is $m(m+n+1) - W_{\rm C}$ where $W_{\rm C}$ is the critical value from tables. Approx Normal for large samples with Mean $\frac{1}{2}mn + \frac{1}{2}m(m+1)$, Variance $\frac{1}{12}mn(m+n+1)$

© MEI 2008