Hypothesis tests for two samples

Test	Null hypothesis	Test statistic	Distribution
test on ratio of two variances	The ratio of the variances of the two populations is $\frac{\sigma_{1}{ }^{2}}{\sigma_{2}{ }^{2}}$.	$F=\frac{s_{1}{ }^{2} / \sigma_{1}{ }^{2}}{s_{2}{ }^{2} / \sigma_{2}{ }^{2}}\left(s_{1}{ }^{2}>s_{2}{ }^{2}\right)$	
Kolmogorov- Smirnov	The two samples are drawn from the same underlying population.	$D=$ largest difference between cumulative probabilities based on the two samples and n_{1}, n_{2} are the sample sizes.	As in statistical tables

\(\left.$$
\begin{array}{|c|l|c|c|}\hline \begin{array}{c}\text { Normal test for } \\
\text { unpaired samples } \\
\text { with common } \\
\text { unknown } \\
\text { variance }\end{array} & \begin{array}{l}\text { The difference in the means of } \\
\text { the two populations is } \mu_{1}-\mu_{2} .\end{array}
$$ \& z=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} where \\

s=\frac{\left(n_{1}-1\right) s_{1}{ }^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{n_{1}+n_{2}-2} \& N(0,1) for large samples\end{array}\right]\)| $z=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}}}$ |
| :---: |

© MEI 2008

