Hypothesis tests for one sample

Test	Null hypothesis	Test statistic	Distribution
Binomial test	The population value of a probability is some particular value, θ .	Observed number of occurrences, <i>x</i> , from a Binomial distribution.	$\mathrm{B}(n,\theta)$
Normal approximation to binomial test	$p = \theta$ where p is the population proportion and θ is a particular value.	$z = \frac{\frac{x/n - \theta}{\sqrt{\left(\frac{\theta(1 - \theta)}{n}\right)}}$	N(0, 1)for large sample
Kendall's rank correlation test	There is no association between the variables.	Kendall's rank correlation coefficient $\tau = \frac{S}{\frac{1}{2}n(n-1)}$ (see a text book for calculation of S).	As in statistical tables
Kolmogorov- Smirnov test	The data are drawn from a population with a given distribution.	D = largest difference between expected and observed cumulative probabilities	As in statistical tables
Normal test with known variance	The population mean has a particular value, μ .	$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	N(0, 1)
Normal test with estimated variance	The population mean has a particular value, μ .	$z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$	N(0, 1) for large sample
Pearson's product moment correlation test	$\rho = 0$ where ρ is the population value of the correlation coefficient.	Pearson's product moment correlation coefficient (pmcc) $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \text{ where}$ $S_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y})$ $= \sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$ $= \sum x_i y_i - n(\overline{x})(\overline{y})$	As in statistical tables
Poisson test	The population mean is some particular value, λ .	Observed number of occurrences, <i>x</i> , from a Poisson distribution.	Poisson (λ)

Sign test	Population median $= M$	r = number of values > M	B $(n, \frac{1}{2})$ where n = number of values $\neq M$
Spearman's rank correlation test	There is no association between the variables.	Spearman's rank correlation coefficient $r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$	As in statistical tables
t test	The population mean has a particular value, μ .	$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$	<i>t</i> _{<i>n</i>-1}
χ^2 test for goodness of fit	The data are drawn from a population with a given distribution.	$X^2 = \sum \frac{\left(f_o - f_e\right)^2}{f_e}$	χ^2_{k-p-1} Observations grouped into <i>k</i> cells all with expected frequency ≥ 5 ; <i>p</i> parameters estimated from data; distribution is approximate.
χ^2 test for variance	The population variance has a given value σ^2 .	$X^2 = \frac{(n-1)s^2}{\sigma^2}$	χ^2_{n-1}
χ^2 test on a contingency table	The row and column classifications are independent.	$X^{2} = \sum \frac{\left(f_{o} - f_{e}\right)^{2}}{f_{e}}$ For a χ^{2} test on a 2x2 contingency table, some statisticians use Yates' correction.	$\chi^{2}_{(r-1)(c-1)}$ <i>r</i> is the number of rows, <i>c</i> is the number of columns; distribution is approximate.
Wilcoxon single sample test	Population median = M	Test statistic: $T = \min [P, Q]$ <i>P</i> , <i>Q</i> are the sums of the ranks corresponding to positive and negative deviations $(x_i - M)$	As in statistical tables