One-way analysis of variance
(one between-subjects factor)

ANOVA summary table					Sums of squares	What the letters stand for
					$\begin{gathered} S S_{\mathrm{T}}=\sum_{i} \sum_{j} x_{i j}{ }^{2}-\frac{T^{2}}{n} \\ S S_{\mathrm{B}}=\sum_{i} \frac{T_{i}^{2}}{n_{i}}-\frac{T^{2}}{n} \\ S S_{\mathrm{w}}=\sum_{i} \sum_{j}\left(x_{i j}-\bar{x}_{i}\right)^{2} \\ {\left[S S_{\mathrm{W}}=S S_{\mathrm{T}}-S S_{\mathrm{B}}\right]} \end{gathered}$	$k=$ number of levels of the factor $n=$ total sample size $=\sum_{i} n_{i}$ $n_{i}=$ size of i th sample (i.e. for i th level of factor) $x_{i j}=j$ th member of i th sample $T=\sum_{i} \sum_{j} x_{i j}=$ overall total $T_{i}=\sum_{j} x_{i j}=$ total of i th sample $\bar{x}_{i}=$ mean of $i t \mathrm{~h}$ sample
Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic*		
Between groups	SS ${ }_{\text {B }}$	$k-1$	$M S_{\text {B }}$	$F=\frac{M S_{\mathrm{B}}}{M S_{\mathrm{w}}}$		
Within groups	$S S_{\text {w }}$	$n-k$	$M S_{\text {w }}$			
Total	$S S_{\text {T }}$	$n-1$				

Worked example model: $x_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}$, where $\varepsilon_{i j} \sim$ independent $\mathrm{N}\left(0, \sigma^{2}\right)$
($\mathbf{N B}$ the use of computers allows much larger samples to be worked with easily)
To see whether the mean height of women varies with ethnic background, a random sample of adult women have their heights measured, with the following results.

Ethnic background	Height (cm)			T_{i}	n_{i}	\bar{x}_{i}		
White British	161.7	154.4	165.8	173.6	173.0	177.0	1005.5	6
Black British	154.7	151.8	167.9	161.0	155.7		791.1	5
Asian British	162.5	154.1	137.5	169.3		158.22		
					TOTAL	2420.0	15	4

The population variance of the heights for each group is assumed to be the same. The populations are assumed to be Normally distributed.

Null hypothesis: The population mean height for each group is the same.
Alternative hypothesis: At least one population mean height differs from the others.
$k=3, n=15, T=2420.0$
ANOVA table

Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic*	The test statistic has an F distribution with parameters (2,
Between groups	403.107	2	201.5535	2.215	12) and is not significant at the 5\% level (The upper 5\% point is
Within groups	1092.106	12	91.0089		3.89). There is insufficient evidence of a difference in (population) mean heights between age groups.
Total	1495.213	14			

\dagger Mean squares

Each mean square is calculated by dividing the sum of squares by the degrees of freedom.

*Distributions of test statistics

All test statistics in the table above have an F distribution with parameters "degrees of freedom of numerator" and "degrees of freedom of denominator".

Two-way analysis of variance (no interaction)

Worked example model: $x_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j}$, where $\varepsilon_{i j} \sim$ independent $\mathrm{N}\left(0, \sigma^{2}\right)$
(NB the use of computers allows much larger samples to be worked with easily)
Two laboratories test the calorific content of four brands of digestive biscuit. Three of each variety of biscuit are tested by each laboratory with the following results. The number of calories per biscuit is shown.

	Lab 1			Lab 2			T_{i}
Biscuit I	73.6	72.2	74.3	70.9	73.7	75.5	440.2
Biscuit II	69.3	67.6	70.1	70.6	69.6	69.9	417.1
Biscuit III	75.8	75.7	76.4	72.5	73.0	71.6	445.0
Biscuit IV	71.1	66.7	69.8	70.5	71.2	70.4	419.7
T_{j}			862.6			859.4	$T=1722$

The population variance of the number of calories per biscuit is assumed to be the same for each combination of laboratory and biscuit brand. It is assumed that there is no interaction between the factors (see page 5 for "with interaction"). The populations are assumed to be Normally distributed.

Null hypotheses: (a) The population mean number of calories per biscuit is the same for each brand.
(b) The population mean number of calories per biscuit is the same for each of the laboratories.

Alternative hypotheses: (a) At least one population mean calorie count differs from the other brands.
(b) At least one population mean calorie count differs from the other laboratories.

Factor A is biscuit brand. Factor B is laboratory. $a=4, \quad b=2, \quad r=3, \quad n=24$
ANOVA table

Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic $*$
Factor A	100.09	3	33.363	12.03
Factor B	0.4267	1	0.4267	0.154
Residual	52.703	19	2.774	
Total	153.22	23		

The critical value for $F_{3,19}$ at the 5%
level is 3.13. 12.03 is bigger than this so there is evidence that not all brands of biscuit have the same population mean calorie count.

The critical value for $F_{1,19}$ at the 5% level is 4.38 .0 .137 is less than this so there is no evidence of a difference between laboratories in respect of the population mean calorie count.

\dagger Mean squares

Each mean square is calculated by dividing the sum of squares by the degrees of freedom.

*Distributions of test statistics

All test statistics in the table above have an F distribution with parameters "degrees of freedom of numerator" and "degrees of freedom of denominator".
Analysis of Variance (ANOVA)
© MEI 2008

Analysis of variance for randomised blocks

ANOVA summary table					Sums of squares	What the letters stand for
					$\begin{gathered} S S_{\mathrm{T}}=\sum_{i} \sum_{j} \sum_{k} x_{i j k}^{2}-\frac{T^{2}}{n} \\ S S_{\mathrm{A}}=\sum_{i} \frac{T_{i}^{2}}{r b}-\frac{T^{2}}{n} \\ S S_{\mathrm{B}}=\sum_{j} \frac{T_{j}^{2}}{r a}-\frac{T^{2}}{n} \\ S S_{\mathrm{R}}=S S_{\mathrm{T}}-\left(S S_{\mathrm{A}}+S S_{\mathrm{B}}\right) \end{gathered}$	$a=$ number of levels of factor A $b=$ number of levels of factor B $r=$ number of data values for each combination of levels of A and B $n=r a b=$ total sample size $x_{i j k}=k$ th member of sample at level i of factor A \& level j of fac
Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic *		
Factor A (treatment)	$S S_{\text {A }}$	$a-1$	$M S_{\text {A }}$	$F=\frac{M S_{\mathrm{A}}}{M S_{\mathrm{R}}}$		
Factor B (blocks)	$S S_{\text {B }}$	$b-1$	$M S_{\text {B }}$	$F=\frac{M S_{\mathrm{B}}}{M S_{\mathrm{R}}}$		
Residual	$S S_{\text {R }}$	$n-a-b+1$ (by subtraction)	$M S_{\text {R }}$			
Total	$S S_{\text {T }}$	$n-1$				

Worked example model: $x_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j}$, where $\varepsilon_{i j} \sim$ independent $\mathrm{N}\left(0, \sigma^{2}\right)$
(NB the use of computers allows much larger samples to be worked with easily)
Four varieties of garden pea (C, D, E and F) are planted in a randomised block design in strips in a field which has a stream flowing down one side. The treatment factor is pea variety. The blocking (nuisance) factor is distance from the stream. The mean yield per plant (grammes) is shown in the table below.

	Strip 1	Strip 2	Strip 3	T_{i}
Pea C	294	274	305	873
Pea D	324	335	256	915
Pea E	322	278	286	886
Pea F	263	280	285	828
T_{j}	1203	1167	1132	$T=3502$

The population variance of the mean yield is assumed to be the same for each combination of variety and strip. It is assumed that there is no interaction between the factors. The populations are assumed to be Normally distributed. $a=4, \quad b=3, \quad r=1, \quad n=12$.

Null hypotheses: (a) The population mean yield is the same for each pea variety.
(b) The population mean yield is the same for each strip.

Alternative hypotheses: (a) At least one population mean yield for a variety differs from the other varieties.
(b) At least one population mean yield for a strip differs from the other strips.

ANOVA table

Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic*
Variety	1311	3	437	0.526
Strips	630.17	2	315.08	0.3796
Residual	4980.5	6	830.08	
Total	6831.7	11		

The critical value for $F_{3,11}$ at the
5% level is 3.59 .0 .526 is less than this so there is no evidence of a difference in population mean yield between pea varieties.
The critical value for $F_{2,11}$ at the 5% level is 3.98 .0 .3796 is less than this so there is no evidence of a difference between strips in respect of population mean yield.

\dagger Mean squares

Each mean square is calculated by dividing the sum of squares by the degrees of freedom.

*Distributions of test statistics

All test statistics in the table above have an F distribution with parameters "degrees of freedom of numerator" and "degrees of freedom of denominator".

Analysis of variance for Latin square

ANOVA summary table					Sums of squares	What the letters stand for
Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic *	$\begin{gathered} S S_{\mathrm{T}}=\sum_{i} \sum_{j} x_{i j}^{2}-\frac{T^{2}}{n^{2}} \\ S S_{\text {rows }}=\sum_{r} \frac{T_{r}^{2}}{n}-\frac{T^{2}}{n^{2}} \\ S S_{\text {cols }}=\sum_{c} \frac{T_{c}^{2}}{n}-\frac{T^{2}}{n^{2}} \\ S S_{\text {treats }}=\sum_{k} \frac{T_{k}^{2}}{n}-\frac{T^{2}}{n^{2}} \\ S S_{\mathrm{R}}=S S_{\mathrm{T}}-\left(S S_{\text {rows }}+S S_{\text {cols }}+S S_{\text {treats }}\right) \end{gathered}$	$\begin{gathered} n=\text { number of rows (or columns) } \\ x_{i j}=\text { observation in } \\ \text { row } i \text { and column } j \\ T=\sum_{i} \sum_{j} x_{i j}=\text { overall total } \\ T_{r}=\text { total of data in row } r \\ T_{c}=\text { total of data in column } c \\ T_{k}=\begin{array}{c} \text { total of data at } \\ \text { one level of the treatment } \end{array} \end{gathered}$
Rows	$S S_{\text {rows }}$	$n-1$	$M S_{\text {rows }}$	$F=\frac{M S_{\text {rows }}}{M S_{\mathrm{R}}}$		
Columns	$S S_{\text {cols }}$	$n-1$	$M S_{\text {cols }}$	$F=\frac{M S_{\text {cols }}}{M S_{\mathrm{R}}}$		
Treatments	$S S_{\text {treats }}$	$n-1$	$M S_{\text {treats }}$	$F=\frac{M S_{\text {trats }}}{M S_{\mathrm{R}}}$		
Residual	$S S_{\text {R }}$	$\begin{gathered} \hline(n-1)(n-2) \\ \text { (by } \\ \text { subtraction) } \\ \hline \end{gathered}$	$M S_{\text {R }}$			
Total	$S S_{\text {T }}$	$n^{2}-1$				

Worked example model: $x_{i j(k)}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\varepsilon_{i j(k)}$, where $\varepsilon_{i j(k)} \sim$ independent $\mathrm{N}\left(0, \sigma^{2}\right)$
An experiment to test whether four varieties of potato give the same mean yield is carried out in a square field subdivided into a square grid of plots of equal size. It is thought that the field might have natural "fertility gradients" both across and down it. To allow for this possibility, a Latin square design is used. The table shows the layout of the field and the yield in kg per plot. The rows and columns represent the possible fertility gradients (these are nuisance factors). The letters A, B, C, D represent the varieties of potato (the factor of interest). $n=4$.

					Row Total	Variety	Total
	A 19.8	B 21.2	D 22.0	C 18.6	81.6	A	75.8
	D 21.3	A 21.0	C 18.8	B 18.7	79.8	B	79.1
	B 20.8	C 18.3	A 20.7	D 17.1	76.9	C	76.1
	C 20.4	D 16.1	B 18.4	A 14.3	69.2	D	76.5
Col Total	82.3	76.6	79.9	68.7	307.5	Total	307.5

Null hypotheses: (a) The population mean yield is the same for all varieties.
(b) The population mean yield is the same in each row (i.e. no fertility gradient in this direction).
(c) The population mean yield is the same in each column (i.e. no fertility gradient in this direction)

Alternative hypotheses: Each null hypothesis has a corresponding alternative hypothesis that at least one population mean yield differs from the others

ANOVA table

Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic*
Rows	22.447	3	7.482	2.839
Columns	26.372	3	8.791	3.335
Treatments (varieties)	1.712	3	0.571	0.217
Residual	15.814	6	2.636	
Total	66.344	15		

The critical value for $F_{3,6}$ at the 5% level is 4.76.
2.839 and 3.335 are each smaller than 4.76 so there is no evidence of a significant difference in mean yields between rows or columns
0.217 is also smaller than 4.76 so there is no evidence of difference in mean yield between varieties.

NOTE The Latin square is also useful for situations where there are two "real-interest" factors and one "nuisance" or three "real-interest" factors, provided all factors have the same number of levels and there is no interaction. Simply use the rows and/or columns to represent the additional real-interest factor(s).

\dagger Mean squares

Each mean square is calculated by dividing the sum of squares by the degrees of freedom.
*Distributions of test statistics
All test statistics in the table above have an F distribution with parameters "degrees of freedom of numerator" and "degrees of freedom of denominator".

Two-way analysis of variance (with interaction) (two between-subjects factors)

ANOVA summary table					Sums of squares	What the letters stand for
					$\begin{gathered} S S_{\mathrm{T}}=\sum_{i} \sum_{j} \sum_{k} x_{i j k}^{2}-\frac{T^{2}}{n} \\ S S_{\mathrm{A}}=\sum_{i} \frac{T_{i}^{2}}{n_{i}}-\frac{T^{2}}{n} \\ S S_{\mathrm{B}}=\sum_{j} \frac{T_{j}^{2}}{n_{j}}-\frac{T^{2}}{n} \\ S S_{\mathrm{G}}=\sum_{g} \frac{T_{g}^{2}}{n_{g}}-\frac{T^{2}}{n} \\ S S_{\mathrm{AB}}=S S_{\mathrm{G}}-\left(S S_{\mathrm{A}}+S S_{\mathrm{B}}\right) \\ S S_{\mathrm{R}}=S S_{\mathrm{T}}-\left(S S_{\mathrm{A}}+S S_{\mathrm{B}}+S S_{\mathrm{AB}}\right) \end{gathered}$	$a=$ number of levels of factor A $b=$ number of levels of factor B $n=$ total sample size $x_{i j k}=k$ th member of sample at level i of factor A \& level j of factor B $\begin{array}{r} T=\sum_{i} \sum_{j} \sum_{k} x_{i j k}=\text { overall total } \\ T_{i}=\begin{array}{c} \text { total of data } \\ \text { at level } i \text { of factor A } \end{array} \\ n_{i}=\begin{array}{c} \text { number of data items } \\ \text { at level } i \text { of factor A } \end{array} \\ T_{j}=\begin{array}{c} \text { total of data } \\ \text { at level } j \text { of factor B } \end{array} \\ n_{j}=\begin{array}{c} \text { number of data items } \\ \text { at level } j \text { of factor B } \end{array} \end{array}$ $T_{g}=$ total of all the data at a particular level of A and of B (there are $a b$ such groups) $n_{g}=$ number of data values at a particular level of A and of B
Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic		
Factor A	$S S_{\text {A }}$	$a-1$	$M S_{\text {A }}$	$F=\frac{M S_{\mathrm{A}}}{M S_{\mathrm{R}}}$		
Factor B	$S S_{\text {B }}$	$b-1$	$M S_{\text {B }}$	$F=\frac{M S_{\mathrm{B}}}{M S_{\mathrm{R}}}$		
$\mathrm{A} \times \mathrm{B}$ interaction	$S S_{\text {AB }}$	$(a-1)(b-1)$	$M S_{\text {AB }}$	$F=\frac{M S_{\text {AB }}}{M S_{\mathrm{R}}}$		
Residual	$S S_{\text {R }}$	$\begin{gathered} n-a b \\ \text { (by } \\ \text { subtraction) } \end{gathered}$	$M S_{\text {R }}$			
Total	$S S_{\text {T }}$	$n-1$				
level of A and of B (there are $a b$ such groups) $n_{g}=$ number of data values at a particular level of A and of B						

Worked example model: $x_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\varepsilon_{i j k}$, where $\varepsilon_{i j k} \sim$ independent $\mathrm{N}\left(0, \sigma^{2}\right)$
(NB the use of computers allows much larger samples to be worked with easily) In an experiment to test whether students achieve similar marks on computer based tests to those they achieve on paper based test, a random sample of students from three classes sit either a paper based or a computer based test (the questions on both tests are the same). The marks they achieve are shown:

		Class			Test mode totals
		Class 1	Class 2	Class 3	
Test mode	Computer	$\begin{array}{lr} \hline 33 & \\ 38 & \\ 61 & \\ 69 & \\ & \text { Total 201 } \end{array}$	62 57 63 41 Total 223	$\begin{array}{ll} \hline 62 & \\ 44 & \\ 39 & \\ 45 & \\ & \text { Total } 190 \end{array}$	614
	Paper	$\begin{array}{ll} \hline 53 & \\ 47 & \\ 36 & \\ 47 & \\ & \text { Total 183 } \end{array}$	$\begin{array}{ll} \hline 37 & \\ 42 & \\ 45 & \\ 52 & \\ & \text { Total } 176 \end{array}$	$\begin{array}{ll} \hline 30 & \\ 42 & \\ 27 & \\ 35 & \\ & \text { Total } 134 \end{array}$	493
Class totals		384	399	324	1107

The variance for each section of the population is assumed to be the same. The population is assumed normal.

Factor A is "test mode"; this is the factor of interest. Factor B is "class"; this is a nuisance factor. $a=2, \quad b=3, \quad n=24, \quad n_{i}=12($ all $i), \quad n_{j}=8($ all $j), \quad n_{g}=4($ all $g)$.

\dagger Mean squares

Each mean square is calculated by dividing the sum of squares by the degrees of freedom.

*Distributions of test statistics

All test statistics in the table above have an F distribution with parameters "degrees of freedom of numerator" and "degrees of freedom of denominator".
Analysis of Variance (ANOVA)
© MEI 2008

\dagger Mean squares

Each mean square is calculated by dividing the sum of squares by the degrees of freedom.
*Distributions of test statistics
All test statistics in the table above have an F distribution with parameters "degrees of freedom of numerator" and "degrees of freedom of denominator".

ANOVA table for two-way analysis of variance (two between-subjects factors)

Null hypotheses: (a) The population mean test mark is the same for either mode of test (paper or computer).
(b) The population mean test mark is the same for each of the classes
(c) There is no interaction between test mode and class in respect of the population mean test mark.

Alternative hypothesis: (a) The population mean test marks differ for the test modes.
(b) At least one population mean test mark differs from the other classes.
(c) There is some interaction between test mode and class in respect of the population mean test mark.

Source	Sum of squares	Degrees of freedom	Mean square \dagger	Test statistic*	Distribution of test statistic	Critical value at 5\% level	
Test mode	610.04	1	610.04	5.706	$F_{1,18}$	4.41	
Class	393.75	2	196.875	1.842	$F_{2,18}$	3.55	
A \times B interaction	98.585	2	49.2925	0.461	$F_{2,18}$	3.55	
Residual	1924.25	18	106.903				
Total	3026.625	23					

$S S_{G}=1102.375$
$5.706>4.41$ so there is evidence that there is a difference in the mean marks for different modes of test.
$1.842<3.55$ so there is no evidence of difference in mean marks between the classes.
$0.461<3.55$ so there is no evidence of interaction between class and mode of test.

\dagger Mean squares

Each mean square is calculated by dividing the sum of squares by the degrees of freedom.

*Distributions of test statistics

All test statistics in the table above have an F distribution with parameters "degrees of freedom of numerator" and "degrees of freedom of denominator".

Kruskal-Wallis one-way analysis of variance

Calculation of test statistic	What the letters stand for	Distribution of test statistic
Rank all data values, sum the ranks for each group and square these values.	$N_{j}=$ size of sample $j, N=\sum N_{j}$,	
Test statistic, H, is:		
$H=\frac{12}{N(N+1)}\left(\sum \frac{R_{j}^{2}}{N_{j}}\right)-3(N+1)$	$K=$ sum of ranks for sample j	χ_{K-1}^{2}

Worked example

(NB the use of computers allows much larger samples to be worked with easily)
An investigation compares customer waiting times in three branches of a bank. The queuing time of a random sample of customers in each branch is measured with the following results (in minutes).

Branch	Waiting times (mins)					
A	0	0	2.9	8.2	0	6.0
B	7.3	0.9	0.7	2.4	4.0	
C	8.4	4.4	0.8	7.0	0.3	

Null hypothesis: The mean waiting times for all three branches are the same.
Alternative hypothesis: The mean waiting times for all three branches are not the same.

Ranks in bold

Branch	Waiting times (mins)						Sum of ranks $\left(R_{j}\right)$	Size of sample $\left(N_{j}\right)$
A	$0 \mathbf{2}$	$0 \mathbf{2}$	$2.9 \mathbf{9}$	$8.2 \mathbf{1 5}$	$0 \mathbf{2}$	$6.0 \mathbf{1 2}$	42	6
B	$7.3 \mathbf{1 4}$	$0.9 \mathbf{7}$	$0.7 \mathbf{5}$	$2.4 \mathbf{8}$	$4.0 \mathbf{1 0}$	44	5	
C	$8.4 \mathbf{1 6}$	$4.4 \mathbf{1 1}$	$0.8 \mathbf{6}$	$7.0 \mathbf{1 3}$	$0.3 \mathbf{4}$	50	5	

$N=16, \quad K=3$
$H=\frac{12}{N(N+1)}\left(\sum \frac{R_{j}^{2}}{N_{j}}\right)-3(N+1)$
$H=\frac{12}{16 \times 17}\left(\frac{42^{2}}{6}+\frac{44^{2}}{5}+\frac{50^{2}}{5}\right)-3 \times 17$
$H \approx 1.1118$
The 5% critical value for χ_{2}^{2} is 5.991 .
$1.1118<5.991$ so there is insufficient evidence, at the 5% level, that there is any difference in mean waiting times between the three branches.

Friedman's two-way analysis of variance by rank

Calculation of test statistic	What the letters stand for	Distribution of test statistic
Put the data in a table. To test whether there is a significant difference between the sets of data in the columns, rank each row and sum the ranks for each column. Test statistic, M, is: $M=\frac{12}{N K(K+1)} \sum_{i=1}^{K} R_{i}^{2}-3 N(K+1)$$N=$ size of each sample (number of data items in each column), number of samples (number of data items in each row), $R_{i}=$ sum of ranks for sample i (sum of ranks of column i)		

Worked example

Five judges give a mark out of 15 to each of three paintings. Is there a significant difference between the judges?

Judge	A	B	C	D	E
Painting	7	5	8	6	9
sunset 1	9	8	10	8	11
sunset 2	9	13	14	13	13
sunrise	13				

Null hypothesis: There is no significant difference between the judges.
Alternative hypothesis: There is a significant difference between the judges.
The factor of interest is whether the judges agree. The "nuisance" factor is "painting".

Ranking the rows

Judge	A	B	C	D	E
Painting	$7 \mathbf{3}$	$5 \mathbf{1}$	$8 \mathbf{4}$	$6 \mathbf{2}$	$9 \mathbf{5}$
sunset 1	$9 \mathbf{3}$	$8 \mathbf{1 . 5}$	$10 \mathbf{4}$	$8 \mathbf{1 . 5}$	$11 \mathbf{5}$
sunset 2	$13 \mathbf{2 . 5}$	$13 \mathbf{2 . 5}$	$14 \mathbf{5}$	$13 \mathbf{2 . 5}$	$13 \mathbf{2 . 5}$
sunrise	$\mathbf{8 . 5}$	$\mathbf{5}$	$\mathbf{1 3}$	$\mathbf{6}$	$\mathbf{1 2 . 5}$
rank sum	$\mathbf{8}$				

$N=3, \quad K=5$
$M=\frac{12}{N K(K+1)} \sum_{i=1}^{K} R_{i}^{2}-3 N(K+1)$
$M=\frac{12}{3 \times 5 \times 6}\left(8.5^{2}+5^{2}+13^{2}+6^{2}+12.5^{2}\right)-3 \times 3 \times 6$
$M=7.13$
The critical value at the 5% level for χ_{4}^{2} is 9.488 .
$7.13<9.488$ so there is insufficient evidence of a significant difference in the marks given by the five judges.

