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INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the spaces provided on the
answer booklet. Please write clearly and in capital letters.

• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully. Make sure you know what you have to do before starting

your answer.
• Answer all the questions in Section A and one question from Section B.
• Do not write in the bar codes.
• You are permitted to use a scientific or graphical calculator in this paper.
• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail

of the working to indicate that a correct method is being used.
• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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Section A (54 marks)

Answer all the questions

1 (a) A curve has polar equation r = 2(cos θ + sin θ) for −1
4
π ≤ θ ≤ 3

4
π.

(i) Show that a cartesian equation of the curve is x2 + y2 = 2x + 2y. Hence or otherwise sketch

the curve. [5]

(ii) Find, by integration, the area of the region bounded by the curve and the lines θ = 0 and

θ = 1
2
π. Give your answer in terms of π. [7]

(b) (i) Given that f(x) = arctan(1
2
x), find f ′(x). [2]

(ii) Expand f ′(x) in ascending powers of x as far as the term in x4.

Hence obtain an expression for f(x) in ascending powers of x as far as the term in x5. [5]

2 (a) (i) Given that ß = cos θ + j sin θ, express ßn + ß−n and ßn − ß−n in simplified trigonometrical

form. [2]

(ii) By considering (ß + ß−1)6
, show that

cos6
θ = 1

32
(cos 6θ + 6 cos 4θ + 15 cos 2θ + 10). [3]

(iii) Obtain an expression for cos6
θ − sin6

θ in terms of cos 2θ and cos 6θ. [5]

(b) The complex number w is 8e jπ/3. You are given that ß
1

is a square root of w and that ß
2

is a cube

root of w. The points representing ß
1

and ß
2

in the Argand diagram both lie in the third quadrant.

(i) Find ß
1

and ß
2

in the form re jθ . Draw an Argand diagram showing w, ß
1

and ß
2
. [6]

(ii) Find the product ß
1
ß

2
, and determine the quadrant of the Argand diagram in which it lies.

[3]

3 (i) Show that the characteristic equation of the matrix

M =
 1 −4 5

2 3 −2

−1 4 1


is λ

3 − 5λ
2 + 28λ − 66 = 0. [4]

(ii) Show that λ = 3 is an eigenvalue of M, and determine whether or not M has any other real

eigenvalues. [4]

(iii) Find an eigenvector, v, of unit length corresponding to λ = 3.

State the magnitude of the vector Mnv, where n is an integer. [5]

(iv) Using the Cayley-Hamilton theorem, obtain an equation for M−1 in terms of M2, M and I. [3]
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Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Solve the equation

sinh t + 7 cosh t = 8,

expressing your answer in exact logarithmic form. [6]

A curve has equation y = cosh 2x + 7 sinh 2x.

(ii) Using part (i), or otherwise, find, in an exact form, the coordinates of the points on the curve at

which the gradient is 16.

Show that there is no point on the curve at which the gradient is zero.

Sketch the curve. [8]

(iii) Find, in an exact form, the positive value of a for which the area of the region between the curve,

the x-axis, the y-axis and the line x = a is 1
2
. [4]

Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 A curve has parametric equations

x = t + a sin t, y = 1 − a cos t,

where a is a positive constant.

(i) Draw, on separate diagrams, sketches of the curve for −2π < t < 2π in the cases a = 1, a = 2 and

a = 0.5.

By investigating other cases, state the value(s) of a for which the curve has

(A) loops,

(B) cusps. [7]

(ii) Suppose that the point P (x, y) lies on the curve. Show that the point P ′ (−x, y) also lies on the

curve. What does this indicate about the symmetry of the curve? [3]

(iii) Find an expression in terms of a and t for the gradient of the curve. Hence find, in terms of a,

the coordinates of the turning points on the curve for −2π < t < 2π and a ≠ 1. [5]

(iv) In the case a = 1
2
π, show that t = 1

2
π and t = 3

2
π give the same point. Find the angle at which the

curve crosses itself at this point. [3]
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